Testing Communicating Systems: a Model, a
Methodology, and a Tool *

Ismail Berrada Richard Castanet Patrick Félix

LaBRI - CNRS - UMR 5800 Université Bordeaux 1
33405 Talence cedex, France
{berrada | castanet | felix}@labri.fr

Abstract. This paper follows two main lines of research. The first line is
related to the study of models for the description of systems. For this line,
we introduce the model of Communicating Systems (CS), which defines
a set of common resources, a set of entities, and a topology of commu-
nication. The second line focuses on testing methodologies adapted to
protocol testing. For this line, we give a formal definition of a generic
generation algorithm (GGA). We demonstrate that the CS model with a
GGA supports various 1) test architectures, 2) test types: conformance,
interoperability, embedded, component testing, and 3) test approaches:
passive and active testing. The paper presents also the main character-
istics of the TGSE tool (Test Generation, Simulation, and Emulation).
TGSE is made-up of a test case generator, based on the CS model and
implementing a GGA, a graphic simulator of the execution of a sequence
generated by TGSE, and a real-time emulator of communicating speci-
fications. In its current version, TGSE supports the passive and active
testing of one or several components with data and temporal constraints.

1 Introduction

Protocol specifications are used to develop products and services. To ensure
correctness of such products (implementations), testing, the process of checking
that a system possesses a set of desired properties and/or behaviors, is one of
the most used validation techniques.

Testing process is a hard work that is long, repetitive and which represents a
potential source of errors. The use of formal specifications provides support for
automating this process. Different models (FSM, EFSM, CEFSM, LTS, IOLTS,
TIOA,...) and languages (SDL, Lotos, IF, UML,...) have been proposed to de-
scribe protocols and the desired behaviors about them in a formal way. Due to
the nature of protocols/functions being tested, various test types are required.
For example, in conformance testing, a single implementation is compared to
relevant standards. In interoperability testing, two or more implementations are
tested directly against each other, with the standard used primarily as a refer-
ence to adjudicate problems and incompatibilities, and secondarily as a guide

* This research has been supported by the French RNTL project Avérroes and the
Marie Curie RTN TAROT (MCRTN 505121).

to the functions to be tested. Embedded testing considers an implementation
communicating through its environment. The ways to test communicating sys-
tems can be classified into two basic groups. The most natural way, namely the
active testing approach [1-17], consists in carrying out the test derivation start-
ing from specifications. Another possibility is the passive testing approach [21].
The absence of observations allows only the validation of traces, and thus this
approach checks that a trace of an implementation is a valid execution of the
specification.

From our point of view, this diversity of types, models and approaches points
only to the specificity of requirements. Indeed, the different types of test are a
consequence of the composition of the systems to be tested : conformance testing
considers only one entity while interoperability and embedded testing consider
several communicating components interacting according to a test architecture.
The considered model is justified by needs of system description: systems have
behaviors and can handle data and temporal constraints. With either the passive
testing or the active testing, we are confronted with the same problem: the
accessibility problem of states or transitions.

Thus, the aim of this paper is not to introduce a new test generation tech-
nique, but rather to show that it is possible to treat the different types (con-
formance, interoperability, embedded, component) and approaches (passive and
active) of testing in a unified manner. Our main contributions are the following:

First, we introduce the model of communicating systems (CS). This model
defines (i) a set of communicating entities (components), (ii) a set of common re-
sources (variables and parameters) shared by these entities, and (iii) a topology
of communication, inspired by [19, 20], which specifies the different possible syn-
chronizations in a global state of the system. We have chosen to model entities
by extended timed automata but other models may be used.

Second, we demonstrate that the CS model is a generic model for testing in
the sense that (i) it offers mechanisms for modeling different types of communica-
tions and test architectures, and (ii) it allows the possibility of applying the same
generic generation algorithm (GGA) with different test types and approaches.
As we will see, these results have a consequence on the classical test activities
in the sense that the specification modeling and the use of a test approach and
a test architecture are not two separate steps.

Finally, by presenting the TGSE tool (Test Generation, Simulation and Em-
ulation), we show that our framework is usable in practical tools. TGSE imple-
ments an on-the-fly GGA, and supports the passive and active testing (with test
purpose) of one or several components with data and temporal constraints.

The paper is organized as follows. Section 2 introduces the CS model. The
generic character of this model and its suitability for protocol testing are dis-
cussed in section 3. Section 4 gives some elements of the implementation of
the test generator tool TGSE. Section 5 reports our experimental results on
CSMA /CD protocol. Finally, we conclude and draw some perspectives in sec-
tion 6.

2 Model and Methodology

The behavior of a communication protocol can be described by means of formal
models such as communicating systems (CS). In this paper, IR will denote the
set of reals, and IR" will denote the set of positive reals.

2.1 Preliminaries

Clocks and Constraints. A clock is a variable that allows to record the passage
of time. It can be set to a certain value and inspected at any moment to see how
much time has passed. In the Alur-Dill model [18], clocks increase at the same
rate, they are ranged over IR", and the only assignments allowed are clock resets
of the form x := 0. For a set C of clocks, a set P of parameters, and a set V' of
variables, the set of clock constraints ¢(C, P, V) is defined by the grammar:

=1 |P2| D1 A P2, $1:=x < f(P,V), ¢po:=f(P,V) <z

where « is a clock of C, and f(P,V) is a linear expression of P and V. For two
sets Ly and Lg, L1\ L2 will denote the set L1\Ly = {a|a € L1 Aa & Lo}.

Definition 1 (ETIOA). An exstended timed input/output automaton (ETIOA)
is a 10-tuple M = (S, L,C, P,V,Vq, Pred, Ass, sg, —) where :

— S is a finite set of states.

— 8g 18 the initial state.

— L is a finite alphabet of actions, L =L; U L, U I.

— C is a finite set of clocks.

— P is a finite set of parameters.

— V is a finite set of variables.

— Vb is a finite set of the initial values for variables of V.

— Pred =&(C,P,V)U P[P, V], where P[P, V] is a set of linear inequalities on
V and P.

— Ass={z =0z e CYU{v:= f(P,V)|v € V} is a set of updates on clocks
and variables.

— —-C S X L x Predx Ass x S is a set of transitions.

The alphabet L is partitioned into three sets: L; (resp. L,) is the input (resp. out-
put) alphabet, and I is the alphabet of internal actions. t = (s, a,pred, ass, s’) €—
represents an edge from state s to state s’ on symbol a. pred C Pred is a set of
constraints, and ass C Ass is a set of updates.

Ezample 1. Fig. 1 illustrates an example of an ETTIOA.

— S ={s0,51, 82,83} and s¢ the initial state.

— L={la,?b,le,?d}, C ={z,y}, P={B,A}, V ={vl} and V, = {5}.

— The variable v; has the initial value .

Pred={y>\z<1lvl <4}, Ass={z:=0,y:=0,v1 := vl 4+ 1}.

— The transition ¢ from s to sz is: ¢ = (s2,!c, {z < 1}, {vl := vl + 1}, s3).

Remark 1. For an ETIOA M = (S,L,C, P,V,Vy, Pred, Ass, so, —):

— When P = () and V = (), then we find the usual definition of a timed i/o
automaton (TIOA). In this case, M will be simply noted (S, L, C, sg, —).

— When C =0, P = () and V = (), then we find the usual definition of an i/o
automaton (IOA). In this case, M will be simply noted M = (S, L, sg, —).

2d
y=>A
la 2\ 7b N\ Ic
< T oo T o &
z:=0 vl:=0vl+1
Fig. 1. ETIOA.

2.2 Topologies of communication and Communicating Systems

A topology of communication Top of a set of processes is a synchronization
model of the different processes. It describes the dynamic configurations of pro-
cesses, and the possible synchronizations in a given configuration. The definition
of Top is inspired by [19, 20]. It defines a set of global actions, a set of sets of
actions, and a Transducer (this terminology is borrowed from [20]) modeled by
an automaton.

Definition 2 (Topology). The topology of communication Top of a set of
n processes is a 3-tuple (G,I,Tr), with G a finite set of global actions, I =
{ILi}1<i<n @ finite set of sets, and Tr = (Sir, Lir, Sotr, —1r) an automaton such
that the events of Ly, are vectors v of n + 1 elements, and Vv € Ly, v =<
Qg, 1, ..., Gn, > With ag € G and Vi € [1,n], a; € I; U {idle}.

A vector U =< g, 01, ..., an > of Ly describes the action a; that the process
i, i € [1,n], has to perform. The synchronization of the actions (a;)ie[1,n) gives
place to the global action a,. When a vector T =< ag,idle, ..., a;, ...,idle >
defines only one action, the process i executes lonely a;, and changes its state.
For a topology Top = (G, I,Tr), when the number of states of T'r is equal to 1
then Top is called a static topology.

A topology offers the possibility of modeling communications between one,
two or several processes: unicast, multicast, and broadcast. It can be used, in cer-
tain cases, as a kind of controller on actions allowed by processes in a given con-
figuration of the global system. Note that, in order to describe inter-component
communications, a process algebra can be more expressive than the topology,
however, this latter offers suitable modeling mechanisms and algorithms usable
in practical tools.

Definition 3 (Communicating System). A communicating system CS is a
5-tuple (SP, SV, SVy, (M;)1<i<n, Top) where:

SP is a set of shared parameters.

— SV is a set of shared variables.

SVy is a set of the initial values for variables of SV .

— Top = (G, {Ii}1<i<n, TT) is a topology.

— M; = (S, Li, C;, P;, Vi, Vo, Pred;, Ass;, S04, —4) is an ETIOA such that I; C
Li, Vi € [l,n]

Shared resources

Entity 1
-y T
.," !‘a/v::Z
1 Te-al
.»,,,,’

Fig. 2. CS model.

Fig. 2 illustrates an example of a CS. Entities represent processes. They are mod-
eled by ETIOAs. The topology of communication describes the different possible
synchronizations between the entities. We assumed in the definition of entities
that Vi € [1,n], I; C L;. This enables the definition of partial topologies in which
only allowed synchronizations are reported (in the next section, we will give some
examples of such topologies). The common resources represent the shared data
of the CS. We will restrict the shared data to variables and parameters. The
parameters (resp. variables) can be read (resp. read and modified) by the CS
entities . The semantics of a CS is defined by an ETIOA. To simplify, we will
assume that the names of parameters and variables of entities are different, and
different from those of the CS.

Definition 4 (Semantics). The semantics of a communicating system S =
(SP7 SM S‘/o, (Mi)lgign; TOp), with Ml‘ = (SZ‘, Li, Ci, Pi, ‘/i, Vbia Predi, ASSi, S04
—;) and Top = (G,1I,(Str, Lir, Sotr, —tr)), 5 defined by the ETIOA ((S) =
(S,L,C, P,V,Vy, Pred, Ass, so, —) such that :

S ={s=(Str,81y-s8n) | Str € Str, Vi € [1,n],8; € S;}
— 80 = (Sotrs 801, - SOn) -

- L=G, C=C,U..uC,, P=SPUP,U..UP,.
—V=VPUWVU..UV,, Vi =VP UV U..UV,,.
— Pred = Pred, U ...U Pred,,, Ass = Ass; U ...U Ass,.

! Shared parameters and variables can appear in the definition of a transition of an
entity.

a,pred,ass (S/ ’

— —= {(Str, 81y s Sn) LSt st)30 =<a,ay, ..., an>E€ Ly, 541

T a;,pred;,ass;

—tr Spp, Vi € [1, 1], (((a; = idle) A (s, = 85)) || ((a; # idle) A (s, —————;
st))),pred = predy A ... A pred,, ass = assy A ... A assy }.

The alphabet L of ((.9) is the set G of global actions of Top. A state of {(S) con-

a,pred,ass
ittt bbb

sists of a state of Top and states of (M;);c[1,n)- A transition (s:, 51, ..., sn)
(84, 81, --y 80) Of C(.S) is conditioned by the existence of a transition of Top from
Str t0 S}, on a vector having the global action a.

Thus, the semantics of a CS allows the possibility of the synchronization with
other CSs, which gives a hierarchical definition for CSs. A possible extension of
the CS model consists in the definition of extended topologies: the transducer
modeled by an ETIOA (could be useful for modeling network latencies). Note
that, the size (number of transitions) of the semantics automaton is linear in the
size of entities times the size of the topology. In practice, however, this size is
orders of magnitude less. For example, the size of a CS, such that its topology
is a tree, is linear in the size of its topology.

2.3 Methodology of Generic Generation Algorithms.

The majority of test generation algorithms are based on a depth-first search of a
target state or transition in the accessibility graph. It is then possible to define
generic generation algorithms for various test types. In this part, we show how
to define such algorithms.

Definition 5. A communicating system under test (CSUT) is a commaunicating
system S = (SP, SV, SVy, (M;)1<i<n, Top), such that there is at least one entity
M;, i € [1,n], defining one or several states labeled by ACCEPT.

States labeled by ACCEPT define the behaviors to be tested. Our definition of
CSUT considers only states labeled by ACCEPT, but it is possible to define
transitions labeled by ACCFEPT. This last case is not treated in this paper, but
the approach remains the same. Let us note by CSUT, the set of all CSUTs.

Definition 6. For a S € CSUT, a state s = (S¢r, 81, ..., 8,) of C(S) and p =
to...tn a sequence of transitions in ((S) from the initial state:

— s 1is an accepting state of ((S) if there exists i € [1,n] such that s; is a state
labeled by ACCEPT.

— p is an accepting path of ¢(S), if
1. p is an executable path.
2. The target state of the last transition t,, is an accepting state of ((5).

A state s of the ETTOA ((5), the semantics of S, is an accepting state of ((.5),
if one of the states that compose it, is a state labeled by ACCEPT. A path
p = to...ty, of {(S) from the initial state is an accepting path of ((S) if 1) the
state s, of the last transition ¢, = (s,—1,a,pred,ass, s,) is an accepting state
of ¢(S) and 2) p is an executable (feasible) path, i.e, the different constraints on
the transitions are all satisfied. The executability of a path is treated in [21, 22].

Definition 7. A generic generation algorithm (GGA) for CSUT is an algorithm
that computes, for all S € CSUT, all accepting paths of ((S).

An algorithm gga is a GGA, if gga applied to ((S) returns a set PATH(S)
containing all accepting paths of ((S). Examples of GGA can be found in [21,
23, 22]. Note that the Hit-or-Jump algorithm [23] does not deal with the temporal
aspect of systems and considers ACCEPT transitions.

Finally, an algorithm gga does not depend on a CSUT. It can be applied
to any ETIOA and it is exhaustive in the sense that all accepting paths are
returned by gga. Its complexity depends on the size of entities and the size of
the topology used. We have chosen the state coverage criterion for defining gga
but the transition (or other) coverage criterion can also be chosen [22].

3 CS : A Generic Model for Testing

In this section we present the expressivity and the generic character of CSs
for describing and testing protocols. Modeling specifications is presented in 3.1.
Testing with different types and approaches is presented in 3.2.

In the remainder of this section, we will consider two specifications S4 and
Sp, sharing the set of parameters SP, and the set of variables SV, such that
SVp is a finite set of the initial values for variables of SV. We model S (resp.
Sp) by the ETIOA A = (Sa,La,Ca, Pa,Va,Vo, Preda, Assa, so,—4) (resp. B =
(S, Ls,CE, Pg, Vs, Vy, Predg, Assg, s, HB)) Lap (resp. LBA) will denote the
set of events of L4 (resp Lp) which synchronize with an event of Lp (resp.
L,). For example, if Ly = {?a1,%a2,!a3} and Lp = {las, 7as,las} then Lap =
{?as,las}, Lpa = {las,?as}, and ?ay (resp. las) synchronizes with lay (resp.
?a3). To simplify, we will assume that Ya € L4p, there is a unique b € L4 such
that a synchronizes with b.

3.1 CS as a Specification Model

<G,Lap,Lpa> <7,Lap,Lpa>

<GA,LA\LAB,idle>
<GA,LA\LAB,idle> <GB,idle,LB\LBA>
<GBp,idle,Lp\Lpa>

(a) Topology TopS (b) Topology TopS’

Fig. 3. Different topologies

Observable events. Suppose that S is the specification made up of specifi-
cations S4 and Sp. A CS modeling of S is: C'Sy = (SP, SV, SV, (A, B), TopS),
with T'opS the automaton of Fig.3 (a). TopS is a static topology. Vector <
G,Lap,Lpa > denotes the vectors < gup,a,b > such that a € Lap synchro-
nizes with b € Lpa, and their synchronization gives place to an observable

action g,p. An example of g, can be a (resp. b) if a (resp. b) is an emis-
sion (the visible action of an emission and a reception is an emission). In the
same way, < Ga,La\Lap,idle > denotes the vectors < g,, a,idle > such that
a € La\Lap. In < g,,a,idle >, the ETIOA A performs the action a giving
place to the observable action g,, and the ETIOA B remains in the same state
(idle). The set G4 corresponds, in general, to the set L\Lap. Finally, TopS
allows the application of each vector (if it is possible) in a global state of S.

Non-observable events. Now, suppose that the synchronizations of Lyp
events with L 4 events are non-observable (as it is the case of the black-box test
architecture), then modeling S in CS is: CSy = (SP, SV, SVy, (4, B), TopS’),
with T'opS’ the automaton of Fig.3 (b). In < 7,a,b > of < 7,Lap,Lpa >,
the synchronization of a with b gives place to an internal action 7. Generally,
we can describe the synchronization on internal actions only for a part of the
synchronization events as it is the case of a test architecture.

Thus, from a testing standpoint, the CS model is not only a formal model
allowing the description of inter-component communications, but also a model
that is able to incorporate the test architectures.

3.2 CS as a Test Generation Model

Two major approaches were used for protocol testing: Active Testing and Passive
Testing. In active testing, the derivation is made from specifications. The deriva-
tion can consider only a part of the specification with the aim of limiting the
state space explosion which occurs during the system composition and analysis.
This approach is known as the test purpose technique. Active testing can deal
with one or several communicating entities [1-17]. On the other hand, passive
testing considers execution traces of an implementation, which can contain val-
ues of variables and clocks, and checks the validity of these traces with respect
to the specification. In the works relating to passive testing [21], the authors
consider only one untimed specification.

To simplify, let us call one-component testing the test of one specification
(conformance testing) and several-component testing the test of several spec-
ifications (interoperability, embedded, component testing). In the rest of this
section, we consider that gga is a GGA. This section shows that the test activi-
ties amount to a CS modeling, by deferring the different characteristics of a test
to the topology of communication, and the application of the algorithm gga to
validate a trace (passive testing) or to generate traces (active testing).

Passive testing. Suppose that I is an implementation of the specification S 4,
and the trace modeled by the ETIOA of Fig.4 (a) is a trace of I. This trace
reports that I has executed a € L4 (we recall that A is the ETIOA of Sy)
at moment 3, followed by b € L4 at moment 5 such that the shared variable
v € SV is equal to 4. Checking the validity of this trace consists in modeling a
CS CS3 = (SP,SV,SVy, (A, PTrace), PTop), with PTrace the ETIOA of Fig. 4
(a) and PTop the automaton of Fig.4 (b).

The topology Ptop is partial, i.e, it defines only the synchronizations on PTrace

ACCEPT
h=3/a/- h=5,v=4/b/— <a,a,a> <b,b,b>

(a) PTrace (b) PTop

Fig. 4. Passive testing.

events. < a,a,a > (resp. < b,b,b >) considers that A and PTrace synchronize
on a (resp. b), and the visible action will be a (resp. b). We have labeled the state
reached by the action b in PTrace by ACCEPT in order to make C'S3 a CSUT
and to be able to apply gga. Consequently, gga allows to decide if PTrace is a
valid trace of A: if gga returns an empty set (PATH(CS3) = () then PTrace
is not a valid trace of A (we recall that gga is applied to the semantics of C'S3).

Remark 2. -Generally, the construction of PTop depends strongly on PTrace.
It should define only synchronizations on PTrace events and in the same order.
-The trace PTrace is considered as an entity of C'S3 without any distinction
compared to the other entities. This allows to enlarge the form of the considered
traces to any traces modeled by an ETIOA defining some accepting states.
-The example of the passive testing of the specification S, is one-component
testing, but the approach remains the same in the case of several-component
testing. In this setting, the difficulty is to reorder various traces from the different
components to construct only one trace. We think that the stamp mechanisms,
and especially the stamp process presented in [24], could be used. This subject
goes beyond the framework of this paper and needs more investigation.

Active testing. For a CSUT S, the paths PATH(((S)) generated by gga can
be used to derive test cases that cover, for example, all S states. This amounts
to define all S states as being accepting states (gga could be an adaptation of
the TT/UIO/Wp methods for untimed systems). Thus, we consider here only
the test purpose technique.

Definition 8. A test purpose (TP)is an ETIOA (S, L,C, P,V,Vy, Pred, Ass, so,
—) having two sets of states ACCEPT and REJECT characterizing the behav-
iors to be tested.

A TP is a property that one would like to check on implementation behavior.
TP1 of Fig.5 (a) illustrates an example of a TP for the specification S4. TP1
tests that an implementation I of S4 can execute a followed by b at an instant
between [2, Sig] according to the clock h (Sig € SP is a shared parameter of Sy4).
The label **’ denotes the alphabet L 4 of A. We assume here that a,b,c € L 4.

One-component testing.
Suppose that T'P1 is a TP for specification S4. A modeling of this test in CS is:
CSy = (SP,SV,SVy, (A, TP1),TPopl), with T Popl the topology of Fig.5 (b).
The vectors < La\{a,b}, La\{a,b},idle > denote free evolutions of specification
A on events other than a and b. C'Sy is a CSUT and thus gga will generate paths
checking T'P1.

<La\{a,b},L4\{a, b}idle>

ACCEPT
<b,b,b> <a,a,a> H o 7}.;.
—lal- h[2.Sig]/b/~
n
(a) Purpose TP1 (b) Topology PTopl (c) Topology TPopl’

Fig. 5. Active testing: one-component testing (1).

Note that for the same TP, several CS modelings can be formulated, consid-
ering different topologies. In fact, the definition of the topology gives more
expressivity to the behaviors awaited by a TP. A typical example of this ex-
pressivity is as follows: since paths generated by gga for C'S; are of arbitrary
lengths (the number of transitions), one can wish to generate only paths of
lengths less than n € IN. This wish cannot be expressed by a TP (there is
no mechanism to count the event occurrences). Now, let us consider the CS
CS; = (SP,SV,SVy, (A, TP1),TPopl’), with TPopl’ the topology of Fig.5
(c). The label '*’ in T Popl’ denotes vectors < a,a,a >, < bbb >, and <
Ls\{a,b}, La\{a,b},idle > (a transition '*’ is then the set of transitions on
these vectors). With T'Popl’ the semantics of C'Ss is a tree of depth less than n
and thus the lengths of paths generated by gga are less than n.

other

—fa/—

other <La\{a,b,c},La\{a,b,c} idle>
REJECT

—/c/-, h[2.Sig]/b/-

<b,b,b>

REJECT
ACCEPT <aaa>

(a) Purpose TP2 (b) Topology PTop2

Fig. 6. Active testing: one-component testing (2).

To close the part of one-component testing, let us take the TP T P2 of Fig.6
(a). TP2 tests the same functionalities as T'P1, but prohibits the appearance
of ¢ in the two first states of T'P2. The label ’other’in T'P2 denotes the events
L4 \{c}. Note that the definition of REJECT states is only a manner of pro-
hibiting synchronizations on a set of events. This prohibition can be formulated
in the topology instead of the test purpose. In this case, we can use T P1 instead
of T'P2. Indeed, the active testing of S4 with test purpose T P2 can be modeled
by the CS CSg = (SP, SV, SVy, (A, TP1),TPop2), with T Pop2 the topology of
Fig.6 (b). In TPop2, when a synchronization on ¢ occurs, the communicating
system evolves/moves to a blocking/deadlock state and thus during the applica-
tion of gga to CSg, gga is forced to dequeue this synchronization. Finally, note
that we have used TP1 in CSg to test T P2, and therefore a test purpose can

contain only ACCFEPT states.

Several-component testing.

Suppose that S is the specification made up of specifications S, and Sp, and
TP1 (Fig. 7 (a)) is a TP for S. To simplify, we assume here that a € La,a & Lap
(a is not a synchronization event), and b € LapNLp4. A modeling of this test in
CS is as follows: C'S7 = (SP, SV, SVy, (A, B,TP1),Top), with Top the topology
of Fig.7 (b). The vector < b,b,b,b > considers that A, B and T P1 synchronize
on b. The vector < a, a,idle,a > considers that only A and T'P1 synchronize on
a. Again, the application of gga allows generating paths checking T'P1.

<G,Lap\{b},Lpa\{b},idle>

<Ga,La\{Lap U {a}},idle,idle> ’ ‘ <Gp,idle,Lp\Lpa,idle>

ACCEPT

D
~lal- h[2,Sigl/b/~ <a,a,idle,a>

(a) Purpose TP1 (b) Topology Top

Fig. 7. Active testing: several-component testing.

To summarize this section, Fig.8 presents the test activities (without the im-
plementations). Three main steps are identified. Firstly, from (i) an informal
specification(s), (ii) a test approach (passive or active testing), and (iii) a test
architecture, a description S in the CS model is elaborated. Secondly, a GGA
algorithm (with a coverage criterion) is applied to ((S) to generate a set of exe-
cutable paths PAT H(¢(S)). Finally, this set is interpreted according to the test
approach: for passive testing, if PATH(((S)) = 0 then the implementation(s)
is (are) incorrect. For active testing, test cases are generated from this set. In
the opposite, the classical test activities involve the specification, the generation
algorithm and the test architecture in three separate steps and thus looses the
generic character of our framework.

Thus, there is no reason to make distinction between these types and ap-
proaches of protocol testing.

| Specification(s) |
| Test Architecture | | Test Approach
| Modeling (CS) |
| Generation(GAG) |
|

| Interpretation |<—

Fig. 8. Test activities.

4 TGSE: A Generic Test Generation Tool

The automation of the test generation becomes a need faced with the growth
of the complexity of the protocols being tested. This section describes the main
characteristics of the implementation of the TGSE tool (Test Generation, Sim-
ulation and Emulation) based on the CS model. Due to space restrictions, we
present only the test case generator. The interested readers are referred to [22].

TGSE Interfaces. The French RNRT project Calife and its successor Aver-
roés are an academic and industrial projects gathering France Telecom Ré&D,
CRIL Technology, LaBRI, LSV, Loria, LRI. The goal of this project is to define a
generic platform (Open Source) able to interface verification and test generation
tools. The Calife platform [25] comprises an editor and a simulator. The editor
provides a pleasant and easy-to-handle graphical user interface of various types
of automata (timed, hybrids, and extended automata). The simulator allows the
graphical execution of automata.

The input of TGSE is the description of a CS following a simple syntax.
Each ETIOA of a CS is defined in a separate file. A system file describes the
access paths to each component, as well as the shared data and the topology of
communication. The output of TGSE is an XML (eXtensible Markup Language)
file according to a Calife DTD defining a test sequence.

TGSE can also be used in a graphical mode through Calife. In this case,
the description of a specification is done through the Calife editor that allows
the automatic generation of the synchronization vectors. Many synchronization
modes are offered: rendez-vous, broadcast, identical labels and the Uppaal binary
synchronization. The call to TGSE is done through the editor that generates the
input files of TGSE. TGSE produces a test case to be simulated in Calife

Generation Techniques. TGSE implements an on-the-fly algorithm gga. It
is based on a depth-first traversal of the CS semantics. The traversal is pa-
rameterized by the maximum number allowed for a transition to appear in the
generated sequence. The choice of a transition, a synchronization vector and
the automaton that performs an action is parameterized (RANDOM or FIFO
access). The algorithm gga computes an accepting path for a given CS. During
the traversal, several computations are performed:

Step 1: Successor Computation. From the current state s of the semantics
automaton, the synchronization vectors are evaluated in a parameterized way to
compute a successor state s’. The API SymbolicTrace() is then called.

Step 2: Symbolic Trace. SymbolicTrace() calculates the symbolic trace of the
new fired transitions and updates the predicates and the context (assignments
and resets of the new transitions,see annex).

Step 8: Constraint Resolution. Once the symbolic trace is calculated, the
API feasible() is called. In the case of a parameterized trace, feasible() calls
checkParams(). This latter interacts with the linear programming tool Ip__solve
v4 for instancing parameters. In the opposite case, checkClocks() is carried out
for computing the fastest/slowest timed executions [11,22].

Step 4: Test Case Computation. If during the traversal an accepting state is
met, the search ends by a call to the writeTrace() to decorate the path obtained
by the different verdicts. The output is an XML file according to a Calife DTD.

The algorithm gga is explained in more detail in the annex and in [22]. Tts
complexity is linear in the size of the CS times the complexity for solving linear
programming problems. Finally, if no accepting state is met, gga is automati-
cally started for a new attempt (the launching is parametrized). Moreover, it is
possible to generate a test case that has the minimal number of transitions for a
given number of attempts. We point out that TGSE is based on a conformance
relation (traces inclusion) taking into account data and clocks [22].

5 Case Study: CSMA /CD Protocol

The CSMA/CD Protocol (Fig.9) is made up of a bus (medium of communica-
tion) and one or more senders (transmitting stations). We do not model here
the receivers. When two or several senders transmit simultaneously data on the
bus (lbegin), a collision event (!CD) is sent by the bus to all senders. These
latter have to retransmit later. Thereafter, Senders (resp. Bus) will denote the
ETIOA representing the specification of the sender (resp. bus) (Fig.9).

—/!begin/x:=0

Tnit Transmit

Finish
=/=1x:=0 mx:lambda/!end/—

N\

—/?busy/x:=0 x<Sig/?CD/x:=0),

~/?busy/—

—/?begin/y:=0

1dle Active

Sio/lbusy/ x<=2*Sig/!begin/x:=0
y>=Sig/!busy/-

—/?end/y:=0

~/?CD/x:=0

y<Sig/?begin/y:=0

Collision

X<2*Sig/?2CD/x:=0

(a) Bus (b) Sender
Fig. 9. CSMA/CD specifications

The next table reports the experimental results of applying TGSE to CSMA /CD

with one bus, several senders and the TP: 1 et 2 h=5/10D/= 3. TP
checks that a sender sends data (!begin), and the bus detects a collision at in-
stant 5 (ICD). A test case generated by TGSE for this test appears bellow. In
this case, Sender 1 transmits at 0, Sender 2 transmits at 0 and the Bus detects
a collision at 5.

Sig=Lambda=6

PASS

h=0/!begin(1) h=0/!begin(2) h=5/!CD

(b) PTop

The experience is run on a INTEL P4 DELL INSPIRON 5100 PC, with 256 Mo
of RAM running Mandrake 10.0. Each input of the table was launched 2000
times. Lock represents the number of times that a transition can appear in a
path, Size TC the average size of a test case, Nb Sender the number of senders
considered and CPU Time the average generation time. The reader can notice
that the generation with Lock equal to 1 takes more time. In fact, with Lock
equal to 1, gga moves to locked states and thus dequeues several times.

Lock|Nb Sender|TC Size|CPUs Time (s)
1 5 3 0.303
1 10 3 0.621
1 20 3 0.914

103 5 55 0.098

10° 10 79 0.234

10° 20 130 0.793

Although the CSMA/CD protocol is of a reduced size, the use of several senders
increases its complexity. The obtained results are encouraging and improvements
are at hand.

6 Conclusion

The aim of this paper is to show that different types (conformance, interoper-
ability, embedded, component) and approaches (passive and active) of proto-
col testing can be treated in a unified manner. To achieve this aim, we have
presented a testing framework based on the generic model of communicating
systems (CS) and the methodology of generic generation algorithms (GGA).
The CS model defines a set of communicating entities (components) modeled
by extended timed input/output timed automata (ETIOAs), a set of common
resources (variables and parameters) shared by these entities, and a topology
of communication specifying the different synchronizations allowed in a system
configuration. We showed that the test activities consist then in modeling a CS
and applying an algorithm GGA. To our knowledge, this is the first framework
that can fully handle various test types and approaches. Our framework was
implemented in TGSE tool (Test Generation, Simulation and Emulation). The
current version of TGSE can be used both for passive and active testing of one or
several components but supports only deterministic ETIOAs and the definition
of a test purpose.

Regarding future work, our intention is to study the impact of a coverage cri-
terion on the definition of GGA, and to realize a realistic performance evaluations

of TGSE on complex protocols. Finally, until very recently, research had been
carried out with almost no interactions between the software and protocol test-
ing communities. So, our framework might bring the two communities together,
since object-oriented programming languages and component-based approaches
(code testing) are now widely used in software development, and these lead to
the need of state-based test techniques.

Acknowledgments. We would like to thank the members of the specific ac-
tion AS 32 carried out by Ana Cavalli for their fruitful remarks. We would like
also to thank the ENSEIRB students Dimitri Kandassamy, Jamel Semeh, David
Dogoh and Carine Beduz for their participations in the realization of TGSE.

References

1. Jan Tretmans. Test Generation with Inputs, Outputs and Repetitive Quiescence,
Software - Concepts and Tools 17(3): 103-120 (1996).

2. Laura Brandan and Ed Brinksma. A test generation framework for quiescent real-
time systems. FATES200/, Linz, Austria September 21 2004.

3. S. Seol, M. Kim, S. Kang, J. Ryu. Fully automated interoperability test suite deriva-
tion for communication protocols, Computer Networks Volume 43, Pages 735 - 759,
December 2003.

4. Rachel Cardell-Oliver. Conformance Testing of Real-Time Systems with Timed Au-
tomata Specifications, Formal Aspects of Computing, 12(5):350-371,2000.

5. Duncan Clarke and Insup Lee. Automatic Test Generation for the Analysis of a
Real-Time System: Case Study. In 3rd IEEE RTSS, 1997.

6. A. En-Nouaary, R. Dssouli, F. Khenedek, and A. Elqortobi. Timed test cases gen-
eration based on state characterization technique, In 19th IEEE RTSS, Madrid,
Spain, 1998.

7. T. Higashino, A. Nakata, K. Taniguchi, and A. Cavalli. Generating Test Cases for a
Timed I/O Automaton model, TESTCOM99, Budapest, Hungary, September 1999.

8. A. Koumsi, M. Akalay, R. Dssouli, A. En-Nouaary, L. Granger. An approach for
testing real time protocols, TESTCOM, Ottawa, Canada, 2000.

9. Dino Mandrioli, Sandro Morasca, and Angelo Morzenti. Generating Test Cases for
Real-Time Systems from Logic Specifications, ACM Transactions on Computer Sys-
tems, 13(4):365-398, 1995.

10. Jan Springintveld, Frits Vaandrager, Pedro R. D’Argenio. Testing Timed Au-
tomata. Theoretical Computer Science, 252(1-2):225-257, March 2001.

11. I. Berrada, R. Castanet, P. Félix. From the Feasibility Analysis to Real-Time Test
Generation, Studia Informatica Universalis Volume 3 (2) pp.203-230 2004.

12. K. Larsen, M. Mikucionis, and B. Nielsenn. Real-time system testing on-the-fly. In
the 15th Nordic Workshop on Programming Theory (NWPT), 2003.

13. M. Krichen and S. Tripakis. Black-box conformance testing for real-time systems.
In SPIN 2004 (2004), Spring-Verlag Heidelberg, pp. 109-126.

14. Abdeslam En-Nouaary, Rachida Dssouli: A Guided Method for Testing Timed
Input Output Automata. TestCom 2003: 211-225

15. Ahmed Khoumsi, Thierry Jéron, Hervé Marchand. Test Cases Generation for Non-
deterministic Real-Time Systems. FATES 2003: 131-146

16. K. El-Fakih and N. Yevtushenko. Fault Propagation by Equation Solving. Proceed-
ing of FORTE, Madrid, Spain. LNCS 3235, September 2004.

17. S. Boroday, A. Petrenko, R. Groz and Y.M. Quemener. Test Generation for
CEFSM Combining Specification and Fault Coverage. TESTCOMO02, Berlin, Ger-
many, March 2002.

18. R. Alur and D. Dill. A theory of timed automata, Theoretical Computer Science,
126:183-235, 1994.

19. André Arnold et M. Nivat. Comportements de processus. In Collogue AFCET “Les
mathématiques de I’Informatique”, pages 35-68, 1982.

20. Tomas Barros, Rabéa Boulifa and Eric Madelaine. Parameterized Models for Dis-
tributed java Objects. FORTE, Madrid, Spain. LNCS 3235, September 2004.

21. Baptiste Alcalde, Ana Cavalli, Dongluo Chen, Davy Khuu, and David Lee. Net-
work Protocol System Passive Testing for Fault Management: A Backward Checking
Approach. Proceeding of FORTE, Madrid, Spain. LNCS 3235, September 2004.

22. Ismail Berrada, Richard Castanet and Patrick Félix. Techinques de Test
d’Interopérabilité. Fourniture Calife, 2005.

23. Ana Cavalli, David Lee, Christian Rinderknecht and Fatiha Zaidi. Hit-or-Jump: An
algorithm for embedded testing with applications to IN services. FORTE/PSTV’99,
Beijing, China. October 1999.

24. Claude Jard, Thierry Jéron, Lénaick Tanguy and César Viho. Remote testing can
be as powerful as local testing. FORTE/PSTV’99, Beijing, China. October 1999.

25. http://www.cril-technology.fr.

Annex
Description. The generation algorithm gga applied to a CS S performs a depth-first
traversal of ((.5). During the traversal, gga computes the symbolic trace and checks the
feasibility of the new fired transitions. When an accepting state is met (the function
AcceptStates()), a backtracking in the synchronization path is performed to decorate
this latter with verdicts (function writeTrace()). Due to the space limit, we will present
only the gga() and SymbolicTrace() functions.
Data Structure.
States: a n+1-tuple (S¢r, S1, ...y Sn)-
Context: records the values of variables and last resets for clocks.
Transition: a n+1-table of pointers on the current transitions.
Element is a structure composed of a States, a Context and a Transitions.
Path: a stack of Elements. It managed by the operations “push”, “top” and “pop”.
Other functions.
SynchronizationOnEvents(): chooses a synchronization vector from the current state
and returns a structures Element composed of the new transitions and states reached.
getSuccessors(): returns a successor state of the current state.
getInitStates: returns the initial state of {(5).
Function gga():
Begin
States:= getInitialStates(), Element := NULL, Path := §;
Do
Element := SynchronizationOnEvents(States);
If (Element # NULL) then

push(Element,Path);

SymbolicTrace(Path);

If(!feasible(Path)) then

pop(Element,Path);

0. States := getSuccessors(Element);

502N ok W

11. Else

12. pop(Path); States := getSuccessors(top(Path)) ;
13. If(AcceptStates(States))

14. writeTrace(Path);

15. While(Path # 0);

16. End

Symbolic Trace. Let us assume that M = (S,L,C, P,V,Vy, Pred, Ass, so,T) is an

ETIOA such that C = {c1,...,ct}, V = {v1,...,vm}, Vo = {vo1, ..., Vo } and p = t1...tn

is a suite of transitions of M from the initial state. The symbolic trace of p is p such

that V ¢; = (s;—1, a,pred,ass, s;) of p, and Vv € V, v is replaced in pred by its last

value before t; (see [22]). SymbolicTrace() uses two vectors: V1 contains the current

values of variables (may depend on P parameters). V2 is a vector of natural numbers.

V2[q] stocks the index of transition where the clock z, € C was last reseted.
Function SymbolicTrace():

Input/output: p = t;...t,, with ¢; = (si—1, a, pred;, ass;, s;),

2. Temporary Data Two vectors: V1 of size m and V2 of size k.

3. Begin

[y

/*Initialization */

4. For i := 1 to m Do V1[i] « vo;;
5. For i := 1 to k Do V2[i] < 0;
/*Updating */
6. For i :=1to n Do
7. pred; «— updatePredicates(pred;, V1,V2,1);
8. updateContext(assi, V1,V 2,1);
9. End

The function UpdatePredicates replaces the variables with their current values from
V1. For clocks, if ¢, is last reseted in the ¢; and i is the index of the current step then
¢k, is replaced by h; — h; = hi — hypp) (line 4).

Function UpdatePredicates():

1. Input: A predicate pred, an index ¢, and two vectors V1 and V2.

2. Output: A predicate predUpdated.

3. Begin

4. predUpdate «— predlh; — hvapy, ..., hi — hyapg, V1[1], ..., V[m], PJ;
5. End

The function UpadateContext updates 1) the current values of variables in V1 from
the new assignments (lines 4 and 5), and 2) the clock resets V2 by assigning the index
of the current step (lines 6 et 7).

Function UpdateContext():
Input: An assignment ass, and an index i.
Input/Output: Two vectors V1 and V2.
Begin
For j :=1 to m Do
If v; := f(v1,..,0m, P) € ass then V1[j] := f(V[1],..,V[m], P);
For j :=1 to m Do
If ¢; :== 0 € ass then V2[j] := g;

e I e o

End

