
From Safety Veri�cation to Safety Testing

Vlad Rusu� Herv� Marchand� Val�ry Tschaen� Thierry J�ron� and Bertrand
Jeannet

IRISA�INRIA Rennes� France First�Last�irisa�fr

Abstract A methodology that combines veri�cation and conformance
testing for validating safety requirements of reactive systems is presented�
The requirements are �rst automatically veri�ed on the system�s speci��
cation� Then� test cases are automatically derived from the speci�cation
and the requirements� and executed on a black�box implementation of the
system� The test cases attempt to push the implementation into violating
a requirement� We show that an implementation conforms to its speci��
cation if and only if it passes all the test cases generated in this way�

Keywords� veri�cation� conformance testing� safety properties�

� Introduction

Formal veri�cation and conformance testing are two well�established methods
for validating software systems� In veri�cation ��	
� a formal speci�cation of the
system is proved correct with respect to some higher�level requirements� In confor�
mance testing ���
 the external� observable traces of a black�box implementation
of the system are compared to those of its formal speci�cation� according to a
conformance relation� For validating reactive systems �such as communication
protocols
 the two methods play complementary roles� the former ensures that
the operational speci�cation S meets its requirements R� while the latter checks
that the implementation I of the system conforms to its speci�cation S� Thus�
through veri�cation and testing� a connection between a system�s �nal implemen�
tation and its initial requirements can be established�

�� �rst� satisfaction of the requirements by the speci�cation is automatically
veri�ed� e�g�� by model checking�

�� then� the user �or a test coverage tool� e�g�� the TestComposer module of
ObjectGeode ���

 produces test purposes� which are abstract scenarios to be
tested on the implementation I�

�� next� a test generation tool� e�g�� Autolink ���
� TorX ��
 or TGV ���
 uses the
test purposes to generate test cases from the speci�cation�

	� �nally� the test cases are executed on the implementation I� and verdicts are
issued regarding its conformance with the speci�cation�

This validation process corresponds to the current state�of�the�art use of formal
methods in the telecom world ��
� The main problem with this process is that
it does not guarantee that what is being tested on the implementation of the



system �at Step 	
 are the same requirements that have been veri�ed to hold on
the speci�cation �at Step �
�
This is because the test generation step �Step �
 uses test purposes� which

are a pragmatic means �actually� an essential one
 to achieve test generation� but
test purposes are typically written �at Step �
 independently of the requirements�
that is� there is no formal connection between the test purposes and the require�
ments� If some crucial safety requirement is missed by all the test purposes� the
�nal implementation may violate that requirement� and this violation remains
undetected�
In this paper we propose a methodology to integrate veri�cation and confor�

mance testing into a seamless� sound validation process between safety require�
ments� speci�cation� and implementation� The above validation process is then
reformulated as follows� Step � is standard veri�cation� Step � may be skipped
�there is no need here to write test purposes by hand� but� of course� this is not
forbidden either
� Step � is a test generation algorithm that takes the speci�cation
and a safety requirement� and produces a test case for checking the requirement
on the implementation� and Step 	 is standard conformance test execution�

Framework� The speci�cation is given by IOLTS �Input�Output Labeled Tran�
sition Systems� i�e�� �nite� labeled transition systems with inputs� outputs� and
internal actions
� The requirements express safety properties on observable behav�
iors of the speci�cation and are described by means of a particular class of IOLTS�
observers� which enter a dedicated �Violate� location when the property is vio�
lated� Finally� the conformance relation between a black�box implementation and
a speci�cation is ioco� a standard relation used in conformance testing ���
� which
requires that after each visible trace of the speci�cation� the observed outputs and
blockings of the implementation are among those allowed by the speci�cation�

Results� The meaning of requirement relevant for a speci�cation is formally de�
�ned in the paper� We prove that an implementation conforms to a speci�cation
if and only if it satis�es all the relevant safety requirements that are also satis�ed
by the speci�cation� This result is interesting because it establishes a formal con�
nection between conformance and property satisfaction� However� it does not say
how to actually check the safety requirements on the implementation� Moreover�
the result is restricted to relevant requirements�
Hence� we propose a test generation algorithm� which takes a speci�cation and

a safety requirement �relevant or not
� and produces a test case that� when exe�
cuted on an implementation� attempts to push the implementation into violating
the requirement� It is shown that an implementation conforms to a speci�cation
if and only if it passes all the test cases generated by the proposed algorithm�
The rest of the paper is organized as follows� In Section �� the main concepts

from veri�cation and conformance testing are recalled� In Section �� the notion of
a safety property relevant to a speci�cation is de�ned� and a result that connects
conformance testing and satisfaction of relevant safety properties is proved� In
Section 	� the previous result is extended to take into account arbitrary safety
properties� This directly induces a sound and complete test generation algorithm
for checking safety properties on the implementation� We conclude in Section ��



q�q�

q�

�a

�a

q�

�b
�c

�
q�

�b

�a

�b

q�

q�

Figure�� Example of IOLTS S

� Veri�cation and Conformance Testing

De�nition � �IOLTS�� An IOLTS is a tuple M � �Q�A��� q�� where Q is a
�nite� non�empty set of states� q� � Q is the initial state� �� Q � A �Q is the
transition relation� and A is a �nite alphabet of actions� partitioned into three sets
A � A� � A	 � I� where A� is the set of input actions� A	 is the set of output
actions� and I is the set of internal actions�

The actions in A� �A	 are also called visible actions� In the examples� a question
mark placed before the name of an action �as in ��a�
 denotes the fact that a is
an input a � A�� An exclamation mark �as in � �b�
 denotes an output b � A	�
Internal actions are generically denoted by � �

Example �� The IOLTS depicted in Figure � describes a simple nondeterministic
system� In the initial state q�� the system can either spontaneously emit �b and
block itself waiting in state q� for an �a� or directly wait for an �a in q� and then�
nondeterministically go to either q� or q�� In q�� the system may only emit �b and
deadlock in q�� while in q�� �b then �c are emitted� followed by a loop of internal
actions �a livelock	�

��� Notations and Basic De�nitions

Let M � �Q�A��� q�� be an IOLTS� The notation q
a
� q� stands for �q� a� q�� ��

and q
a
� for �q� � q

a
� q�� An IOLTS is sometimes identi�ed with its initial state�

i�e�� we write M � for q� �� Let �i � A denote some actions� ai � A n I some
visible actions� �i � I some internal actions� � � �A n I�� a sequence of visible
actions� q� q� � Q some states�

� We write q
������n
� q� for �q�� � � � � qn � q � q�

��
� q�

��
� � � �

�n
� qn � q��

� The notation � �q� stands for f� � A j q
�
�g� i�e�� the set of �reable actions

in q� Similarly ����q� denotes the set f� � Aj�q��q�
�
� qg�

� Visible behaviors are described by the 	 relation� de�ned by q
�
	 q� � q �

q� or q
���������n�

�

q� and q
a
	 q� � �q�� q� � q

�
	 q�

a
� q�

�
	 q�� We also write

q
a����an	 q� for �q�� � � � � qn � q � q�

a�	 q� � � �
an	 qn � q�



� Traces�q� � f� � �A n I�� j q
�
	g �resp� Traces�M� � Traces�q��
 denotes

the sequences of visible actions that are �reable from a state q �resp� from the
initial state of the IOLTS M
�

� For q � Q and a trace � � Traces�q�� we denote by q after � � fq� � Q j q
�
	

q�g �resp� Pafter � �
S

q�P q after �
 the set of states that are reachable
from the state q �resp� from the set of states P 
 by sequences of actions whose
projection onto visible actions is ��

� For q � Q� Out�q� � � �q� 
A� is the set of �reable outputs in q� This notion
is naturally extended to sets of states� for P � Q� Out�P � �

S
q�P Out�q��

Likewise� In�q� �resp� In�P �
 denote the set of �reable inputs in q � Q �resp�
in P � Q
�

� Finally� an IOLTS M is input�complete whenever �q � Q� In�q after �� � A��
that is� in each state� all inputs are accepted� possibly after a sequence of
internal actions �here� � denotes the empty trace
�

Based on the previous notations we introduce some common de�nitions�

De�nition � �Deterministic IOLTS�� An IOLTS M is deterministic if IM �

�� and for all q� q�� q�� � QM and a � AM� q
a
� q� and q

a
� q�� imply q� � q���

Given an arbitrary IOLTS M � one can construct a deterministic IOLTS det�M�
with the same visible behavior� i�e�� Traces�M� � Traces�det�M���

De�nition 	 �Determinization�� The deterministic IOLTS of an IOLTS M �
�Q�A��� q�� is det�M� � ��Q� An I��d� q� after 	�� whose transition relation �d

is the smallest relation de�ned by� P
a
�d P

� if P � � P after a�

The synchronous composition of two IOLTS performs synchronization on their
common visible actions and lets them evolve independently by internal actions�

De�nition 
 �Synchronous composition�� Let Mi � �Qi� A
i��i� q

i
o�� i �

�� � be two IOLTS� with Ii the internal actions of Mi� The synchronous composi�
tion M� kM� of M� and M� is an IOLTS �Q�A��� qo� such that�

� Q � Q� �Q�� qo � �q�o � q
�
o�� A � A� 
A� � �I� � I��

� � is the smallest relation in Q�A�Q satisfying

�q�� q��
a
�

��
�

�q��� q
�

�� if a � A n �I� � I�� 
 q�
a
�� q

�

� 
 q�
a
�� q

�

�

�q��� q�� if a � I� 
 q�
a
�� q

�

�

�q�� q
�

�� if a � I� 
 q�
a
�� q

�

�

It is not hard to show that Traces�M� kM�� � Traces�M�� 
 Traces�M���

��� Veri�cation of safety properties

The veri�cation problem considered here is � given a reactive system M and a
property 
� does M satisfy 
 �M j� 

� We model properties using observers�
which are a particular class of IOLTS�



V iolate
�c�a

�b

l� l�

� � f�ag � � f�b� �cg

Figure�� Sample observer� For A � A
�� the notation � �A is a shortcut for A� nA�

De�nition � �Observer�� An observer for an IOLTS M is a deterministic
IOLTS � � �Q�� A����� q

�

�
� such that A� � AM n IM� and there exists a unique

state Violate� � Q� n fq�
�
g such that ����Violate�� � AM

	
and � �Violate�� � ��

Its language is L��� � f� � �A��� j q�
�

�
�� Violate�g�

An observer expresses the negation of a safety property on the visible behavior
of a system� The Violate state is entered when the system emits an undesired
output� We note that De�nition � matches the class of B�chi automata obtained
from negations of LTL safety formulas ���
� except for the self�loop on the Violate
accepting state� and for the propositions labelling transitions �rather than states
�

Example 	� Consider the property
 between each �a and �c� there must be at least
one �b� The negation of this property is expressed by the observer depicted in
Figure �� Here� an action �a followed by a �c goes to the Violate location� meaning
that the property was violated as there has been no �b between �a and �c� However�
if �b occurs after �a� the property cannot be violated unless another �a occurs�
hence� the observer goes back to its initial location to wait for another �a�

Let ��M� denote the �in�nite
 set of observers for an IOLTS M � The following
de�nition formalizes the satisfaction of � � ��M� by M �

De�nition � �Satisfaction relation�� An IOLTS M satis�es an observer � �
��M�� denoted S j� �� if and only if Traces�M� 
 L��� � ��

M j� � holds whenever no state �q�Violate�� with q � QM is reachable in M k ��

Example 
� The IOLTS S depicted in Figure � satis�es the observer � depicted
in Figure �� Indeed� there is no way that in S an �a can be directly followed by
�c without �b occurring in between� As these are the only traces that may lead to
Violate in �� we conclude that S j� ��

��	 Conformance Testing

The goal of conformance testing is to establish whether a black�box implementa�
tion I conforms to its formal speci�cation S� In our framework� the speci�cation
is given by an IOLTS S � �QS � AS ��S � q

S

� �� The implementation I is not a formal
object �it is a physical system
 but� in order to reason about conformance� it is
necessary to assume that the behavior of I can be modeled by a formal object in
the same class as the speci�cation and having a compatible interface with it� i�e��



q�q�

�a

�a

q�

�b
�c

�
q�

�b

�a

�b

q�

q�

�


q��
 �


Figure�� The suspension IOLTS S� for the IOLTS S depicted in Figure 	

having the same set of visible actions� Moreover� the implementation can never
refuse an input from the environment �it is input�complete
�

These assumptions are called test hypothesis in conformance testing ���
� Thus�
the implementation is modeled by an input�complete IOLTS I � �QI� AI��I � q

I

�
�

with AI � AI

�
� AI

�
� II� AS

�
� AI

�
� and AS

�
� AI

�
�

Quiescence� The tester observes not only responses of the implementation� but
also absence of response �i�e�� in a given state� the implementation does not emit
any output for the tester to observe
� This is called quiescence in conformance
testing� There are three possible reasons for quiescence�

� A deadlock state is a state where the system cannot evolve� � �q� � ��

� An output quiescent state is a state where the system is waiting only for an
input from the environment� i�e� � �q� � A��

� A livelock state is a state from which the system diverges by an in�nite se�
quence of internal actions� In the case of �nite state systems that we consider�
a livelock is a loop of internal actions� i�e�� ���� � � � �n� q

������n� q�

In practice� quiescence is observed using timers � a timer is reset whenever the
tester sends a stimulus to the implementation� when the timer expires� the tester
observes quiescence� It is assumed that the timer is set to a value large enough
such it only expires only when no response will ever occur�

At the model level� however� quiescence is materialized by adding a special
output action 
 that manifests itself in quiescent states ���
�

De�nition 
 �Suspension IOLTS�� The suspension IOLTS of an IOLTS S �
�Q�A��� q�� is an IOLTS S� � �Q� � A���� � q

�
�
� with Q� � Q� q�

�
� q�� A

� �
A � f
g and 
 � A�

�
�
 is an output of S��� The transition relation of S� is

���� �fq
�
� qjq is quiescentg� The traces of S� are the suspension traces of S�

Example 
� For S depicted in Fig� �� q� is a deadlock� q� is an output�lock� and
q� is a livelock� S� �cf� Fig� �	 is obtained by adding a 
�labeled self�loop to them�



��
�a �a �a �c

�a�a

��

��

�b

�a

�b

Figure�� Suspension IOLTS of Implementations I� and I� from Example 
�

Conformance relation A conformance relation formalizes the set of implementa�
tions that behave consistently with a speci�cation� Here� we use the classical ioco
relation de�ned by Tretmans ���
� Intuitively� an implementation I ioco�conforms
to its speci�cation S� if� after each suspension trace of S� the implementation only
exhibits outputs and quiescences that are possible in S � Formally�

De�nition � �Conformance�� For IOLTS S � I such that I is interface com�
patible with S� I ioco S � �� � Traces�S��� Out�I�after �� � Out�S�after ���

Remember that the black�box implementation I is assumed to be input�complete�
but the speci�cation S is not necessarily so� Hence� in this framework� the speci��
cation is partial with respect to inputs� i�e�� after an input that is not described by
the speci�cation� the implementation may have any behavior� without violating
conformance to the speci�cation� This corresponds to the intuition that a speci�
�cation models a minimal set of services that must be provided by a system� A
particular implementation of the system may include more services than what is
speci�ed� but these services should not in�uence conformance to the speci�cation�

Example �� First� consider the implementation I� whose suspension IOLTS is
depicted in Figure 
 �left	� which only accepts inputs �a and emits no outputs
but quiescence� For S depicted in Figure �� I� ioco S does not hold� because
quiescence is not allowed initially in the suspension IOLTS S� �Figure �	� On
the other hand� the implementation I� whose suspension IOLTS is depicted in
Figure 
 �right	 does conform to S 
 the �rst divergence between I�� and S� is on
the second input �a in line� which does not violate conformance�

The mechanism for testing the conformance of an implementation with its speci��
cation consists in generating test cases from the speci�cation� and running them in
parallel with the implementation to detect non�conformances between the two rep�
resentations of the system� Test cases are essentially deterministic� input�complete
IOLTS� In Section 	 we show how to generate test cases from the speci�cation
using observers for safety properties� in order to test both the satisfaction of the
properties by the implementation and its conformance to the speci�cation�

Example �� To see why it is important to extract test cases from the speci�cation�
consider a tester that initially stimulates the implementation I� from Example �
using two consecutive �a actions� This behavior does not belong to the speci�ca�
tion S� which only allows one �a initially �cf� Fig �	� Although I� ioco S does
not hold� this particular tester cannot observe it� because it has forced the imple�
mentation to diverge from the speci�cation by the second �a� When this happens�
the implementation is free to do anything without violating the conformance�



� Connecting Conformance and Property Satisfaction

In this section we establish a relation between conformance �I ioco S
 and the sat�
isfaction of safety properties by the speci�cation and the implementation �S j� ��
I j� �
� Properties are expressed using observers � � ��S�� Remember that a
speci�cation S is a partial speci�cation in the sense de�ned in Section ���� the
speci�cation does not say what happens after an unspeci�ed input� Hence� an
observer is relevant for a speci�cation S if it may only diverge from S by outputs�

De�nition � �Relevant observer�� An observer � � ��M� is relevant for M
if L��� � Traces�M� �AM

	
� The set of relevant observers for M is denoted ��M��

Example �� The observer � depicted in Figure � is not relevant for the speci��
cation S depicted in Figure �� This is because � accepts arbitrarily many �a�s
initially� while S accepts only one� Intuitively� � is not relevant because it says
something about behaviors that diverge from S through an unspeci�ed input�

Relevant observers play an essential role in Theorem � below� which establishes a
relation between conformance testing and property satisfaction�
To prove Theorem � the following technical lemma will be employed�

Lemma �� For A� B� C arbitrary sets� �x � A��x �� B 	 x �� C� implies
�A 
B � � 	 A 
 C � ���

Theorem �� For all IOLTS I�S� I ioco S � �� � ��S��� S� j� � 	 I� j� ��

Proof � �	�� I ioco S is �� � Traces�S���Out�I�after �� � Out�S�after ��
�De�nition �
� By de�nition of Out�S�after ��� Out�I�after �� �cf� Section ���
�

�� � Traces�S����a � AS
�

	 � � � a � Traces�I�� �	 � � a � Traces�S��

which is clearly equivalent to

�� � Traces�S����a � AS
�

	
� � � a �� Traces�S�� �	 � � a �� Traces�I�� ��


Now� consider an arbitrary relevant observer � � ��S��� By De�nition �� all the
sequences �� � L��� are of the form �� � � �a� where � � Traces�S�� and a � AS

�

	
�

Hence� the implication ��
 can be rewritten equivalently as

�� � ��S������ � L���� �� �� Traces�S�� �	 �� �� Traces�I�� ��


Using Lemma � with A � L���� B � Traces�S��� C � Traces�I��� we obtain

�� � ��S���L��� 
 Traces�S�� � � �	 L��� 
 Traces�I�� � � ��


which� by De�nition � is �� � ��S��� S� j� � 	 I� j� �� this direction is done�
��� Assume ��Iioco S�� We prove that there exists a relevant observer � � ��S��
such that S� j� � but I� �j� �� This leads to a contradiction and completes the
proof� To build �� from ��I ioco S� we obtain that there exists a sequence of



the form � � a with a � AS
�

	
such that � � Traces�S��� a � Out�I� after �� but

a �� Out�S� after ��� Let � be an observer such that L��� � f� � ag�
Then� clearly� � is relevant for S� as L��� � Traces�S�� �AS

�

	
� Also� S� j� � as

a �� Out�S� after ��� therefore� � � a �� Traces�S��� i�e�� L��� 
 Traces�S�� � ��
and I� �j� � as a � Out�I� after �� and therefore � � a � Traces�I�� 
L��� �� ��
Hence� the observer � is relevant for S� � S� j� �� and I� �j� �� the proof is done��

Interpretation� Theorem � can be interpreted as follows� an implementation I
ioco�conforms to its speci�cation S if� whenever S� satis�es a relevant safety
property� I� satis�es it as well� Hence� in order to establish conformance� it is
enough to prove that all relevant safety properties satis�ed by the speci�cation
are also satis�ed by the implementation� This is a completeness result� which is
impossible to achieve in practice because there may be in�nitely many relevant
properties that hold on a speci�cation�
On the other hand� Theorem � also says that� to detect conformance violation�

it is enough to exhibit one relevant property that is satis�ed by the speci�cation�
but violated by the implementation� This a soundness result and is achievable
in practice� However� it does not say how to actually check the violation of the
property by the implementation �the observer is not a test case� for example� it is
not necessarily input�complete
 and� more importantly� it is limited to properties
expressed by observers that are relevant to the speci�cation�
These limitations are raised in Section 	� We conclude this section by an

example showing that the relevance hypothesis is essential for Theorem � to hold�

Example �� Consider the observer �� which was shown in Example � to be irrel�
evant for S �Fig� �	� For the same reason� � is irrelevant for S� �Fig��	� Consider
now implementation I� whose suspension IOLTS is depicted in Figure 
� We
have shown in Example � that I� ioco S� and in Example � that S� j� �� but
clearly� I�� �j� � because I�� admits a �c directly after an �a� That is� except for its
irrelevance� the observer � falsi�es Theorem ��

� Test Generation from Safety Requirements

This section shows how to generate test cases from a speci�cation using a safety
requirement as a guide� Intuitively� such a test case guides the implementation�
and attempts to �push� it into violating the requirement�
It should be clear from the previous examples that writing a relevant require�

ment for a given speci�cation �in the sense of De�nition �
 is not always easy� For
example� the requirement expressed by the observer � from Examples � to � is a
natural �and true
 property of S � but it is nevertheless irrelevant for S�
However� when an observer as a whole is irrelevant for a given speci�cation� a

subset the observer of it may still be relevant� For example� the sequence �a��c �
L��� is in Traces�S�� � AS

�

	
� i�e�� it is relevant for S� in the sense of De�nition ��

Hence� we need a test generation algorithm that takes a speci�cation S and
an arbitrary requirement � � ��S�� and automatically sorts out from � what is
relevant for S and what is not� This is done by the following operation�



�a

q�

�a

q�

�b

�b

�


q��


�


q�

�c

det�S��

q�

� � ��det�S���

�q�� l��

�b

�q�� l��
�a

�q�� l��

�b

�q�� l��

�c�


Violate

�


Fail

�


�c
�
 �q�� l�� Fail

�b� �c

Fail

�c

det�S����

�
� �c
�q�� l��

�b� �c

�b
Violate

�a

l�

l�

�c

� � f�ag

�


Fail

V iolate

�b

�a

�b
� � f�b� �cg

Figure�� The � operation between det�S�� and �

De�nition �� �Forcing�� LetM � �QM� AM��M� q
M

�
� be a deterministic IOLTS

and � � �Q�� A����� q
�

� � an observer for M � The forcing of M by �� denoted
M��� is an IOLTS �Q�� A����� q

�

o � such that

� the set of states Q� is �QM � Q�� � fViolate�Failg� where Violate�Fail ��
QM �Q�

� the initial state q�o is �qMo � q
�

o �
� the alphabet A� is AM �same partitioning between inputs and outputs	

� the transition relation �� of Q� is the smallest relation de�ned as follows�
For all states �p� q� � Q� and action a � A�


� if p
a
�M p�� q

a
�� q� then �p� q�

a
�� �p�� q�� ��


� if a � A	� p
a
�M� � q

a
�� Violate� then �p� q�

a
�� Violate ��


� if a � A	� p
a
�M� � ��q

a
�� Violate��� then �p� q�

a
�� Fail� ��


Example �� For the IOLTS S� depicted in Figure � and � depicted in Fig� 
� the
IOLTS det�S���� is depicted in Figure 
 �note that � � ��det�S�		� For better
readability� the Violate and Fail locations have been duplicated�

De�nition �� deserves some comments� The forcing operation performs synchro�
nization on visible actions whenever it is possible �line ��

� However� for each
output a that is not allowed by the speci�cation M � M�� performs this output
anyway� Intuitively� this is because the forcing operation is the �rst step towards
test case generation� and the test cases are executed in parallel with an imple�
mentation I of the system to detect property violation and�or non�conformance�

� If the output a is not allowed by the speci�cationM and leads the observer �
into its Violate� state� then M�� goes into its Violate state as well � cf� line
��
� If this happens when runningM�� in parallel with an implementation I�
this means that I violates both the conformance to M and the property
de�ned by �� This is formalized by Theorem � below�



� if the output a is not allowed by M but does not lead the observer into its
Violate� state �line ��

� then M�� goes into its Fail state� If this happens
when running M�� in parallel with an implementation I � then I violates
the conformance to M �but does not necessarily violate the property de�ned
by �
� This is formalized by Theorem ��

Note that ifM is a deterministic IOLTS and � � ��M�� thenM�� is an observer
for M as well� i�e�� M�� satis�es all the conditions of De�nition �� In particular�
its language L�M��� is de�ned� The following lemma characterizes this language�

Lemma �� For IOLTS M and � � ��M�� L�M��� � L���
 	Traces�M� �AM

	

�

Proof � We prove for an arbitrary sequence � � �AM�� that � � L�M��� i�
� � L��� 
 	Traces�M� �AM

	

�

First� by De�nition �� a sequence � that belongs to either of these sets cannot
be empty� because Violate cannot be the initial state of an observer�
Then� � � �� � a � L�M��� i� a is an output that has been forced to go to

Violate in M�� by rule 	�
 of De�nition ��� But� by the same rule� this happens
if and only if � � L��� and �� � Traces�M�� i�e�� � � L���
 	Traces�M� �AM

	

� �

Lemma � says thatM�� is a relevant observer forM �it actually says thatM��
de�nes the strongest safety requirement weaker than � and relevant for M
�
Theorem � below is a re�nement of Theorem �� obtained by dropping the

relevance hypothesis for the observer� Its proof invokes Theorem � and Lemma ��

Theorem �� Let I and S be two IOLTS� then

I ioco S � �� � ��S���S� j� � 	 I� j� �det�S������

Proof ��	
 Assume I ioco S and let � be an arbitrary observer in ��S� such
that S� j� �� Thus� Traces�S�� 
 L��� � �� which implies Traces�S�� 
 L��� 

	Traces�S�� � AS

�

	

 � �� which� by Lemma � is just S� j� �det�S������

Still by Lemma � we know that det�S���� is a relevant observer for S� � Then�
using Theorem � we obtain� S� j� �det�S����� 	 I� j� �det�S������
By transitivity of 	 � we have I� j� �det�S������ and this direction is done�

��
� Assume �� � ��S���S� j� � 	 I� j� �det�S������ Then� in particular� we
have that this implication is true for all relevant observers � � ��S��� that is� �� �
��S���S� j� � 	 I� j� �det�S������ However� by Lemma �� I� j� �det�S�����
implies Traces�I��
L���
 	Traces�S�� �AS

�

	

 � �� and� by De�nition �� L��� �

	Traces�S�� �AS
�

	

� Hence� we have Traces�I��
L��� � �� which implies I� j� ��

We have obtained that� for all relevant observers� � ��S��� S� j� � 	 I� j� �
holds� By Theorem �� we obtain I ioco S� and the proof is done� �

Interpretation� For observers � that represent true safety properties of a speci��
cation S � whenever det�S���� enters its Violate state when executed in parallel
with an implementation I� then I violates both the safety property de�ned by �
�cf� Lemma �
 and the conformance to the speci�cation �cf� Theorem �
�



Hence� det�S���� is the basis for a potentially interesting test case� When it
enters its Violate state� the implementation will be assigned the Violate verdict�

Violate� The implementation violates both the property and the conformance

We now consider the situation when det�S���� enters its Fail state�

Theorem 	� For IOLTS I � S and � � ��S��� if there exists � � Traces�I��

Traces�det�S����� such that Fail � �det�S����� after �� then ��I ioco S��

Proof � By De�nition �� line 	�
� Fail � �det�S����� after � means that � � ��a�
where a is an output �a � A	
 which is not �reable in det�S�� after the sequence
��� i�e�� a �� Out�S� after ���� However� by � � Traces�I�� we have that a �
Out�I� after ���� Then� by De�nition �� ��I ioco S�� �

Interpretation� Theorem � says that when det�S���� enters Fail when run on
an implementation� the latter violates conformance to the speci�cation �but not
necessarily the property �
� In this case� the Fail verdict is given�

Fail� The implementation violates the conformance but not necessarily the property

What remains to do is to build from det�S���� an actual test case�

Mirror� The next step consists in transforming all inputs of det�S���� into out�
puts and reciprocally� This is called the mirror operation� It is necessary because�
in the test execution process� the actions of the implementation and those of the
test case must complement each other�

Pruning� This operation consists in suppressing from det�S���� the subgraphs
that cannot lead to Violate� Here� the main goal of testing is to check the violation
of the requirement after a trace of the speci�cation� and� if an implementation
leads a tester �extracted from the speci�cation
 into a subgraph that cannot lead
to Violate� the current test experiment will never be able to achieve this goal�
There are two situations� depending on whether the subgraph �from which

Violate is unreachable
 was entered through an input or an output�

� the subgraph has been entered by an output of the tester� In this case� the
transition labeled by that output �together with the whole subgraph
� are
removed� Intuitively� the tester has control over its outputs� thus� it may
decide not to stimulate the implementation with an output if it knows that
this will never lead to a Violate verdict�

� the subgraph has been entered by an input of the tester �that does not directly
lead to Fail
� In this case� only the transition labeled by that input is kept
�the rest of the graph is removed
� The destination of the transition is set to
a new state called Inconc� which means that no Violate verdict can be given
any more �but the conformance was not violated
� Hence� for completeness�
in this situation the verdict will be Inconc �inconclusive
�



�b

�a

�b

�b �c

Violate

�a

Inconc

��

Violate�c

Figure�� Test case generated from S and � �except the Fail location��

Inconc� neither Fail nor Violate have occurred and Violate cannot occur any more

Let test�S� �� � prune�mirror�det�S������ denote the IOLTS obtained after these
operations� test�S � �� is the test case generated from speci�cation S and ob�
server �� It is not hard to see that by replacing det�S���� by test�S � �� in the
statements of Theorems �� � the proofs still hold� This is because test�S � �� satis�es
Lemma � as well� i�e�� L�test�S� ��� � L�det�S����� � L���
 	Traces�S�� �AS

�

	

�

as only subgraphs that cannot lead to Violate have been suppressed by pruning�

The above property of the language of test�S � �� is enough to establish Theorem ��

On the other hand� Theorem � is concerned with traces of det�S���� that lead to
Fail� and a trace that leads to Fail in test�S � �� also leads to Fail in det�S�����

This establishes that Theorem � still holds when det�S���� is replaced by test�S � ���

Example ��� The test case depicted in Figure � checks the property
 �between
each �a and �c� there is at least one �b� �cf� Example �	� The Fail location has not
been represented� there is an implicit transition to Fail from each state� labeled
by all the input actions that do not go anywhere else� Implementation I� from
Example �� which initially receives an �a and then emits �b �cf� right of Figure 
	
violates neither the property nor conformance to S on this trace� and our test
case will never be able to detect violation of the requirement in the future� hence�
the Inconc verdict is assigned� An implementation that receives an �a initially
and then directly emits �c violates both the property and the conformance� hence�
the verdict is Violate� Finally� an implementation that emits �
 initially� violates
the conformance to the speci�cation �but not the property	
 the verdict is Fail�

� Conclusion� Related Work� and Future Work

We now recall the framework proposed in the paper and the main results ob�
tained� A system is viewed at three di�erent levels of abstraction� high�level re�
quirements R� operational speci�cation S � and �nal� black�box implementation I�
In the proposed framework� all three views are modeled using Input�Output La�
beled transition systems� which are labeled transition systems whose actions are
partitioned into inputs� outputs� and internal actions�



The conformance relation ioco ���
 links I and S � and the satisfaction relation
j� links S �or I
 and requirements R� A notion of requirement that is relevant for
a speci�cation is de�ned� which essentially means that the requirement does not
refer to features that are not incorporated into the speci�cation�
Our �rst result says intuitively that I ioco�conforms to S if and only if I

satis�es all relevant requirements that are satis�ed by S � While it is interesting
from a theoretical point of view� because it gives an alternative de�nition of ioco�
conformance� this result is not practical as it is restricted to relevant requirements
�which are not always easy to come up with
 and it does not say how to actually
check a requirement on a black�box implementation�
This can be done by testing� and therefore we propose a test generation al�

gorithm that takes an IOLTS speci�cation S� and an arbitrary requirement �
�relevant or not
 expressed using speci�c IOLTS called observers� and produces
an IOLTS test case� denoted test�S � ��� The tester emits verdicts� Violate� Fail�
and Inconc� which express relations between I� S� and R�
Our second result says intuitively that I ioco S holds if and only if� for all ob�

servers � that express true properties of the speci�cation S � by executing test�S� ��
in parallel with the implementation I� the Violate verdict is not obtained�
The �only if� part of this result is a theoretical completeness result� in order to

establish conformance� an in�nite number of test cases should be executed� and
each execution is a potentially in�nite process as well�
More interesting in practice is the �if� part of the result� which is a soundness

property� Going back to the validation approach proposed in Section �� it implies
that every requirement that holds on the speci�cation allows to automatically
generate a test case to check the requirement on the implementation as well�
A similar soundness result holds for the Fail verdict� which says that� if the

Fail verdict is obtained by executing test�S � �� in parallel with the implementation
I� then I ioco S does not hold� The Fail verdict plays the role of a warning in the
proposed validation process� when it is issued� the implementation has violated
conformance to the speci�cation� and the trace that led to this violation can be
examined to check whether this corresponds to a serious problem or not�
Finally� an Inconc �inconclusive
 verdict means that the current test exper�

iment will never be able to detect the violation of a requirement in the future�
therefore� the user may stop the current test experiment and start another one�

Related Work� There exists a lot of interest in formal veri�cation from researchers
and� recently� formal veri�cation has started to penetrate the industry� More re�
cently� conformance testing �and other forms of testing
 have become a topic of in�
terest to the veri�cation community� This has resulted in new algorithms and tools
for testing based on veri�cation technology �mainly model checking
 ���	������
�
In ��
 the authors describe an approach to generate tests from observers de�

scribing linear�time temporal logic requirements and to execute the tests directly
on the implementation� This is similar to what we do� except for the logic and
one more important point� ��
 does not require veri�cation of the property on the
speci�cation prior to conformance testing� and the test cases do not check confor�
mance� but only that the implementation does not violate the requirements�



The authors of ���
 have ideas similar to ours� Given a speci�cation S� and an
invariant P assumed to be satis�ed by S� mutants S� of S are built using stan�
dard mutation operators� Then� a combined machine is generated� which extends
sequences of S with sequences of S�� Next� the SMV model�checker is used to gen�
erate sequences that violate P � i�e�� sequences that prove that S� is a mutant of S
violating P � Finally� the sequences are interpreted as test cases� The construction
of the combined machine is quite similar to our forcing operation �with S� inter�
preted as �
� Several other papers� like ����
� start from a speci�cation S and a
property P in a temporal logic �CTL or LTL
 satis�ed by S� and use the counter�
example facility of a model checker �SMV� SPIN
 to generate counter�examples
of �P � thus� witnesses of P in S� Some papers like ��
 extend the idea to describe
coverage criteria in temporal logic and generate test cases using model�checking�

However� all these papers su�er from the same drawbacks� They do not take
nondeterminism into account� do not di�erentiate between inputs and outputs�
and do not formally de�ne conformance testing� Moreover� except ���
� they do
not relate satisfaction of properties to conformance testing�
In ���
 another approach to combine test selection and veri�cation is presented�

The idea is to use symbolic test selection techniques to extract test cases from a
speci�cation� which� under some su cient conditions� can be used to perform a
compositional veri�cation of the requirements� However� the test selection mech�
anism is not related to the requirements in a formal way� as it is in this paper�

Future work� In the near future we are planning to implement the test generation
method for safety properties presented here in the TGV tool ���
� TGV uses test
purposes as test selection mechanisms� which express reachability properties of
the speci�cation� a test case is generated for every witness �trace
 showing that
the speci�cation satis�es a given reachability property ���
� Thus� to perform test
generation from safety properties� it is not enough to take the negation of a safety
property� and use TGV with the resulting reachability property as a test purpose�
if the speci�cation satis�es the safety property �as assumed everywhere in this
paper
� its negation has no witnesses� thus� TGV produces an empty test case�

Our symbolic test generation tool STG �	
� based on abstract interpretation
rather than enumeration� is another target for the new test generation algorithm�

We are also planning to extend this framework to LTL safety formulas ���
 by
a translation of LTL formulas on observable events into observers� and connect
this work with that of ����
� The problem addressed by these papers is to check
whether temporal logic formulas expressing safety requirements have a su cient
coverage of the speci�cation� Here� coverage is de�ned by the ability of a formula
to distinguish mutants� Thus� if a set of requirements has a good coverage of the
speci�cation� the test cases obtained by our method may have a good coverage
on implementations� thus� a good chance of �nding bugs during test execution�

Finally� in this paper the situation where the speci�cation does not satisfy the
requirements has not been considered� We are currently investigating an approach
based on previous work ���
 for automatically computing the largest speci�cation
contained in the original speci�cation� which satis�es the requirements and does
not change the set of implementations that conform to the original speci�cation�



References

	� A� Belinfante� J� Feenstra� R� de Vries� J� Tretmans� N� Goga� L� Feijs� and S� Mauw�
Formal test automation� a simple experiment� In International Workshop on the
Testing of Communicating Systems �IWTCS����� pages 	
��	��� 	����

�� M� Bozga� J��C� Fernandez� L� Ghirvu� C� Jard� T� J�ron� A� Kerbrat� P� Morel�
and L� Mounier� Veri�cation and test generation for the sscop protocol� Science of
Computer Programming� ���	���
�
�� �����

�� H� Chockler� O� Kupferman� R�P� Kurshan� and M�Y� Vardi� A practical approach
to coverage in model checking� In Computer�Aided Veri�cation �CAV��	�� number
�	�� in LNCS� pages ���
�� ���	�

�� D� Clarke� T� J�ron� V� Rusu� and E� Zinovieva� STG� a symbolic test generation tool�
In Tools and Algorithms for the Construction and Analysis of Systems �TACAS��
��
number ���� in LNCS� pages �
���

� �����


� A� Engels� L�M�G� Feijs� and S� Mauw� Test generation for intelligent networks
using model checking� In Tools and Algorithms for the Construction and Analysis
of Systems �TACAS����� number 	�	
 in LNCS� pages �������� 	��
�

�� J�C� Fernandez� L� Mounier� and C� Pachon� Property�oriented test generation� In
Formal Aspects of Software Testing Wokrshop �FATES����� �����


� A� Gargantini and C�L� Heitmeyer� Using model checking to generate tests from
requirements speci�cations� In ESEC 
 SIGSOFT FSE� pages 	���	��� 	����

�� H� Hong� I� Lee� O� Sokolsky� and H� Ural� A temporal logic based theory of test
coverage and generation� In Tools and Algorithms for Construction and Analysis of
Systems �TACAS��
�� number ���� in LNCS� pages ��
���	� �����

�� Y�V� Hoskote� T� Kam� P��H� Ho� and X� Zhao� Coverage estimation for symbolic
model checking� In Design Automation Conference� pages ������
� 	����

	�� ISO�IEC� International Standard ����� OSI�Open Systems Interconnection� Infor�
mation Technology � Conformance Testing Methodology and Framework� 	����

		� T� J�ron and P� Morel� Test generation derived from model�checking� In Computer�
Aided Veri�cation �CAV����� number 	��� in LNCS� pages 	���	��� 	����

	�� T� J�ron� H� Marchand� V� Rusu� and V� Tschaen� Synth�se de contr�leurs pour une
relation de conformit�� In Mod�lisation des syst�mes r�actifs �MSR����� �����

	�� O� Kupferman and M�Y� Vardi� Model checking of safety properties� Formal Methods
in System Design� 	�������	��	�� ���	�

	�� Z� Manna and A� Pnueli� Temporal veri�cation of reactive systems� Vol� 	� Speci��
cation� Vol� 
� Safety� Springer�Verlag� 	��	 and 	��
�

	
� P�Ammann� W� Ding� and D� Xu� Using a model checker to test safety proper�
ties� In International Conference on Engineering of Complex Computer Systems
�ICECCS��	�� IEEE Computer Society� ���	�

	�� Telelogic SDL products� http���www�telelogic�com�products�sdl�
	
� V� Rusu� Combining formal veri�cation and conformance testing for validating re�

active systems� Software Testing� Veri�cation� and Reliability� 	�����	

�	��� �����
	�� M Schmitt� A� Ek� J� Grabowski� D� Hogrefe� and B� Koch� Autolink � putting

SDL�based test generation into practice� In International Workshop on the Testing
of Communicating Systems �IWTCS����� pages ��
����� 	��
�

	�� J� Tretmans� Testing concurrent systems� A formal approach� In Concurrency
Theory �CONCUR����� number 	��� in LNCS� pages ����
� 	����


