Generation of Optimized Testsuites for UML
Statecharts with Time

Tilo Micke and Michaela Huhn *

Technical University of Braunschweig, 38106 Braunschweig , Germany,
{tmuecke,huhn}@ips.cs.tu-bs.de,
WWW home page: http://wuw.cs.tu-bs.de/ips

Abstract. We present an approach to automatically generate time-
optimized coverage-based testsuites from a subclass of deterministic stat-
echarts with real-time constraints. The algorithms are implemented as a
plugin for a standard UML tool (Poseidon for UML). The statecharts are
extended to accomplish common and new coverage criteria inspired by
the experience of test experts and translated into timed automata. The
model checker UPPA AL then searches a trace with the fastest diagnostic
trace option which provides the basis for the testsuite.

1 Introduction

Model based software development is applied successfully in many application
domains. In the embedded domain, the model based approach is well accepted
since several years. Tool supported graphical modelling languages are a great
help to master the complexity of modern embedded applications that results from
safety requirements, the distribution of the components or real-time constraints.
Statecharts introduced by Harel [1] are widely used in state based modelling and
in particular the UML variant of statecharts is supported by various tools.

In practise, testing is the major technique for software validation and an
important expense and time factor in the software development process. For
embedded software, testing has become the predominant effort in the develop-
ment since enhanced safety and reliability requirements have to be guaranteed
if the software is employed in hundreds of technical everyday products or highly
sensitive systems.

A straightforwared idea for automated test design is so-called model based
testing, i.e. to generate tests from (semi-)formal state based design models. In
the area of communication systems FSM based testing has been exercised since
several decades [2-4] and was transferred to statecharts e.g. in [5]. Since the
behaviour of a statechart is infinite in general, exhaustive testing is impossible.
Thus it is common practise to create a testsuite, i.e. a finite set of tests that
cover the system with respect to certain criteria. In software testing coverage

* This research was supported in part by a grant of the DFG (Deutsche Forschungs-
gemeinschaft) - SFB562.

criteria related to control flow like state or transition coverage and criteria re-
lated to the data flow are well established [6, 7]. Alternatively, functional queries
generalizing the experience of test experts are used to create a small but expres-
sive testsuite [8]. Recently, many authors [9-13] employ a model checker or other
efficient search algorithms [14] to cope with the state explosion problem which
is dominant in automated testcase generation. The procedure of this approach
is depicted in Figure 1.

N N
(system model (()
statechart o > in the model -
model checker o
language
translate model trace | translate f=—p- testcase/
checker testsuite
coverage
criteria/ o temporal logic | o
functional gl formula gl
query \. J _ J/ \\ J

Fig. 1. Using a model checker for testcase generation

In this paper we use a model checker for testsuite generation from statecharts,
too. Our approach concentrates on testcases to validate the real-time behaviour
of statecharts because in the real-time domain the correct timing of operations
is as important as pure functionality. We use the UPPAAL model checker [15]
that is specialized for the verification of real-time systems.

As [10] we start with statecharts as a standard modelling notation which
is automatically transformed into a formal model suitable as input to a model
checker. Depending on the coverage criterion for which a testsuite shall be gen-
erated the model is prepared by introducing specific variables. The coverage
criterion or functional query is translated into a temporal logic formula, e.g. for
state coverage into a query for a path on which each state is visited which is
indicated by the introduced variables. Here we follow the work of [10,16] and
[12,9] (for real-time systems) which we have extended by a new coverage crite-
rion called boundary coverage. Then the model checker searches the state space
of the model which results in a trace that is retranslated to be interpreted as a
testcase.

For testcase generation tool support is mandatory ([17] gives an overview).
[10, 16, 18] start with a formal system model ready for a model checker like Spin
or SMV, [9,12] use timed automata as the system model. [3] (ObjectGeode),
[5] (Rational Rose), and [8] (AutoFokus) have implemented tools as additional
modules for various CASE tools. This corresponds to our approach. So the user
can conveniently move from modelling to testcase generation and the formal
methods behind are mainly hidden.

Even with the excellent algorithms implemented in model checkers, state
explosion still is the major problem in testcase generation. [16] shows that the
generation of the shortest testsuite is NP-complete and suggests the use of a

greedy-algorithm to choose an adequate subset from the generated testcases.
Since version 3.3, UPPA AL contains the feature of emitting the fastest diagnostic
trace. This feature provides the generation of the testsuite with the shortest test-
execution-time as is shown in [9]. We use this feature to obtain a time-optimal
testsuite. However, we show that the search for the fastest trace heavily suffers
from the state explosion. Therefore we discuss several heuristics to palliate the
storage consumption of the model checker for the price of a time-optimized but
possibly non-optimal testsuite.

The rest of the paper is organized as follows: In Section 2 we briefly describe
how to transform a family of deterministic statecharts into a system of UPPAAL
timed automata. In Section 3 we explain how the statecharts are extended to
accomplish the coverage criteria. Section 4 is concerned with our tool TestGen
and Section 5 with an example. In Section 6 we evaluate the approach and discuss
heuristic improvements. Section 7 presents concluding remarks.

2 Translation from Statecharts to Timed Automata

Our approach to generate testcases for statecharts is based on the transforma-
tion of UML statecharts to UPPAAL timed automata introduced in [19]. The
transformation is restricted to a subclass of UML statecharts (condition 1-3).
We put a fourth constraint on the set of suitable statecharts which is specific for
testcase generation.

1. Concurrency is restricted to the top level (object level), i.e. within the state-
charts AND-states must not be used. This is adequate in our system model,
where statecharts model the behaviour of a family of objects without intra-
object concurrency.

2. In guards and actions only expressions may be used that have a one-to-one
correspondence in the UPPAAL language.

3. So far composite transitions, history connectors, entry-, exit-actions and do
activities are not supported by the transformation tool, but these elements
can be handled by an extension.

4. Statecharts have to be deterministic in the sense that in the semantics at
most one transition is enabled at each moment. Therefore we require that
for each two transitions with the same source state the enabling conditions
(triggers, guards, timing constraints) are never satisfied both.

In addition to the UML standard syntax, an after construct with two parameters
is supported to specify real-time constraints: The parameters give a time interval
measured from the moment the state has been entered in which the source state
may be left via this timing transition.

2.1 Syntax of the Statechart Model

Statecharts extend finite state machines by the concepts of hierarchy, concur-
rency and communication via events. A UML statechart model consists of states
and transitions.

States can be basic or composite. A composite state has at least one substate,
while the basic state has none. This hierarchy might be considered as a tree with
composite states as internal nodes and basic states as leaves. The root of the tree
is the top level composite state containing a complete statechart. Each composite
state contains one initial state defining the default entry point. A composite state
may contain at most one final state by which the composite state can be left via
a so-called completion transition.

Transitions connect a source state with a target state. A transition is la-
belled by an expression e[g]/a, where:

1. eis an event triggering the transition. It can be a signal event, which has been
sent from a concurrent statechart, a time event, triggering the transition in a
given time interval after entering of the source state, or a completion event,
if there is no explicit trigger.

2. g is a guard which has to be evaluated to true, to allow the transition to fire.
For a straightforwarded translation to UPPAAL we allow only conjunctions
of simple expressions!.

3. a is a list of actions, which are executed when the transition fires. Actions
can be assignments which conform to UPPAAL as above or send actions.

2.2 Statecharts Semantics

Our semantics for statecharts conforms to the UML standard with an extension
to handle a family of concurrent statecharts on the object (top) level.

At the beginning, root and all recursively reachable initial substates are
marked active. All variables are initialized.

A transition is enabled if its source is an active state and its trigger is the
first in the event queue, in case of a signal or completion event, or if the correct
time is reached, in case of a time event, and if its guard evaluates to true.

If several transitions are enabled at the same time, the one with its source
state lower in the state hierarchy, has a higher priority. Since the statecharts are
deterministic as explained above, with the priority scheme exactly one transition
is left.

If a transition fires, the source state and all recursively reachable active sub-
states are left and the target state and all recursively reachable initial substates
are marked active. The actions are performed in the order of their occurrence.
If the action is an assignment, the variable on the left hand is assigned its new
value according to the evaluation of the right hand side. If the action is a send
action, the send event is enqueued in the event queue of the receiver object.

Signal and completion events are stored in event queues, but completion
events are always inserted at the beginning of the queue. If an event causes a
transition to fire or is not able to trigger any transition, it is dequeued.

All variables are global.

! We only allow real-time clocks and integer variables. Timing contraints are restricted
to expressions ¢1 & & & ¢z and c3 & * — Yy & ¢4 where ¢; is a non-negative constant
or 00, z,y are real-time clocks, and ~€ {=, <, >}, see [15] for details.

For a basic state, a completion event is generated, whenever the state is
entered. For a composite state, a completion event is generated, if its final state
is entered.

A family of statecharts is executed in parallel and communicates via events
which are addressed to a specified receiver object. Time elapses only, if all event
queues are empty. If more than one statechart has a non-empty event queue,
the next one to become active is selected non-deterministically. It consumes
and processes an event without time delay. This will be repeated without time
consumption until all queues are empty. When the system is stable, time elapses
and the next time event starts a new sequence of steps.

2.3 Transformation into Timed Automata

A family of UML statecharts is transformed into UPPAAL timed automata in
three steps: First, each statechart is flattened, meaning the hierarchical struc-
ture is removed because timed automata lack hierarchy. Next, the family of flat
statecharts is transformed to a family of timed automata. In a last step, control
automata are added to enforce the UPPAAL model to behave consistently to
the statechart semantics. The transformation is described formally and in detail
in [19].

After flattening the statecharts, the states are translated into locations and
transitions into switches. Since we restricted the transition labels accordingly,
the translation of transitions triggered by signal or completion events is straight-
forward.

Next, the after events after(min, maz) are translated. For each state s with a
leaving transition triggered by an after event, a clock c; is introduced. Whenever
s is entered, the clock c, is reset. The after event is replaced by two guards on one
transition ¢ > min,c; < maz. To prevent the timed automaton from staying
in the state s forever, an invariant ¢, < MAX, with MAX being the maximum
of all after transitions leaving s, is added to s.

In UPPAAL timed automata, two transitions may synchronize, but there
is no way of asynchronous communication. Thus, event queues are modelled
explicitly in the timed automata model.

In statecharts events that may not trigger any transition are removed from
the head of the queue, thus in the timed automata model, message consuming
self loops are added to all states where for some variable configuration and signal
or completion event there is no corresponding transition leaving the state.

In UPPAAL timed automata, enabled transitions need not proceed, hence a
control automaton, which enforces a timed automaton with a non-empty event
queue to fire, is added.

3 Test Generation

To generate test cases we follow a coverage criteria based approach. Control flow
can be covered by state, transition, condition, and boundary coverage. Data flow
coverage is possible, too.

For some coverage criteria it is sufficient to generate queries to obtain test
cases. To find a trace covering a state s, the query E <> s (there exists a
path reaching the state s) might be used. But for other coverage criteria, even a
CTL*-formula would not be sufficient [16].

Thus we decided to add Boolean coverage variables ¢; to the model. These
variables are set to true, whenever a certain coverage is achieved, e.g. a certain
state is entered in case of state coverage. To find a trace providing the desired
coverage a query E <> A, c; is used. The augmentation of coverage variables
enlarges the statespace as mentioned in Section 6.

State Coverage requires a set of testcases (traces), so that every state is
visited at least once. This is done by adding a new Boolean variable for each
basic state and adding an assignment to every transition setting the new variable
appropriately to the target basic state of the transition to true. The initial set of
states is visited before any transition fires, therefore the coverage of these states
does not need to be verified.

B_visited:=true B_visited:=true

Fig. 2. A first statechart fragment and its state coverage extension

The results of this transformation can be observed in Figure 2.

It is reasonable for all coverage criteria that a coverage must only be achieved
if possible. That means, if a state is unreachable, it does not have to be reached
to accomplish state coverage.

The name spaces for the variables of the genuine statechart and the added
coverage variables have to be disjoint. If necessary, variables have to be renamed
before transformation.

Transition Coverage demands a testsuite in which every transition fires at
least once. To do this, a Boolean coverage variable for each transition has to be
added to the model. Next the actions for each transition are extended, so that
the appropriate variable is set to true.

The statechart fragment from Figure 2 is therefore transformed to Figure 3.
As can be seen, transition coverage is stronger than state coverage.

Condition Coverage can be achieved, evaluating the guard of every transition
of the statechart at least once to true and once to false. To achieve multiple
condition coverage [6], the expressions within every guard of each transition of

el[gl)/at; e2[g2)/a2;
T1_fired:=true T2_fired:=true

Fig. 3. Transition coverage extension for the first statechart fragment

the statechart will have to be evaluated at least once to true and at least once
to false. Multiple condition coverage is stronger than condition coverage.

Because in our model the atomic guards are combined using the and-opera-
tion, it is only possible to prevent (block) the transition from firing by evaluating
one atomic guard to false. This is why we use an alternative of condition coverage
which is in combination with transition coverage stronger than normal condition
coverage, but weaker than multiple condition coverage.

For every state, all outgoing transitions are considered and loop-transitions
are added for each combination of one blocking atomic guard from every transi-
tion. For this coverage a new Boolean variable for every atomic guard is added.

Condition coverage should be used on the flattened statechart. This is no
problem, because the statechart is flattened in the first step of the transformation
to timed automata. Using our alternative of condition coverage on the statechart
before flattening could increase the execution time of test generation and test
execution without providing a better coverage.

As an example, the transformation of a statechart fragment with two transi-
tions each with two atomic guards is shown in Figure 4.

@e1 [g1a&g1b)/al @91 [gZa&ga]/aZ@

el[lgla&!g2a&g1b&g2b)/ el[lgla&!g2b&gib&g2a)/
T1G1_blocked:=true; T1G1_blocked:=true;
T2G1_blocked:=true T2G1_blocked:=true

®<e1 [g1a&g1bat et [gZa&ga]/az@

e1[lg1b&!g2a&gia&g2b)/ el1[lg1b&!g2b&g1a&g2a)/
T1G2_blocked:=true; T1G2_blocked:=true;
T2G1_blocked:=true] T2G2_blocked:=true]

Fig. 4. Condition coverage extension for the second statechart fragment

Boundary Coverage requires that every guard with a relational operator
enables its transition to fire at least once with the closest operands possible.
Boundary coverage is used to test the limits of guards explicitly, because these
are common failure sources.

Boundary coverage is a new development and is achieved by splitting each
transition with the relation <, <=, > or >= in its guard in two transitions:

—a<bissplittedina=b—1and a <b—1 (only for a,b € Z)

—a<=bissplittedina=band a<b
— a>bissplittedina=>b+1and a>b+1 (only for a,b € Z)
—a>=bissplittedina=band a >

The remaining guards, the triggering event, and the actions are copied to both
transitions. The first transition gets an extra action, setting the corresponding
Boolean boundary coverage variable to true.

The effect of this transformation can be seen in Figure 5.

@m [a>=b&g1b]/at >®

el[a>b&gibl/al

el[a=b&gib}/ail;
T1G1_limit:=true

Fig. 5. Boundary coverage extension for the third statechart fragment

Data Flow Coverage demands that every path from an assignment of a vari-
able to the usage of this variable without reassignment is used at least once.

To achieve this kind of coverage, for every variable another variable memo-
rizes where this variable has been set previously. Whenever a variable gets used,
a field of a matrix over the definitions and the usages of one variable is set to
true. The usages are partitioned in predicate uses (p-use) and uses in all other
expressions (c-use).

This transformation can be understood more easily looking at the statechart
fragment and its transformation in Figure 6.

3.1 Reset Automaton and Satisfiability

Sometimes it is not possible to find a path for some coverage variable because
e.g. a state cannot be reached or a transition can never fire. Coverage variables
belonging to unreachable features are found, using a query A[]c == false for c €
C, and are eliminated. A warning for the designer of the statechart is generated,
too.

Even if all of the coverage variables can be set to true, in general it is not
the case, that a combination of all coverage variables will produce a trace, too.
Figure 7 shows a statechart, where the states B and C can both be reached, but
not in one trace.

To overcome this situation, a possibility to reset the whole system has to
be added to the system. Because a reset of the system takes time in reality, it
should take time in the model, too.

Therefore we introduce a synchronous reset event triggering transitions lead-
ing from every state of a statechart to its new reset state. After a given reset-time

el[g1)/a:=b; alb;
Def _a:=1
e2[g2)/c:=f(a); a2b;
Data_flow_c_a[Def_a, 2]:=true
e3[g(a)&g3b]; a3;
Data_flow_p_a[Def_a, 3]:=true

Fig. 6. Data flow coverage extension for the fourth statechart fragment

¢ .

b/B_visited:=true ¢/C_visited:=true

b/B_visited:=true ¢/C_visited:=true

Fig. 7. An example statechart transformed for state coverage

-

another transition, whose target is the root state, fires. This transitions resets all
variables except the coverage variables. Because our statechart model does not
support synchronous events, the reset-automaton is added after the transforma-
tion of the statechart to the UPPA AL-model.

3.2 Test Driver

Every statechart that is part of the system, can be transformed into UPPAAL-
automata, but there are two disadvantages:

— A system consisting of several concurrent statecharts causes an explosion in
the statespace for the model checker.

— The components are only tested to work correctly in this system but reused
components need to be tested again in the new system.

Therefore, the user shall divide the components in two groups. The first group
contains the components which shall be tested by the generated testsuite. The
second group contains the components for which only test drivers have to be
generated.

The test drivers must guarantee the following properties:

— Replacing a component by its test driver does not inhibit any behaviour of
the remainder of the system.

— The test driver needs less state space than the original component.
To accomplish these properties, the test driver should to be able to:

— send any event, the component has been able to send before,

— change every shared variable to any possible value, if the component has
been able to modify this variable before,

— receive every event,

— and wait any amount of time.

This can be done with a simple UPPA AL-automaton with only one state and
several self loops, changing the shared variables and sending events.

4 The TestGen-Plugin

File Edit View Create Diagram Arange Critigue Generation Flugins Help
02 scida
[2] Package Centric Obj Bzhavi
e sem)0

@ j ObjectServer
B client
L&, Ciient Bahaviour
B objectsener

=10l x|

Client Behaviour |

A 208~ e@EEWOo e [&%

O CcOcC

answer

Lé ObjectServer Behavi
B server

L&, serverBenaviour

after(5,50)0 bisctServerrequest’

after(5,50)/0bjectssrver command

after(5 50)/0 bjectServer.command

Ei TestGen _lo il
TI—I Y
“““ Coverage Criteria Test Driver
[T State Coverage Server
[v| Transition Coverage Client
ObjectServer

[] Condition Coverage
[Boundary Coverage
[] Dataflow Coverage

[v] Test Satisfiability
[¥] Execute Generation

oK [cancal | L
—]

[_] Generate Reset

Fig. 8. Screenshot of TestGen

Our tool “TestGen” (see the screenshot in Figure 8), implementing the algo-
rithms described in Section 2 and 3 in JAVA, has been realized as a plugin for
the UML tool Poseidon for UML. A testsuite for a family of suitable statecharts
modelled in Poseidon for UML can be generated as follows:

— Activate the testsuite generation by the plugin button (rightmost button in
the menu).

— In a Pop-up menu the user may select:

which coverage criteria shall be used

which components shall build the test drivers

if the satisfiability for each coverage variable shall be tested

if a reset automaton shall be included

if the generation of the testsuite shall be started after the model trans-
formation

— Then pressing the “Ok”-button starts the testsuite generation

In the moment, the output is a sequence of testcases in a textual representation.
We are working on a graphical display of testcases in terms of sequence diagrams.

5 Example: Object Server

| :Client | ‘ :ObjectServer ‘ ‘ :Server‘
T T
command } }
|
command }
|
I
| Client | ‘ :ObjectServer ‘ ‘ Server‘

answer

|
|
|
answer ! }

Fig. 9. The two modi of communication provided by the object server

As a case study we consider a lightweight real-time middleware called object
server which was developed within the Sonderforschungsbereich (SFB) 5622
The object server [20] serves as a middleware for highly dynamic processes of
robot controls and builds a gateway from the external sensors communicating
via a high speed industrial communication protocol (IAP) based on the IEEE
1394 standard (firewire) to the main processes of the robot control.

The object server supports two modi of data exchange (see Figure 9):

— command mode: The client sends an asynchronous command to the server
which starts executing it.

— request mode: The client sends a request to the server which calculates an
answer and sends it back to the client.

Figure 10 shows a simplified version of the object server. The model contains
only one server and client and does not include the data possibly associated with

2 The SFB 562 is promoted by the DFG (Deutsche Forschungsgemeinschaft).

ObjectServer \

~ 5

[a==0, busy==false,
¢==0, r==0]

Receiving
Command
[a==0, busy==false,

[c<CMAXY/
c==0, w=—WMAX] = <

c:=C+1
[a==0, busy==false,
==0, r>0, w<WMAX]/
=r-1, wi=w+1
Server.request
[a==0, busy==false, c>0]/
ci=c-1, —= Wait
Server.command [r<RMAX])/

request

Receiving
Request

Sending

r=r+1 [C== MAX]

[a==0, busy==true]

[a>0)/
a=a-1, answer

Client.answer

[r==RMAX]

Receiving
Answer

[a<AMAX, w>0)/

<-after(MINDELAY, MAXDELAY) — Wimw-1, a=ati

after(MINDELAY, MAXDELAY)/ [w==0] [a==AMAX]
Client.failure,
Server failure

< Failure >

Fig. 10. Statechart of the object server

the messages, but it can store incoming messages in several queues and delivers
them, when the server is not busy with incoming messages. An error occurs in
case of queue overflows and in case of a mismatch between requests and answers.
Then the server and the client are informed.

If a command, a request, or an answer is received, it is stored in the corre-
sponding queue. The fill status of the queues is memorized in the variables c,
r and a. If the appropriate queue is already full or an answer is received which
is not expected, the object server sends a failure message to both, the server
and the client. If no message arrives for a given period of time (MINDELAY,
MAXDELAY), the object server starts to deliver messages from the queues. An-
swers have the highest priority of delivery. Commands may only be delivered if
the queue for the answers is empty and the server is not busy. Requests may
only be delivered if the other queues are empty and the server is not busy.

Generating a testsuite for this statechart using transition and boundary cov-
erage results in the testcase which is depicted in Figure 11. Modifying the model
requires only a single run of the testcase generator to automatically generate a
new testsuite.

:ClientDriver | ‘ :ObjectServer ‘ | :ServerDriver
T

a: request }

{a.receiveTime>MAXDELAY}

b: request
{b.receiveTime - a.receiveTime < MINDELAY}

c: request

{c.receiveTime - b.receiveTime < MINDELAY}

{d.sendTime - c.receiveTime >= MINDELAY} d: failure

{d.sendTime - c.receiveTime <= MAXDELAY} d: failure
{e.sendTime - d.sendTime >= MINDELAY} e: request
{e.sendTime - d.sendTime <= MAXDELAY}

{f.sendTime - e.sendTime <= MAXDELAY} f: request
{f.sendTime - e.sendTime >= MINDELAY}

g: command

{g.receiveTime - f.sendTime < MINDELAY}

h: command

{h.receiveTime - g.receiveTime < MINDELAY}

i- command

{i.receiveTime - h.receiveTime < MINDELAY}

{i.sendTime - i.receiveTime >= MINDELAY} - failure

{ji.sendTime - i.receiveTime <= MAXDELAY} j: failure

{k.sendTime - j.sendTime >= MINDELAY} k: command
{k.sendTime - j.sendTime <= MAXDELAY}

{l.executeTime - k.sendTime < MINDELAY} I: busy:=true

{m.executeTime - l.executeTime > MAXDELAY} m: busy:=false

{n.send - m.executeTime >= MINDELAY} n: command

{n.send - m.executeTime <= MAXDELAY}

{o.receiveTime - n.sendTime < MINDELAY}

o: answer

{p.receiveTime - o.receiveTime < MINDELAY}
p: answer

{q.receiveTime - p.receiveTime < MINDELAY}
a: answer

{r.sendTime - q.receiveTime >= MINDELAY} r: failure
{r.sendTime - q.receiveTime <= MAXDELAY}

{s.sendTime - r.sendTime >= MINDELAY}
{s.sendTime - r.sendTime <= MAXDELAY} s: answer
{t.sendTime - s.sendTime >= MINDELAY}
{t.sendTime - s.sendTime <= MAXDELAY}

r: failure

= t answer =

Fig. 11. Testsuite for the object server

6 Problems of the Method

The main problem using our approach is an exponential coherence between the
length of a trace and the amount of memory used by UPPAAL for testcase
generation, as depicted in Figure 12. This problem has two main causes:

— The state space is enlarged by the boolean coverage variables.
— A long trace is searched, because the whole testsuite is calculated by one
single run of the model checker.

Both problems can be overcome with a simple variation of the algorithm.

1. In the first step, for some coverage variable not reached so far a path is
calculated.

400

350 /
y=37113e""%" /
300 R® = 0,9769

/ —&— memory usage [MB]
250
/ —— execution time [s]

200 / . N .
exponential approximation of execution
time

150 'z exponential approximation of memory

/ / consumption

100 Y /
zy / y= 075566&1566)(

50

>4 = R?=0,9544
0 .ﬁj ‘

0 5 10 15 20 25 30 35 40
trace length [received events]

Fig. 12. Complexity trace-length dependency

2. Next, for the calculated path the coverage variables are determined which
are reached additionally to the searched one.

3. If there are still reachable coverage variables which are not reached so far
then we proceed to step 1 with the end configuration of the calculated path
as a new start configuration.

Doing so, only one coverage variable is needed. The trace length of each run of
the model checker is shortened, for the price of starting the model checker several
times. The improvement of the algorithm results in lower memory consumption
but higher execution time for the model checker.

This kind of search can be improved by a branch and bound algorithm like
A* [21], but has one disadvantage: It is not assured any more that the shortest
testcase is generated if the implementation reacts as fast as possible. However, it
is obvious that the concept provides shorter testsuites than the greedy algorithm.
Heuristics like testcase ranking, to cut off some search paths, can be incorporated
in the search algorithm, to improve the execution time of the testcase generation.

7 Conclusion and Future Work

We have presented a method for the automated generation of time-optimized
testsuites for UML statecharts. The method is based on a transformation of
statecharts to timed automata. For testcase generation the tool adds coverage
variables and a reset automaton to the UPPAAL model. The testsuite is derived
from a trace generated by UPPAAL in a model checking run with the “fastest
trace”-option. Components can be tested stand-alone using test drivers for their
environment, so that they can be reused without further testing. In difference to
other approaches to testcase generation for statecharts using model checkers like
Spin and SMV [18,10] our work aims for the testing of the timing behaviour. In

addition to [9] we offer tool support as a plugin for Poseidon for UML and an
additional coverage criterion.

To reach our goal to develop an environment for automatic conformance
testing of a model and its implementation, there are several extensions to be
explored:

Variations of the generation algorithm. Next we will implement the im-
provements mentioned in Section 6 to overcome the problems resulting from the
enormous memory consumption. For us it seems to be more promising to op-
timize the testcase generation procedure for the price of good but non-optimal
testsuites than to keep to the time-optimal testsuite, because the memory prob-
lem is the major restriction for practical applications. The algorithm would ben-
efit further from the use of an optimized model checker and a modifiable search
strategy as recommended in [14].

Syntax checks on statecharts. For the convenience and understanding of the
user, we plan to implement a syntax check on statecharts that points out model
elements that cannot be processed by TestGen.

Test execution via middleware will allow to run the test suite without
adaption of the implementation. The components in the environment of the
CUT (component under test) will be replaced by the corresponding test drivers,
each of which sends the events noticed in each testcase to the CUT and checks
its reactions for compliance with the testcase.

References

1. Harel, D.: Statecharts: A visual formalism for complex systems. Science of Com-
puter Programming 8 (1987) 231-274

2. Bochmann, G., Petrenko, A.: Protocol testing: Review of methods and relevance
for software testing. In: Proc. International Symposium on Software Testing and
Analysis. (1994) 109-124

3. Kerbra, A., Jéron, T., Groz, R.: Automated test generation from SDL specifica-
tions. In: SDL Forum. (1999) 135-152

4. Rapps, S., Weyuker, E.: Selecting software test data using data flow information.
In: IEEE TSE. Volume 11. (1985) 367-375

5. Offutt, J., Abdurazik, A.: Generating tests from UML specifications. In: UML’99.
(1999) 416-429

6. Peled, D.: 9. Software Testing. In: Software Reliability Methods. Springer-Verlag
(2001)

7. Friedman, G., Hartman, A., Nagin, K., Shiran, T.: Projected state machine cov-
erage for software testing. In: ACM SIGSOFT European Software Engineering
Conference and International Symposium on Foundations of Software Engineer-
ing. (2002) 134-143

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Pretschner, A., Lotzebeyer, H.: Model based testing with constraint logic program-
ming. In: Workshop on Automated Program Analysis, Testing and Verification
(WAPATYV). (2001) 1-9

Hessel, A., Larsen, K., Nielsen, B., Pettersson, P., Skou, A.: Time-optimal real-
time test case generation using UPPAAL. In: Workshop on Formal Approaches to
Testing of Software (FATES). (2003)

Hong, H., Lee, I., Sokolsky, O., Cha, S.: Automatic test generation from statecharts
using model checking. In: Workshop on Formal Approaches to Testing of Software
(FATES). (2001) 15-30

Rayadurgan, S., Heimdahl, M.: Coverage based test-case generation using model
checkers. In: Intl. Conf. and Workshop on the Engineering of Computer Based
Systems. (2001) 83-93

Nielsen, B., Skou, A.: Automated test generation from timed automata. In: Tools
and Algorithms for the Construction and Analysis of Systems. (2001) 343-357
Jéron, T., Morel, P.: Test generation derived from model-checking. In: International
Conference on Computer Aided Verification. Volume 1633. (1999)

Pretschner, A.: Classical search strategies for test case generation with constraint
logic programming. In: Workshop on Formal Approaches to Testing of Software
(FATES). (2001) 47-60

Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. International Journal
on Software Tools for Technology Transfer 1 (1997) 134-152

Hong, H., Lee, 1., Sokolsky, O., Ural, H.: A temporal logic based theory of test cov-
erage and generation. In: Tools and Algorithms for the Construction and Analysis
of Systems. (2002)

Goga, N.: Comparing TorX, autolink, TGV and UIO test algorithms. Lecture
Notes in Computer Science (2001)

Gragantini, A., Heitmeyer, C.: Using model checking to generate tests from require-
ments specification. In: ACM SIGSOFT European Software Engineering Confer-
ence and International Symposium on Foundations of Software Engineering. (1999)
146-162

Diethers, K., Goltz, U., Huhn, M.: Model checking UML statecharts with time.
In: UML 2002, Workshop on Critical Systems Development with UML. (2002)
Diethers, K., Kohn, N., Finkemeyer, B.: Middleware zur Realisierung offener
Steuerungssoftware fiir hochdynamische Prozesse. it - Information Technology
(2003)

Nilsson, N.: Principles of Artificial Intelligence. Springer Verlag (1982)

