
Using TTCN-3 for testing Platform Independent Models

Gabor Batori, Domonkos Asztalos
Software Engineering Group, Ericsson Hungary Ltd.

P.O.B.107, H-1300 Budapest, Hungary
Phone: +36-1-437 7537, Fax: +36-1-437 7767

{Gabor.Batori,Domonkos.Asztalos}@ericsson.com

Abstract. In the field of telecommunication UML and Model Driven Architec-
ture (MDA) have an increasing acceptance. MDA brings up new questions about
the testing of the application developed by this technology. In MDA, Platform In-
dependent Model (PIM) is the source of the system, and all maintenance and
enhancement is performed at the platform independent level. However, MDA
supporting tools provide only limited means for describing model level test pro-
cedures so a framework for model testing is indispensable. This paper investigates
how to assist the model level test development with TTCN-3. We found that with
the help of model translators we can facilitate and partly automate the test devel-
opment process.

1 Introduction

The Model Driven Architecture (MDA) [1] of the Object Management Group has be-
come the dominating trend in software engineering. MDA recommends starting the
design of an application with a Platform-Independent Model (PIM) representing the
business functionality and behavior, undistorted by technology details in the form of a
UML model. In the next phase, Platform-Specific Models (PSM) containing software
architecture dependent information are generated from the PIM by applying mappings
in an MDA tool, preferably by automatic model transformations. Finally, in the code
generation phase MDA tools automatically generate all or most of the implementa-
tion code for the deployment technology. Model transformation methodologies have
been under extensive research recently. These transformation techniques provide higher
quality compared to manually written programs but they require that the PIM contains
the smallest possible number of faults. Unfortunately, it does not matter what tech-
nology we use and how much time we put into design and how careful we are when
programming; mistakes are inevitable. Automation does not alone guarantee neither
the proper choice of underlying architecture nor the elimination of conceptual flaws
from the analysis model because defects injected in the requirements analysis are also
deployed automatically into the implementation.

Due to the increased complexity of IT systems and increased customer require-
ments for quality of service (QoS) and reliability, mathematical-based test generation
techniques often fail, because of the difficulty to select test cases from a (theoretical)
unbounded number of tests. However, there is a strong need for effective testing of com-
plex applications, because it is a well known fact that the development and implementa-
tion of tests is very time consuming and labor intensive. MDA based software develop-
ment offers an effective way to analyze computer systems with early-phase simulation



2

and the tests created at the early-phase analysis can be reused on the implementation
level.

We use TTCN-3 [2] as a test description language for platform independent model
tests. One essential benefit of TTCN-3 is that the specification of tests is possible in
a platform independent way. Our goal is to develop a framework for testing Platform
Independent Model with TTCN-3, and analyze the possibility of reusing the analysis
level tests on the implementation level.

This paper is organized as follows. In Section 2, we examine existing researches
related to testing UML models. We will present a brief review of Model Driven Archi-
tecture focusing on the testing concepts in Section 3 and address our testing approach.
Section 4 concludes the TTCN-3 language architecture and its relation to MDA. In Sec-
tion 5 we present the structure of a model testing framework and the generation of this
framework with a model transformer. In Section 6, we summarize the current status of
the tester and our future plans.

2 Related work

Lots of approaches have been taken to use the early-phase model as a basis of test
development. Classic problems of model-based testing are [3]:

1. the generation of test cases from model according to a given coverage criterion,
2. the generation of a test oracle to determine the expected result of a test,
3. the execution of tests in test environments, possibly also generated from models.

Model-based testing is used to define tests which verify that a specific implementa-
tion accurately capture its requirements. Algorithms [4,5,6] have been defined to derive
tests from formal system specification given in UML notation and their usage has been
demonstrated with sample applications. But today none of the approaches are widely
used in the industrial practice for large applications. One reason may be the difficulty to
define selection criterions that result test cases with high coverage in respect to the re-
quirements of the application. Furthermore, if MDA and code generation techniques are
used, the test generation can apply with a purpose different of the classical approach.
The difficulty that restricts the usage of problem (1) is: the code and test generation
algorithms have the same source, thePIM. In this case only the correctness of the trans-
lation method could be verified.

UML technology focuses primarily on the definition of system structure and behav-
ior and provides only limited means for describing complex test procedures [7]. CASE
tools provide only minimal support for developing tests. They only assist to create unit
tests, therefore:

– We can execute only a small number of tests.
– We have to execute and estimate them manually.
– The scope of a test is only an object or a small cluster of objects.

A special UML profile based on the UML 2.0 specification was initiated for test
description using UML [8]. This profile aims at bridging the gap between designers and



3

testers by providing a means for using UML for system modeling and test development.
This allows a re-use of UML design documents for testing and makes test development
possible in an early system development phase. But UML is not the appropriate lan-
guage to address executable tests, because it is hard to define complex structures of
test data and the graphical notation is sometimes inconvenient especially in case of a
complex test description. The authors of paper [9] showed a methodology of how to use
the UML 2.0 Testing Profile on an existing UML design model. The usability of the
method was demonstrated by developing a test model for a Bluetooth roaming model.

The paper [10] describes a MOF (Meta-Object Facility) based meta-model of TTCN-3
and the realization of the meta-model in Eclipse. Moreover, it shows how to integrate
TTCN-3 tools via this meta-model.

3 Testing concepts in MDA

MDA envisages systems being designed independently of the eventual technologies,
and a PIM can then be transformed into specific platforms. This section provides an
overview of the model driven architecture focusing on the testing aspect.

3.1 Software development with Executable UML

The OMG Model Driven Architecture addresses the complete life cycle of designing,
deploying, integrating and managing applications using open standards. The MDA aims
at providing a framework for the creation of applications in such a context where even
the interface between the target application and the underlying execution platform is
changing. MDA is a new way of writing specifications and developing applications,
based on a platform-independent model (PIM) and using transformations to create
platform-specific models (PSMs) and source code. The idea is that in a platform in-
dependent model the developer concentrates on a description ofwhat the system has
to do without going into details ofhow that will be achieved. The platform specific
model, by contrast, describes how the system will realize the behavior implied by the
analysis model [11]. MDA uses the Unified Modeling Language (UML) as notation.
The UML 1.4 standard had relatively little to say about the detailed behavior that might
be specified for the action associated with transitions and states or the methods imple-
menting operation. In UML 1.5 and UML 2.0 specification, a UML Action Semantics
[12] has been introduced. With the Action Semantics (AS) we can create executable
models [13] with a detailed dynamic behavior description. This model can be executed
in an appropriate simulator. The benefits of this approach go well beyond simply re-
ducing or eliminating the coding stage. It also ensures platform independence, avoids
obsolescence (programming languages may change, the model does not) and allows full
verification of the models by executing them in a test and debug environment.

3.2 Testing in MDA

The designated architecture of MDA is summarized in Fig. 1. Firstly, analysts create the
analysis model1 based on the system requirements. Then automatic transformations are

1 Analysis model and Platform Independent Model (PIM) are used as synonyms in this paper.



4

used to create platform specific models (PSMs) and source code. The last phase is the
testing of the implementation. In this method the testing phase only starts after the code
generation has finished. There are two main problems in this method: (1) The creation
of a new model transformer for a new platform is very time consuming, hence the code
generation and the testing phase can be delayed, although there is an executable and
testable model. (2) The model transformation can lead to the mixing up of platform
independent and platform specific information in the implementation. This makes it
difficult to eliminate the errors from the PIM.

Platform−Specific

Models

Code

Generation

Model

Transformations

Software

Application Testing

Analysis errors

e.g. wrong state

Target related

Problems e.g.

timing, performance

Platform−

Independent Model

Fig. 1. The MDA architecture

In our approach (Fig. 2), we split the testing into two phases. In the first phase, the
simulated platform independent model is verified. In this early stage only the functional
correctness of the model could be tested. Since the analysis model is the source of
the system and the following model transformations, it requires rigorous testing. The
errors found during this phase are related to the analysis model, therefore we call them
analysis errors.

In the second phase, the testing of the implementation is started. Based on the early-
phase tests the testers can build performance, inter-operability etc. test cases. The func-
tional tests can be also repeated in order to verify that the model transformations do
not make any unexpected changes. To minimize the work invested to the testing of
the application we should reuse the early-phase tests. In order for testing to reach its
full potential, it is essential to use the same testing framework throughout the entire
MDA software development process. We use a dashed arrow between the implemen-
tation testing and the platform independent model in Fig. 2 because the early-phase
testing ensures that the implementation does not contain analysis errors, hence during
the implementation testing only platform related errors can be found. We present some
exceptions in the end of Section 5.2



5

In the following section we demonstrate that the TTCN-3 language is a feasible
candidate for this purpose. We present a short overview of the standardized language
for test description, focusing on how to depict tests on analysis as well as on implemen-
tation level.

Simulation

Independent Model

Platform−Specific

Models

Code

Generation

Model

Transformations

Software

Application Testing

Analysis errors

Eliminate

PIM

Testing

Platform−

Fig. 2. Extended test model in MDA

4 TTCN-3 and its relation to MDA

TTCN-3 (Testing and Test Control Notation 3) is the new industry-standard test spec-
ification language that was developed and standardized by the European Telecommu-
nication Standards Institute (ETSI). TTCN-3 can be applied for all kinds of black-box
testing for reactive and distributed systems and makes it possible to be used not only in
conformance testing of telecommunication protocols but as well as for testing Internet,
mobile, data base access etc. protocols and also for inter-operability, robustness etc.
testing. Use of TTCN-3 to support test development has been investigated to encour-
age the parallel development of a test suite together with a standard system analysis.
TTCN-3 language consists of three main units:

Test BehaviorTest behavior is a specification of what to test with which input, re-
sult, and under which conditions. The TTCN-3 language defines several constructs for
describing the functionality of a test system. TTCN-3 allows an easy and efficient de-
scription of complex test behavior in terms of sequences, alternatives, loops and parallel
stimuli and responses.

Test ConfigurationThis part is responsible for the communication between the System
Under Test (SUT) and the test system. However, the real physical connection is outside



6

the scope of TTCN-3. Instead, a well defined (but abstract) test system interface shall
be associated with each test case. A complex test configuration may contain several test
components which could communicate with each other and the system under test.

Test Data DefinitionOne of the key elements of TTCN-3 is the ability to send and
receive complex messages over the communication ports defined by the test configu-
ration. TTCN-3 supports a number of predefined basic data types and structured types
constructed from the basic data types. The TTCN-3 has a special language element, the
template, that provides sophisticated means for describing test data. Templates are used
either to transmit a set of distinct values or to test whether a set of received values match
the template specification.

Compiler

TTCN−3

Abstract

Test Suite

Executable

Test Suite

Abstract

Test Port

Platform Specific

Test Port

Platform Specific

Data Presentation

Abstract Test

Description
Data Definitions

Platform−Specific

Tests

Fig. 3. The Architecture of the TTCN-3 language

The general testing process with TTCN-3 includes the following main steps: the
developed abstract test suite is compiled and extended with an adaptor (one special im-
plementation of an abstract TTCN-3 test port) that provides the connection between
the tested system and the executable test suite. Then, the executable test suite is exe-
cuted against the system under test. Finally, the results are evaluated. The TTCN-3 is
an abstract language, hence one can describe the test behavior independently of the un-
derlying communication architecture and data presentation. The structure of a TTCN-3
tester is summarized in Fig. 3. Note that the basic conception of the model driven archi-
tecture is almost the same (see in Section 3.2), but the TTCN-3 focusing on the testing
domain.

There are two ways to alter the behavior of a test suite. One solution is to change the
communication interface and the data encoding/decoding rules. In the field of wireless
communication there are many protocols that are able to transmit data in several differ-
ent ways depending on how reliable the connection is or how important the message is
etc. A good example is the WAP (Wireless Application Protocol) protocol, which can
work on various bearers i.e. SMS, GPRS, Circuit Switched Data etc. This functionality
is especially important in the 3G or 4G mobile technologies where many high level
applications have to work on different transaction protocols.

The second solution is to change the test data definitions. TTCN-3 provides a simple
form of inheritance that enables us to modify an existing template without changing the



7

original definition. This makes the adaptation of templates to different testing situations
possible and avoids the duplication of similar test data.

In accordance with the discussion above this approach allows to use TTCN-3 during
all part of the model-driven software development. The functionality and the specifica-
tion details are separated, therefore the early-phase functional tests can be reused on
implementation level.

5 Testing framework for Platform Independent Models with
TTCN-3

In this section, we show how to use the TTCN-3 language in model driven software
development.

5.1 Simulating executable UML models

Model execution enables developers to focus on the appropriate behavior of the problem
to be solved, independently of platform dependent problems at an early development
phase. Executable models allow the early verification with simulation, since they com-
pletely describe the dynamic behavior of the system. In order to simulate a model we
need a special environment that is capable to interpret executable models. This environ-
ment is referred to as aUML Virtual Machine. As input, the Virtual Machine requires an
executable UML model (class diagram, state-chart, action specification) and executes
the model according to the initial state and the receiving inputs. Having this Virtual
Machine we are able to define test interfaces.

According to [17], PIMs suffer from testability problems in the area ofobserv-
ability, the ability to detect errors in control flows, andcontrollability, the capability
to cause the software to execute an appropriate path. An OMG Request For Proposal
(RFP) has been initiated on a standardized interface of testing and debugging executable
UML models [16]. In Fig. 4, the structure of the interface is concluded.

Driver/
DebuggerProtocol

TII

UML
Virtual Machine

Simulation
Architecture

C
om

m
un

ic
at

io
n

In
te

rf
ac

e

PIM
Test

Fig. 4. Test Instrumentation Interface

The goal of the Test Instrument Interface is to standardize the hooks into model ex-
ecution to allow test setup, stimulus, and data collection. Model simulators have some



8

support for model connection, they provide the ability to define breakpoints in the ex-
ecutable model, to log the actions during the execution. But they do not allow to use
external testers for the testing of the model. In our approach, we transform UML mod-
els to be able to communicate with an external tester, so that the original simulation
framework can be used. The interface definitions between the test system and the UML
model are addressed on UML level and the physical communication interfaces are de-
rived from these definitions. The extension of executable models with communication
ability is provided through model transformations.

5.2 Towards the mapping of UML models into TTCN-3

To create executable tests three partly coherent tasks have to be carried out:

– Define the data uses in the test cases
– Define the behavior of the test cases
– Define the test framework (test configuration)

In this paper we concentrate on the solution of the first and the third problem with
the help of a model translators. A test framework covers the concepts for specifying
test components, the interfaces of and connections between the test components to the
System Under Test. Telecommunication protocols and softwares are distributed appli-
cations, therefore our testing framework was designed to allow the definition of com-
plex distributed test scenarios on model level. We defined a model transformer which
is capable to extend an executable UML model in order to test in a distributed test
configuration.

Most tedious activities during test development are to accurately define the inter-
faces between the system under test (SUT) and the test system, and specify the test
data sending and receiving on these interfaces. Therefore, another model transformer
was defined to create the data definition and the testing framework in TTCN-3 core
language. The test cases can be written manually based on the derived definition.

MDA offers the potential to automatically transform a PIM, perhaps after annotat-
ing it with some platform information, to different PSMs. Modeler willtag their PIM
component with information to control the translation. This approach allows us to store
test specific information in the analysis model independently of the design aspects.

To create a model transformer in UML we have to create the meta-model of the
target language, in our case the meta-model of the TTCN-3 language. Fig. 5 depicts the
communication and data representation part of our meta-model.

The elements of the meta-model are populated (instantiate the elements of the meta-
model) depending on the platform-independent model. According to our experience the
communication interfaces on the implementation level are represented by operations of
classes on the model level. Hence, we specify ataggingstructure in order to mark the
operations that are relevant for testing.Tagsmay denote the direction of the commu-
nication channel created from thetaggedoperation or the name of the test port which
the given operation belongs to. The data presentation of UML differs from the one of
TTCN-3, therefore we had to define mapping rules between them. Because of the lack
of space only the main mapping rules are summarized in Table 1.



9

ID:Integer

TTCN Signature

name:Text

name:Text

TTCN Port

1..n

1

0..n

0..n0..n

0..n

0..1

0..n 0..n

0..n

0..n1

0..1 0..1

0..n 0..n

1..n

1

1..n

1

name:Text

contains

contains
complex

input output

send receive

send receive

has

name:Text

TTCN Data Type

type:Text
subtype:Text

name:Text
type:Text

TTCN Attribute

simple_type:Boolean
optional:Boolean

name:Text

TTCN Message Port

Send Port
Object Ref.

ID:Integer

Receive Port
Object Ref.

TTCN Template

name:Text

name:Text

TTCN Procedure Port

TTCN Component

Fig. 5. Meta-model of the TTCN-3

Table 1.Data presentation mapping rules

UML TTCN

Simple types (Boolean, Double,Integer)Simple TTCN-3 types
Text charstring

Data set record of
Operation parameters record

Polymorphic operations (with small changes)optional parameters
Polymorphic operations union types

The simple UML data types have unambiguous representation in TTCN-3. The only
exception is the text type because in TTCN-3 five different basic string types can be
defined. We selected the charstring type to represent the UML text type in TTCN-3.

We map the input and output parameters of the operations into record types. TTCN-3
ports are also generated which allows to send and receive these record types. We can
define sending templates for these records to test the operation with various input para-
meters. In addition, we can define receiving templates to automatically verify the results
of the operation using the TTCN-3 matching mechanism.

The last two rows of Table 1 show an example how the structure of the platform
independent model influence the TTCN-3 data presentation. If analysts create gener-
alization relations with many sub-classes and with polymorphic operations then the
structure of the derived TTCN-3 data types have to reflect this inheritance tree. An op-



10

eration of the parent-class can be the representation of a communication port and the
sub-classes inherit this operation but in some sub-classes the operation is overridden. In
this case some parameters of the operation may becomeoptionalparameters in TTCN-3
if only small changes (one or two parameters appear or disappear in the operation defin-
ition) occurred during the redefinition of the operation. If the changes in the parameters
of the operation are considerable then it is more profitable to create a newrecord for
this parameter structure. In order to refer that the newrecord is derived from a parent-
class we compose aunion type which contains the different definitions of the records
corresponding to the operation.

To achieve testability, we also use thetaggedelements of the model as weaving
points where we should insert new instructions to extend the UML model. The extended
model is capable of communicating with a tester in the simulator. The extension is based
on the definition of the tagged operation.

With MDA we can develop a translator model [14] which is capable to collect in-
formation from high level, platform independent models and generate the TTCN-3 test
interfaces and data definitions. Accordingly, the technical problems related to the com-
munication between the test system and the UML Virtual Machine can be hidden from
the testers as well as the analysts. Fig. 6 depicts the structure of the PIM tester. A dis-
tributed client-server based environment is responsible for the communication between
the two parts of the model tester. This communication interface is also generated from
the analysis model. The interface has two part. The first part is running in the UML
Virtual Machine. This part is capable to access the model. The second part is the imple-
mentation of TTCN-3 test ports. This implementation contains the mappings between
the UML and TTCN-3 data types.

Physical Layer

Data

Test

Behavior

Test

Interface

Communication Interface

Interface

Operations

Tested

Model

Logical Layer

TTCN−3

PIM Tester

UML

TTCN−3 Executor UML Virtual Machine

Test

Fig. 6. Structure of the PIM tester

The different parts of the platform independent model testing are summarized in
Fig. 7. The test development is started with the transformation of the PIM. The TTCN-3
translator creates the communication interfaces and the data definitions. Based on this
definitions the test data and the test behavior can be defined. The model translator cre-



11

ates the extended PIM, which is executed in a simulator. The TTCN-3 test cases are
executed on the simulated extended platform independent model.

Translator

Extended

PIM

Model UML VM

Code

Data

Definitions

Interface

Communication

TTCN−3

Translator

Test

Cases
PIM

Fig. 7. Mapping to TTCN-3

The model-based testing usually not enough to eliminate all faults from the software
because of the following reasons:

– The model may contain special object structures.
– Usage of native codes in the model.
– Usage of third party libraries, existing components.

There are special object structures [15] whose functions depend on the architecture,
hence the functions of these objects have to be tested on implementation level as well.
Some MDA tools allow to insert INLINE (platform specific, native language) codes
into the body of the platform independent action code that can be tested only after
the mapping to the platform specific implementation occurs. Furthermore, one can use
third party libraries or existing components that were created without model driven
technology. In this case, the integration with these components have to be tested, but it
is only possible on implementation level. In spite of these limitations of the platform
independent testing, according to our experience approximately 50-60% of the errors
can be found and eliminated in analysis phase.

5.3 Testing through a MDA software development

We experimented on our testing framework during the development of a network man-
agement software. The test environment is depicted in Fig. 8. The test architecture con-
sists of three different elements.

Managed NetworkA managed network may contain a few or several hundreds of man-
aged nodes (MN). The managed nodes provide support to ATM switching and IP for-
warding system. An arbitrary mix of different traffic types – data, voice, and video type
of traffic – can be handled with preserved quality of service and with efficient use of
bandwidth for each traffic type.



12

MN2 MN3

Network

Management Server

Web−Client2Web−Client1

MN1

� � �
� � �
� � �
� � �

� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �

� � �� � �

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

Fig. 8. Test architecture

Network Management ServerThis application is required by telecommunication opera-
tors for providing reliable operations of the communication network. The tasks involved
include monitoring, troubleshooting, and control operations in a wide range of network
management areas.

Web clientsThe operators of the network are able to access the management software
through web-based clients. In case of error the operators can reconfigure the network
topology manually.

The main component, the management server, is modeled in UML and the other
components (client, managed nodes) are emulated by TTCN-3 components. This het-
erogeneous infrastructure can be tested with TTCN-3 parallel components. Our goal
hereby is to test the functionality of the server with different network structures or with
erroneous network topologies. In case of a complex real network it is difficult to con-
figure the network to generate incorrect answers. With TTCN-3 and simulation we can
easily establish these situations and can verify that our application (the simulated PIM
model) works as we expect.

A typical problem in model driven development is that the development of the
platform-independent model finishes before the development of the transformation rules
for the specific platform would be completed. In this case we can test the PIM in a sim-
ulator but the test environment act as a real network.

5.4 Empirical Experiences

We used a sample TTCN-3 test module to investigate what kind of modifications were
needed to rerun the early-phase tests on the implementation. At first, we defined manu-
ally 20 test cases to verify the main functionality of the network management applica-



13

tion. The test module contained 25 type definitions and 30 template specifications for
the data types. Two types of TTCN-3 test port were used during the testing: a HTTP-
based test port for the client and a SNMP port for the communication to the managed
nodes. For simulation testing purposes the test ports, the test components and the data
type definitions were automatically generated from the PIM model. The test port im-
plementations for the Ericsson’s TTCN-3 test executor were also generated from the
PIM model. Three parallel test components were used during the testing, one for the
emulation of the web-client and two for the emulation of the managed network. The
test suite was executed against the simulated model and 5 errors were found in the PIM.

Secondly, we executed this test suite on the implementation. The implementation
was generated from the platform independent model with a model transformer devel-
oped in Ericsson Hungary. Naturally, we had to change the implementation of the test
ports. We also needed one new data type and 2 new templates. With these modifica-
tions every test case could be executed on the implementation. One additional error was
found in the implementation which was caused by an integration problem between an
existing and a newly developed component.

6 Conclusion and future work

In this article we propose an approach for model level testing of applications designed
with model-driven technology. We can adapt this test design process into the standard
model-driven software development process. By using this approach, we are able to an-
alyze Platform Independent Models with tests written in a standardized test description
language. These early-phase tests primarily focus on the functional correctness of the
software. Moreover, by extending the platform independent tests, other types of tests
(e.g. inter-operability, performance) can be derived. Accordingly, the implementation
level test development time can be reduced.

Regarding further investigation, it would be interesting to study the possibility of
using this testing concept throughout the entire model-driven software development
process and work out a generalModel-Driven Test Developmentmethod.

References

1. R. Soley: Model Driven Architecture: An Introduction. http://www.omg.org/mda.
2. ETSI ES 201 873-1: The Testing and Test Control Notation version 3; Part 1: TTCN-3

Core Language. V2.2.1 (2003-02), 2003; also an ITU-T standard Z.140.
3. R.Heckel, M.Lohmann: Towards Model-Driven Testing, Electronic Notes in Theoretical

Computer Science Vol.82 (6), 2003.
4. J. Hartman, C. Imoberdorf, M. Meisinger: UML-Based Integration Testing, ISSTA 2000.
5. J. Offut, A. Abdurazik: Generating Tests from UML Specification, UML99 Fort Collins

(CO), October 1999.
6. L. C. Briand , Y. Labiche: A UML-Based Approach to System Testing, Journal of Software

and Systems Modeling (SoSyM) Vol. 1 No.1 2002 pp. 10-42.
7. I. Schieferdecker, Z. R. Dai, J. Grabowski, A. Rennoch: The UML 2.0 Testing Profile

and its relation to TTCN-3, Testing of Communicating Systems – 15th IFIP International
Conference, TestCom2003, Sophia Antipolis (F), May 2003. Lecture Notes in Computer
Science (LNCS) 2644, Springer, May 2003.



14

8. UML Testing Profile (Final Submission), April 2004 http://www.fokus.gmd.de/u2tp/.
9. Z. R. Dai, J. Grabowski, H. Neukirchen, H. Pals: From Design to Test with UML – Ap-

plied to a Roaming Algorithm for Bluetooth Devices. Testing of Communicating Systems
– 16th IFIP International Conference, TestCom2004, Oxford, United Kingdom, March
2004. Lecture Notes in Computer Science (LNCS) 2978, Springer, March 2004.

10. I. Schieferdecker, G. Din: A Meta-model for TTCN-3, Applying Formal Methods: Test-
ing, Performance, and M/E-Commerce: FORTE 2004 Workshops, Toledo, Spain. Lecture
Notes in Computer Science (LNCS) 3236, Springer, October 2004.

11. S. Shlaer, S. J. Mellor: Recursive Design of an Application-Independent Architecture,
IEEE Software, pp. 61-72, January/February 1997.

12. I. Wilkie, A. King, M. Clarke, C Raistrick: UML ASL Reference Guide, Kennedy Carter,
2001.

13. Supporting Model Driven Architecture with eXecutable UML Kennedy Carter 2002.
14. I. Wilkie, A. King, M. Clarke, C Raistrick: The Intelligent OOA Strategy for Configurable

Code Generation, Kennedy Carter, 1997.
15. S. Shlaer, N. Lang: Shlaer-Mellor Method: The OOA96 Report. http://www.projtech.com.
16. Model-level Testing/Debug RFP (Final Submission) April 2004 http://www.omg.org.
17. G. Eakman: Verification of Platform Independent Models, Workshop on Model Driven

Architecture in the Specification, Implementation and Validation of Object-oriented Em-
bedded Systems (SIVOES-MDA), San Francisco, October 2003.


