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Abstract. This paper introduces a method to correctly order events in model-
based testing for concurrent systems, in particular multi-threaded programs, whose
events are only partially ordered. For a sequential, centralized tester, we need to
merge (local) traces of each component into a (global) trace of a system in such
a way that the ordering constraints are observed. To this end, we instrument a
multi-threaded program under test so that the order of lock events is visible. This
additional information helps a so-called multiplexer to reconstruct a fully serial
trace consistent with the partial order. We describe programs and the multiplexer
as labeled transition systems and give pseudo-code of the algorithm implementing
the latter. The implementation of the algorithm presented is used in an industrial
context.

1 Introduction

Model-based conformance testing checks whether an implementation is behaviorally
consistent with its specification. Formally, this check is performed with respect to a
correctness criterion called conformance relation. Such testing is carried out by a tester
or a testing tool. An industrial software test engineer usually writes a test harness to
provide an interface (API) between the tester and the implementation under test (IUT),
so that the two entities can interact with each other. The interface is symmetric in the
sense that it specifies the methods that the tester can use to influence the IUT and the
methods that the IUT can use to pass information back to the tester.

The tester uses a model or specification as a reference of the IUT’s behavior. The
verdict of a particular test run depends on whether the observed behavior conforms to
the specified behavior or not. For sequential systems, such as single-threaded programs,
events can be observed in the order they occur. In concurrent systems, such as multi-
threaded programs and distributed systems, events of individual agents (an agent being a
thread or, in distributed systems, a process) can still be observed in the order they occur,
but there are typically many possible ways in which events of different agents can be
interleaved. In this paper, we consider the problem that a sequential, centralizaed tester
is used to test concurrent systems. Due to its sequential nature, the tester requires a
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linearized view of all the events of all agents. Other approaches consider using several
distributed testers to test concurrent systems, see e.g. [5].

A problem with the single tester scenario is that, even if all the events of all agents
are totally ordered according to a timeline with sufficiently fine precision, the order in
which the events are observed by the tester may still differ from the actual one due to
buffering and communication delays. If the agents in the IUT interact and this inter-
action is important to the conformance relation, observing the events out of order may
result in false positives (a correct IUT failing a test) or false negatives (a wrong IUT
passing a test), rendering the conformance checking unsound. (On the other hand, if the
agents do not interact, they can be tested independently or concurrently by independent
testers, and the need to observe the events in the corret order does not arise in the first
place.) Inter-agent communication usually imposes a partial order of events defined by
constraints on message communication, e.g. send-events happen before corresponding
receive-events. In multi-threaded programs, a partial order of events is defined by the
access of shared resources. For example, a lock has to be released by a thread before
it can be acquired by another thread. In general, an event of one agent may depend on
an event of another agent and therefore cannot occur before the latter. The sequence of
events observed by the tester must not violate the dependency among the events.

T1

a b c

T2

d e f

Fig. 1. Example of partially ordered events of a concurrent system.

Figure 1 illustrates events of a concurrent system with two agents using a space-
time diagram [15]. The events of each agent are depicted as dots located on a per-agent
timeline, on which an event x of the agent is drawn to the left of an event y of the agent
if and only if x occurs before y, i.e. y depends locally on x. Inter-agent dependencies
are indicated by arrows. In this system, event f of agent T2 depends on event b of agent
T1, and therefore b must precede f . In this case the trace daebfc is consistent with the
dependencies whereas the trace daefbc is not. In general, a trace is consistent with the
partial order if and only if the trace represents an outcome of topological sorting, called
a linearization, of the partial order.

In a system where all agents and all events are observed, it is straightforward to
produce a linearization of the partial order of the events. For example, this is the case in
a distributed system where each process is instrumented to produce unique send-events
and receive-events of messages exchanged between the processes [11]. By using time
stamps [14] all processes need not be observed but all communication relations must be
augmented with a vector time stamps. When dealing with multi-threaded programs such
instrumentations are often either impossible or undesirable. Threads do not directly
communicate with each other, but synchronize through shared resourses, such as locks.



Lock events are not normally observable to the tester because they are internal to the
implementation. The abstraction level at which they occur is lower than that of the
model; as a consequence, lock events are not even mentioned in the model.

A naive attempt to reorder events in multi-threaded programs could be achieved
by assigning a time stamp to each observable event with respect to a global clock and
then sorting the events using the time stamps. However, modern computer hardware
architectures may render the time stamping approach infeasible. For example, consider
a program written for a multi-processor hardware architecture in which memory writes
are local to each processor until an explicit memory-serialization operation occurs. Be-
tween two memory-serialization operations, the system never arrives in a single global
state that can be seen uniformly by all processors. Hence, it seems impossible to use
time stamps of a global clock to serialize the events occurring between two memory-
serialization operations. Moreover, using a global clock may substantially alter the be-
havior being tested by introducing unwanted synchronization when the clock itself is a
shared resource.

Another attempt to reconstruct a linearization from the observations would be to
keep a centralized log of events [16]. In this scheme, each agent reports its events to a
central, serialized log. Unfortunately, such a log introduces additional synchronization
in multi-threaded programs because the very operation of writing into the log by each
thread requires locking and unlocking the log. This additional synchronization could
affect the possible behavior of the system and could eliminate certain errors. In other
words, the instrumentation of the system would itself prevent some invalid behaviors
from occurring. Undetected errors would occur once the system is no longer in “testing
mode”.

Our solution relies on additional assumptions about the implementation and instru-
ments the implementation in such a way that the order in which locks are used becomes
observable. We use a program called multiplexer that takes as its input sequences of
events (with lock events included) of each agent and merges the event sequences into a
single sequence that preserves the order of lock events. We show that if all the shared
resources in the implementation are protected by locks then the merged event sequence
is a valid linearization.

In 1978, Lamport described the inadequacy of using fully sequential time as a way
to understand the runs of distributed systems [15]. His formulation of partially ordered
distributed runs is consistent with the view presented in this paper, and like Lamport we
use incrementing counters as a way to encode ordering constraints. However, the algo-
rithm he presented focuses more on runtime synchronization (for example, as a way to
solve the mutual exclusion problem), whereas our algorithm assumes proper synchro-
nization in the concurrent system under test and validates its behavior with respect to a
serial model of evolving system state.

The rest of the paper is organized as follows. Preliminaries are provided in Section
2. In Section 3, we formalize threads, shared resources and locks. Then, we describe
the multiplexer formally in Section 4. The instrumentation of lock events is realized by
extending the events with usage counts that indicate the order in which a lock is used by
agents. We show that by using the multiplexer, the behavior of a multi-threaded program
can be given a consistent serial interpretation. In Section 5, we outline the algorithm



underlying the multiplexer and mention its application in Section 6. Conclusions and
discussions of future work are provided in Section 7.

2 Preliminaries

We use labeled transition systems (LTS) to describe the behavior of multi-threaded
programs. A labeled transition system L has the following components: a nonempty set
S of states; a nonempty subset S init of S called initial states; a set Σ of external actions;
a set ΣH of internal actions, ΣH ∩Σ = ∅; a transition relation δ ⊆ S× (Σ ∪ΣH)×S.
L is denoted by the tuple (S, S init, δ, Σ, ΣH). We sometimes index a component by
L, unless L is clear from the context. Note that the sets of states and actions may be
infinite. Given a transition e = (s, a, t) ∈ δ; s is the source of e, t is the target of e, and
a is the label of e; if a ∈ ΣH then e is an internal transition. The set of actions enabled
or defined in a state s, denoted by En(s), is the set of all labels of transitions whose
source is s:

En(s) = {a ∈ Σ ∪ ΣH|(∃t ∈ S)(s, a, t) ∈ δ}.
A nonempty sequence α of external actions is called a trace of L in state s1 if there

exist actions a1, . . . , ak ∈ Σ∪ΣH and states s1, . . . , sk+1 ∈ S such that (si, ai, si+1) ∈
δ for 1 ≤ i ≤ k and α is the projection of a1 · · · ak onto the set Σ. We write Tr(s) to
denote the set of all traces of L in state s; given X ⊆ S we write Tr(X) to denote⋃

s∈X Tr(s), and we write Tr(L) for Tr(S init).
An LTS is deterministic if it has a single initial state, it has no internal transitions,

and it has no transitions with the same source and label but distinct targets. If an LTS
L is deterministic, it is convenient to view the transition relation as a partial function so
that, given an action a that is enabled in a state s, δL(s, a) denotes the target of the tran-
sition in L whose source is s and label is a. For any LTS L there exists a deterministic
LTS Det(L) such that Tr(L) = Tr(Det(L)).
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Fig. 2. Components of a system with two threads adding and deleting elements from a bag.



Example 1. The state machines in Figure 2 are deterministic LTSs. They model compo-
nents of a multi-threaded program that adds and deletes elements from a shared bag R 1.
For simplicity, the maximum capacity of the bag is restricted to a single element here
but can easily be generalized to any number of elements. The bag is empty in the initial
state and full in the other state. When empty, an element can be added to the bag, that
is denoted by the action AddOK. Intuitively this action represents a successful attempt
(method invocation) to add an element to the bag. The other action AddFail represents
a failing attempt to add an element to the bag. Deleting an element from the bag always
succeeds, even if there is nothing to delete. K1 models a lock that protects the bag;
it can be acquired (locked) and released (unlocked) by the two threads T 1 and T2. T1

models a thread executing a function Add. After Add is called, the thread acquires the
lock K1. It then either successfully adds an element or fails to add an element to the
bag. This nondeterminism is resolved by the state of the bag (whether it is full or not).
Finally, the lock is released and the behavior is repeated. T2 models a thread that deletes
elements from the bag.

Parallel composition of LTSs formalizes the interaction of several systems. In a
composition of two LTSs the two systems will synchronize on shared external actions,
and asynchronously interleave all other actions. Let L1 = (S1, S

init
1 , δ1, Σ1, Σ

H
1 ) and

L2 = (S2, S
init
2 , δ2, Σ2, Σ

H
2 ) be two LTSs such that ΣH

i ∩ Σj = ∅, The (parallel)
composition of L1 and L2 is an LTS L1 ‖ L2 = (S, S init, δ, Σ, ΣH) where

– S init = S init
1 × S init

2 ,
– Σ = Σ1 ∪ Σ2, ΣH = ΣH

1 ∪ ΣH
2 ,

and S is the smallest set of states and δ the smallest transition relation such that

– S init ⊆ S ⊆ S1 × S2,
– a ∈ Σ1 ∩ Σ2, 〈s1, s2〉 ∈ S, (s1, a, t1) ∈ δ1, (s2, a, t2) ∈ δ2 ⇒
〈t1, t2〉 ∈ S, (〈s1, s2〉, a, 〈t1, t2〉) ∈ δ,

– a ∈ ΣH
1 ∪ (Σ1 −Σ2), 〈s, u〉 ∈ S, (s, a, t) ∈ δ1 ⇒ 〈t, u〉 ∈ S, (〈s, u〉, a, 〈t, u〉) ∈ δ,

– a ∈ ΣH
2 ∪ (Σ2 −Σ1), 〈u, s〉 ∈ S, (s, a, t) ∈ δ2 ⇒ 〈u, t〉 ∈ S, (〈u, s〉, a, 〈u, t〉) ∈ δ.

Let L = (S, S init, δ, Σ, ΣH) be an LTS. Let B ⊆ Σ. The LTS obtained by internal-
izing or hiding all the actions in B is the LTS Hide[B](L) = (S, S init, δ, Σ−B, ΣH∪B).
It is often convenient to assume, without loss of generality, that there is a single internal
action τ , i.e., ΣH

L = {τ}, since the distinction of internal actions is unimportant in the
definition of traces. We use DH[B](L) as a shorthand for Det(Hide[B](L)).

Example 2. Consider the LTSs in Figure 2. DH[ΣK1 ](T1 ‖ T2 ‖ R1 ‖ K1) is shown
in Figure 3, where ΣK1 = {LockK1(T1), UnlockK1(T1), LockK1(T2), UnlockK1(T2)}.
Usually lock events are considered to be internal, so they are hidden in the composition.

Similar to [12], we use a renaming operator ‘ ′’ for the purpose of reusing the ex-
ternal actions of an LTS. The renaming operator is a bijection on actions. We lift the
operator to sets of actions: for an action set A, A ′ = {a′|a ∈ A}. Given an LTS L we
write L′ for the LTS where are all actions in L have been renamed.
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Fig. 3. The composition of the LTSs in Figure 2. Gray unlabeled arrows correspond to DeleteOK-
transitions.

3 System modeling

We use LTSs to model multi-threaded programs. A thread is a sequential process mod-
eled as an LTS. Two threads are disjoint if they do not share any actions. We consider a
fixed collection Threads of n pairwise disjoint threads T i for 1 ≤ i ≤ n.

A shared resource is an LTS that models a state variable whose value is updated or
read by threads. We consider a fixed collection Resources of m pairwise disjoint shared
resources Ri, such that ΣRi ⊆

⋃
T∈Threads ΣT , for 1 ≤ i ≤ m.

Threads can communicate with each other through shared resources, but shared
resources do not communicate with each other. For example, R 1 in Figure 2 is a shared
resource.

A lock is a special type of shared resource that protects access to other shared re-
sources. We model a lock K as a resource shared among the threads as follows.

SK = ({lockedK} × Threads) ∪ {unlockedK},
S init

K = {unlockedK},
ΣK = {LockK(T )|T ∈ Threads} ∪ {UnlockK(T )|T ∈ Threads},
δK = {(unlockedK , LockK(T ), 〈lockedK , T 〉)|T ∈ Threads} ∪

{(〈lockedK , T 〉, UnlockK(T ), unlockedK)|T ∈ Threads}.
We consider a fixed collection Locks of l pairwise disjoint locks K i for 1 ≤ i ≤ l. For
example, K1 in Figure 2 is a lock.

This notion of locks does not allow a lock being acquired more than once without
being released first. In some programming languages, such as C#, a thread can acquire
a lock more than once, but it has to release the lock for the same number of times before
the lock can be acquired by other threads. The locks as defined above are adequate for
the purposes of this paper.

In the following, we use thread to refer to any program thread T i above and we use
shared resource only to refer to a shared resource that is not a lock.

Program threads, shared resources, and locks constitute a (multi-threaded) pro-
gram P = (Threads, Resources, Locks). The behavior of P is described by the com-
position of the components denoted by B(P ). We hide Lock and Unlock actions in the
composition, because they occur usually below the level of abstraction that is desired
when viewing the composition, i.e. the lock events are not considered in the model.

B(P ) def= DH[∪l
i=1ΣKi ](‖n

i=1 Ti ‖m
i=1 Ri ‖l

i=1 Ki).



Example 3. Consider the components in Figure 2 and let P1 = ({T1, T2}, {R1}, {K1}).
Figure 3 shows Det(B(P1)). A practical concern when observing the behavior of such
a system is to guarantee that the causal order of events is preserved. Since two threads
are executing independently, it may happen for example that AddFail is observed af-
ter DeleteOK, resulting in an observed sequence Add, AddOK, Add, Delete, DeleteOK,
AddFail that is not a trace of P1, while in reality the trace Add, AddOK, Add, Delete,
AddFail, DeleteOK happened.

The situation described in Example 3 can be formalized with the help of queues.
Since threads are sequential processes, events from the same thread can be observed
by a tester in the order they occur. Events from different threads could, however, have
races. An event occurring earlier in one thread can be observed after an event occurring
later in another thread. Recording of events can be formalized as buffering of events in
thread-wise queues. Events are consumed in a random order from the queues by a tester.
One can define queues similarly to those in [13], to model the effect of communication
delay between the thread and the tester.

An event queue for a thread records events in the order produced by the thread and
makes those events readable in FIFO order. Formally, given a thread T ∈ Threads, Q T

is the following LTS:

S init
QT

= {ε},
SQT = (ΣT )∗,
ΣQT = ΣT ∪ (ΣT )′,
δQT = {(α, a′, αa)|α, αa ∈ SQT } ∪ {(αa, a, α)|α, αa ∈ SQT }.

Intuitively, a transition whose label is the renamed action a ′ corresponds to recording
the event a in the queue, and a transition whose label is a corresponds to removing the
recorded event a from the queue. Figure 4 illustrates an event queue of a thread with a
single event a.

· · ·
a′ a′ a′

aaa

Fig. 4. An event queue for a thread with a single event a.

The queued behavior of a thread T can be described by composing T ′ with QT ,
hiding the shared actions, and making the result deterministic, i.e. the queued behavior
is DH[Σ′

T ](T ′ ‖ QT ). Unsurprisingly, Tr(T ) = Tr(DH[Σ ′
T ](T ′ ‖ QT )) because events

from the same thread are observed in the order they occur.
Let T, R, K and Q denote the parallel compositions of threads, resources, locks,

and queues respectively. For the program P as above, the external behavior of P com-
posed with queues gives rise to the queued behavior Q(P ) of P ,

Q(P ) def= DH[Σ′
T](B(P )′ ‖ Q) = DH[Σ′

T](DH[ΣK](T ‖ R ‖ K)′ ‖ Q).



The set of traces of Q(P ) corresponds to the set of traces that may be observed by
a tester. The set Tr(Q(P )) is a superset of Tr(B(P )), so a tester might observe some
traces not in the original behavior of the program.

Example 4. In Figure 3, Add AddOK Add Delete AddFail DeleteOK is a trace of B(P 1)
for the program P1 = ({T1, T2}, {R1}, {K1}) in Figure 2. This trace, however, could
correspond to the following trace in Q(P1): Add AddOK Add Delete DeleteOK AddFail
which is not in B(P1), as pointed out in Example 3.

4 Multiplexer

As described above, in order to avoid possible discrepancies between the observed and
the actual behavior of a multi-threaded program, we use a multiplexer to create a lin-
earization of the observed events. To this end, we instrument threads and locks to keep
track of lock events with lock-wise counts, called usage counts. The usage count of a
lock indicates the number of times the lock has been used. When the multiplexer reads
events that have been logged in the queues, it keeps track of the usage counts and does
not read a lock entry from a queue unless that entry has the expected usage count.

A lock K with a usage count is unlocked when the usage count is an even number;
it is locked otherwise. Initially the usage count is 0 and K is unlocked. We model a lock
K with a usage count as the following LTS:

SK = ({unlockedK} × N
even) ∪ ({lockedK} × Threads × N

odd),
S init

K = {〈unlockedK , 0〉},
ΣK = {LockK(T, i)|T ∈ Threads, i ∈ N

even} ∪
{UnlockK(T, i)|T ∈ Threads, i ∈ N

odd},
δK = {(〈unlockedK , i〉, LockK(T, i), 〈lockedK , T, i + 1〉)|T ∈ Threads, i ∈ N

even} ∪
{(〈lockedK , T, i〉, UnlockK(T, i), 〈unlockedK , i + 1〉)|T ∈ Threads, i ∈ N

odd}.

In order to observe the usage counts in traces, the usage counts are made an explicit
part of the lock transition labels.

Example 5. Figure 5 shows the two threads T1 and T2 and the lock K1 from Figure 2
extended with usage counts.

Given P , T, R, K and Q as above, the queued behavior of the program with lock
events visible is described by the LTS S(P ),

S(P ) def= DH[Σ′
T]((T ‖ R ‖ K)′ ‖ Q)

The multiplexer communicates with S(P ) by reading events from the queues. Lock
events are used to create a linearization of all the other events from different queues
that respects the causal order of the events. If the first event in an event queue is a lock
event, then the multiplexer checks whether its usage count is the expected one. If yes,
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Fig. 5. Threads T1 and T2 and the lock K1 from Figure 2 extended with usage counts.

then it deletes this event from the queue and increases the expected usage count of the
lock; otherwise, it leaves the queue intact. If the first event in an event queue is not a
lock event, which means that the event can be executed without violating the ordering
constraint, the multiplexer can simply remove the event from the queue and puts it in
the output queue read by the tester.

Formally, the multiplexer M is an LTS obtained from the composition K of locks
with usage counts by adding self-loops for all non-locking actions:

S init
M = S init

K ,

SM = SK,

ΣM = ΣT,

δM = δK ∪ {(s, a, s)|a ∈ ΣM − ΣK, s ∈ SM},

The multiplexed behavior M(P ) of P is the composition of the queued behavior of P
with the multiplexer where locking actions are hidden,

M(P ) def= DH[ΣK](S(P ) ‖ M).

With the help of the multiplexer, we want to ensure that the multiplexed behavior
M(P ) is the same as the behavior of P , i.e., Tr(B(P )) = Tr(M(P )). In general, this
is only true if shared resources are properly protected by locks.

T3
Add

AddOK

AddFail

T4

Delete

DeleteOK

Fig. 6. Threads T1 and T2 from Figure 2 after removal of lock events.



Example 6. Assume for a moment that the threads T1 and T2 in Figure 2 do not use
locks. In Figure 6, we show the threads without lock events as threads T 3 and T4, re-
spectively. The behavior B(P2) of the program P2 = ({T3, T4}, {R1}, {K1}) with R1

as in Figure 2 and K1 as in Figure 5, happens to be the same as the LTS in Figure 3.
It is easy to see that Tr(B(P2)) �= Tr(M(P2)) because the shared resource R1 is not
protected by a lock.

One can see that if an event a of one thread, say T1, must precede an event b of
another thread, say T2, in B(P ), then there must be lock events between a and b that
effectively enforce this order. Since a lock has to be released by a thread before it can be
acquired by another, if there are lock events between a and b in that order, there must be
an Unlock event from T1 before a Lock event from T2. It is intuitively clear that we only
need to protect events of shared resources (e.g. thread-local events need no protection).

Let P be as above. We say that P is lock-protected, if every shared resource R
is associated with a lock KR and for every trace αaβ ∈ Tr(P ) and thread T , where
a ∈ ΣT ∩ ΣR, there is a Lock event LockKR(T, k) in α and a corresponding Unlock
event UnlockKR(T, k + 1) in β for some k. In other words, P is lock-protected if there
is a lock for each shared resource that assures exclusive access to that resource one
thread at a time.

The following theorem shows that multiplexing does not affect the traces of lock-
protected programs.

Theorem 1. Given P as above. If P is lock-protected then Tr(B(P )) = Tr(M(P )).

Proof (outline). We show first that Tr(S(P ) ‖ M) ⊆ Tr(T ‖ R ‖ K). Consider a trace
α of S(P ) ‖ M . From the construction of S(P ) it follows that all events of a given
thread appear in the correct order in α as renamed events. The events from queues are
merged arbitrarily in S(P ) so causal ordering constraints between events from different
threads is not preserved. However, composition with M and the assumption of P being
lock-protected excludes illegal interleavings of the queues so that α is again a possible
trace of Tr(T ‖ R ‖ K).

To see that Tr(T ‖ R ‖ K) ⊆ Tr(S(P ) ‖ M) consider a trace u = b1b2 · · · ∈
Tr(T ‖ R ‖ K). There is the particular trace b′1b1b

′
2b2 · · · ∈ Tr((T ‖ R ‖ K)′ ‖ Q)

corresponding to the special case when an event is removed from a queue immediately
after it has been added to the queue, and thus u ∈ Tr(S(P )). Moreover, since the lock
event ordering is not violated in u, u ∈ Tr(S(P ) ‖ M).

From Tr(S(P ) ‖ M) = Tr(T ‖ R ‖ K) follows that

Tr(B(P )) = Tr(Hide[ΣK ](T ‖ R ‖ K))
= Tr(Hide[ΣK ](S(P ) ‖ M)) = Tr(M(P )). 
�

5 Multiplexing algorithm

In this section we describe the multiplexing algorithm that underlies a multiplexer. To
make the description precise, we use the modeling language AsmL [2] as pseudo-code
to describe the algorithm.



The multiplexer reads events from input queues. Each queue is associated with a
particular thread. The multiplexer merges the events into a possible linearization and
stores the merged sequence in a designated output queue.

type Queue
var inQueues as Set of Queue
var outQueue as Queue

The elements in the queues are lock events and other observable events, called up-
date events. Each lock event is associated with a given lock and a usage count for that
lock. (Each lock event is further classified as either acquiring or releasing of the lock,
but this distinction is irrelevant for the purposes of this description.) The thread operat-
ing on the lock is implied by the input queue from which the multiplexer reads the lock
event.

type Lock
structure Event

case LockEvent
lock as Lock
count as Integer

case UpdateEvent

We assume that one can perform the following operations on a queue: add a new
event at the end of the queue by invoking Enqueue; remove the first event by invoking
Dequeue; check if the queue is empty by invoking IsEmpty; and get the first event
from the queue by invoking Head.

class Queue
IsEmpty() as Boolean
Enqueue(event as Event)
Dequeue()
Head() as Event

The multiplexer keeps a map from locks to expected usage counts. Initially, the map
is empty, so the expected usage count of each lock is set to 0.

locks as Map of Lock to Integer = {->}
GetLockCount(lock as Lock) as Integer

if lock notin locks then return 0
else return locks(lock)

IncrementLockCount(lock as Lock)
if lock notin locks then locks(lock) := 1
else locks(lock) := locks(lock) + 1

The main part of the algorithm is described by the following while loop. A nonempty
input queue of events is chosen randomly. If the first event is a lock event with a match-
ing expected usage count then the event is removed from the queue and the expected
usage count is incremented. If the event is an update event it is removed from the input
queue and appended at the end of the output queue. From the point of view of external
behavior, lock events are internal and are therefore not added to the output queue but
are used solely for the purposes of ordering the update events.



while true
choose queue in inQueues where not queue.IsEmpty()
let e = queue.Head()
if e is LockEvent then

if e.count = GetLockCount(e.lock) then
queue.Dequeue()
IncrementLockCount(e)

else
skip

else
queue.Dequeue()
outQueue.Enqueue(e)

This description of the algorithm is simplified. The actual implementation of the
multiplexer is itself multi-threaded, where the input queues may be updated while the
multiplexer is running. Moreover, the number of input queues may grow or shrink dy-
namically as the number of threads changes.

T1

a LockK(T1, 0) b UnlockK(T1, 1) c

T2

d e LockK(T2, 2) f UnlockK(T2, 3)

Fig. 7. Sample run of the threads in Figure 1.

Example 7. Figure 7 shows a possible run of the system in Figure 1. The event se-
quence of thread T1 is (a, LockK(T1, 0), b, UnlockK(T1, 1), c), and the event se-
quence of thread T2 is (d, e, LockK(T2, 2), f, UnlockK(T2, 3)). The partial order of
update events in the runs of the two threads depends on the total order of lock events
associated with lock K . The solid arrow indicates that UnlockK(T1, 1) happens before
LockK(T2, 2). Consequently, event b must precede event f , as indicated with the dashed
arrow. A possible event sequence produced by the multiplexer is daebfc. Notice that
with the multiplexer, a tester always observes event b before event f since the order of
update events is restrained by the order of lock events.

6 Application

The multiplexer is used together with the Spec Explorer tool for system-level confor-
mance testing of multi-threaded and distributed systems. It is used by several Microsoft
product groups that test highly concurrent subsystems of the forthcoming version of the
Windows operating system. The Spec Explorer tool is briefly described in [8]. The tool
is available from [1]. The threads or processes of the system under test produce thread-
based event logs. These logs are serialized by the multiplexer into a single event trace.



The trace is fed into a conformance checking engine that checks whether the observed
trace is valid with respect to a given specification or model. The model is described by
a model program written in AsmL [9] or Spec# [3]. The use of a model program as a
behavioral specification is explained in [4, 17]. The formal conformance relation that
is checked between the model and the system under test is a variation of alternating
refinement of interface automata [6, 7]. An event trace is viewed as a particular run of a
game between two players: a tester (or testing tool) and a system under test. In this set-
ting, the role of the multiplexer is to produce a serial view of the moves of the system,
viewed as a single player, as a response to a move of the tester.

7 Conclusion

In this paper we considered model-based testing of multi-threaded programs with a
single, sequential tester. Such a tester requires a linearized view of all the events that
occurred in a given test run. We proposed a method for reordering of events from mul-
tiple threads so that partial order constraints concerning locks are not violated.

Our method requires some instrumentation of the program so that the partial order
of lock events is used to help to reorder other events. We do not assume the existence
of a globally visible clock, and our approach does not create additional synchronization
between threads. In this sense, our method tries to avoid major impact on the system per-
formance. We validated our approach, by modeling multi-threaded programs in terms
of LTS, and formulated a sufficient condition in terms of lock usage.

Based on the assumption of lock-protection, our method ensures the soundness of
a tester using the multiplexer. If a correct implementation is lock-protected, which is
usually the case, the multiplexer can correctly reconstruct the events from the imple-
mentation, and the latter does not fail a test case derived from the model. On the other
hand, if an implementation is correct but not lock-protected, possibly due to perfor-
mance considerations, then the multiplexer can still produce some traces not belonging
to the system. In this case, the correct implementation might fail a test.

The multiplexer is used together with the Spec Explorer tool for system-level con-
formance testing of multi-threaded and distributed systems. It is used by several Mi-
crosoft product groups that test highly concurrent subsystems of the forthcoming ver-
sion of the Windows operating system.

As to the future work, we would like to extend our method to other applications
where events have partial order constraints. For example, in communicating systems, a
send event precedes the corresponding receive event and a request precedes the corre-
sponding acknowledgment.

Also, the lock-protection condition looks a little too stringent. It could be relaxed
by requiring lock-protection only when two events of a shared resources executed by
different threads are totally ordered.

Moreover, the multiplexer could be extended to detect potential deficiencies of mul-
tithreaded programs, such as anti-patterns related to synchronization abuse and dead-
lock [10].
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