
On Testing Partially Specified IOTS
through Lossless Queues

Jia Le Huo1 and Alexandre Petrenko2

1 Department of Electrical and Computer Engineering, McGill University
3480 University Street, Montreal, Quebec, H3A 2A7, Canada

Jiale@macs.ece.mcgill.ca
2 CRIM, Centre de recherche informatique de Montréal

550 Sherbrooke Street West, Suite 100, Montreal, Quebec, H3A 1B9, Canada
Petrenko@crim.ca

Abstract. In this paper, we discuss how to test partially specified IOTS through
lossless queues. A liberal assumption is made of the IOTS model by allowing
both blocked and unspecified input actions. For testing IOTS through
unbounded queues, we demonstrate that test cases can directly be derived from
the specification when the transition coverage criterion is used, and we provide
two test derivation algorithms, for fully specified and partially specified IOTS,
respectively. Applying the derived tests to test IOTS through bounded queues is
also discussed.

1. Introduction

Transition systems with concurrent input/output behavior are usually modeled by
input/output transition systems (IOTS). Here, we explore how to test IOTS through
queues with the following scenario of system communication in mind. As shown in
Fig. 1, L1 and L2 are two message-passing systems. Output actions of L1 are stored in
the input queue of L2, and, if the input queue is not empty, L2 can read an input action
and make a transition according to the action read. The communication from L2 to L1

is symmetrically configured. This scenario is common in communicating systems.

L2L1

b2 b3

a1a2a3

b1

Fig. 1. The communication between two message-passing systems. L1 and L2 “read” input
actions from their input queues and “write” output actions into the output queues

We notice that, in this scenario, either system can block its own input actions by
not reading the input queue; the output actions of the other system, however, are not
blocked, but stored in the queues. Therefore, the systems do not have to be receptive
to input actions in every state, whereas their output actions are never blocked. Queues

in this scenario store actions for a later consumption and, thus, are called lossless
queues.

A system that can block input actions is usually rendered as an IOTS with input
actions missing in some states. The system’s behavior in these states is fully specified.
In particular, the system decides not to read input actions from the input queue.

Input actions could also be missing due to underspecification. The missing actions
are “don’t cares”, i.e., the consequence of the actions is not specified, so that any
behavior of the IOTS’s implementations after the actions is acceptable.

!x

?a, ?b ?a, ?b?a, ?b !x

?a

(a) (b)

Fig. 2. Difference between two types of missing input actions in IOTS. For the IOTS in the
figure, the input actions (decorated with ?) are a and b, the output action (decorated with !) is x,
and the starting states are shaded by grey: (a) the missing input actions are blocked; (b) the
missing input action b is unspecified

Fig. 2 illustrates the difference between these two types of missing input actions. In
Fig. 2(a), the starting state has no transition on any input action. For a system with
input queue, this means that, in this state, the IOTS does not read any input action
from its input queue, so input actions are blocked. In Fig. 2(b), on the other hand,
input action a is specified in the starting state, but input action b is not. Since it is hard
to imagine that the IOTS can read only input action a, but not action b, without
knowing which action is in the input queue, the missing action b is understood as
unspecified. Implementations of this IOTS can behave arbitrarily after reading b in
the starting state.

We say that an action is enabled in a state if the corresponding transition on the
action starting from the state is defined. An IOTS is input-enabled if all input actions
are enabled in every state. Moreover, an IOTS is fully specified if, in each state, either
all input actions are enabled or no input action is enabled; otherwise, the IOTS is
partially specified. Input-enabled IOTS are fully specified, but fully specified IOTS
may have missing input actions and, therefore, need not be input-enabled.

In this paper, specifications can be partially specified, whereas implementations
must be fully specified, but not necessarily input-enabled.

A model closely related to IOTS, called input/output automata (IOA), is first
formalized in [7], among others. The difference between the two models is marginal,
at least from the viewpoint of testing. In [7], it is stated that an IOA “generates output
and internal actions autonomously”. A system modeled by IOA, therefore, cannot
have its output blocked by other systems. Non-blocking of output is ensured by
requiring that IOA be input-enabled.

Although there is some research done for IOTS-based testing (for references, see,
e.g., [3], [9], [10]), none of them, in our opinion, provides a satisfactory answer to
testing IOTS in the aforementioned scenario.

Testing based on the IOTS model is explored in [12], among others, which
establishes the so-called ioco testing framework. In that framework, a tester and an
implementation under test (IUT) communicate synchronously: testers are modeled by
labeled transition systems (LTS), and implementations are modeled by input-enabled
IOTS. Because of synchronous composition, testers of the ioco framework can block
the output actions of IUT, violating the assumption that “output actions can never be
blocked by the environment” [p. 106, 12]. Also because of synchronous
communication, when applying the ioco framework to test IOTS through queues, one
has to compose IOTS with queues, which is not realistic if the queues have
unbounded capacity.

The ioco testing framework is further elaborated for multi-channel IOTS (MIOTS)
in [5]. In that paper, in each state of an implementation, either all input actions of a
communication channel are enabled or they are all blocked. Similar to the approach in
[12], output actions of IUT can be blocked. Moreover, testers are empowered with the
ability to observe refusal of input or output by IUT. While it is indeed possible to
detect absence of output (quiescence) by using a proper timer, it is unclear how
refusal of input can be observed in an arbitrary system.

Testing IOA systems with synchronous communication is also studied in [11],
where it is assumed that testers, instead of blocking output, can observe input/output
conflict with IUT. In that paper, however, both specifications and implementations
must be input-enabled.

Testing IOTS through queues with unbounded capacity is first explored in [13] and
[14], where both specifications and implementations can block input actions.
However, the proposed approach relies on explicitly composing IOTS with infinite
state queue contexts, so it is not clear how this approach could be implemented in
practice.

Testing IOTS through unbounded queues is also considered in [6], where a
stamping mechanism is proposed to order the output actions with respect to the input
actions, while quiescence is ignored. A stamping process observes and records local
actions of IUT, so it is not always realistic to assume that such a process is available.

Testing IOTS through bounded queues is explored in [8], which only considers
input-enabled specifications. However, the queue model used in that paper is different
from the one used here. In [8], it is assumed that queues feed input actions to IOTS,
which leads to the requirement that both testers and IUT must be input-enabled to
avoid blocking the output of queues. In the communication scenario of Fig. 1, we
assume that contents of queues are read by IOTS, so testers and IUT can block input
actions. Examples of the queue model assumed in [8] are shift registers, whereas
examples of the queue model assumed in this paper are message queues.

This paper studies how to test IOTS through lossless queues. Unlike previous
work, we make a liberal assumption about the system model, namely, the
specification of a system can have both blocked and unspecified input actions. We
believe that such a model is closer to real system specifications than other models
known to us.

A “naïve” test derivation algorithm would derive tests from the composition of
such a specification IOTS and its input/output queues. Computing the composition is
usually not viable, when the queues have unbounded capacity, or faces the state
explosion problem, when the queues have bounded capacity. Moreover, there is no

guarantee that a test case derived by this approach will observe the queues’ capacities
because the information of capacities is lost in the composition.

Here, we derive tests directly from a specification, not from its composition with
queues. The derived tests aim at covering transitions of the specification. For testing
IOTS through unbounded queues, the resulting test cases traverse only specified
transitions, whereas in the case of bounded queues, the test cases also obey the bound
of queues.

The paper is organized as follows. We provide some preliminaries of the paper in
Section 2. Section 3 introduces the testing architecture. Section 4 discusses how to
test fully specified IOTS through unbounded queues, building the basis for testing
partially specified IOTS through unbounded queues in Section 5. Sections 4 and 5
provide two test derivation algorithms with the transition coverage criterion in mind.
Section 6 briefly discusses testing IOTS through bounded queues. Conclusions are
provided in Section 7.

2. Preliminaries

Here, we use a definition of input/output transition systems (IOTS) that is similar to
the one of input/output automata (IOA) in [7]. Formally, an input/output transition
system is a 5-tuple L = <S, I, O, λ, S0>, where
• S is a countable (not necessarily finite) set of states;
• I and O are finite sets of input and output action types, respectively, which satisfy

the condition I ∩ O = ∅ ;
• λ ⊆ S × (I ∪ O ∪ {τ}) × S is a transition relation, where τ ∉ I ∪ O is the internal

action type;
• S0 ⊆ S is a non-empty, finite set of initial states.

After [12], we only consider strongly converging specifications and
implementations, i.e., systems that contain no cycle of internal transitions. We use
IOTS(I, O) to represent the set of all IOTS with input set I and output set O.

For IOTS L = <S, I, O, λ, S0>, we use init(s) to denote the set of actions enabled in
state s ∈ S, i.e., init(s) = {a ∈ (I ∪ O ∪ {τ}) | ∃ s1 ∈ S s.t. ((s, a, s1) ∈ λ)}. L is input-
enabled if all input actions are enabled in each state, i.e., I ⊆ init(s) for each s ∈ S; L
is fully specified if either all input actions are enabled or no input action is enabled in
each state, i.e., either I ⊆ init(s) or I ∩ init(s) = ∅ for each s ∈ S. If L is not fully
specified, it is partially specified. State s ∈ S is called stable if no output or internal
actions are enabled in s: init(s) ∩ (O ∪ {τ}) = ∅ . State s ∈ S with no action enabled,
i.e., init(s) = ∅ , is called a deadlock state. L deadlocks if there is a deadlock state
reachable from a starting state.

With multiple initial states, internal transitions, and a transition relation (not a
function), the IOTS considered in this paper are non-deterministic and, thus, can
model a wide range of systems on various levels of abstraction. On the other hand, we
call an IOTS deterministic if it has a single initial state, contains no internal
transitions, and the transition relation is a function, i.e., (s, a, s1), (s, a, s2) ∈ λ for a ∈
I ∪ O implies s1 = s2.

The projection operator ↓A projects action sequences onto the alphabet A ⊆ I ∪ O.
Let ε denote the empty sequence of actions, ε↓Α = ε. For u ∈ (I ∪ O ∪ {τ})* and a ∈ I
∪ O ∪ {τ}, (ua)↓Α = u↓Αa if a ∈ A; otherwise, (ua)↓Α = u↓Α. A sequence u ∈ (I ∪ O)*
is called a trace of IOTS L in state s ∈ S if there exist actions a1, …, ak ∈ I ∪ O ∪
{τ}, such that u = (a1…ak)↓ (I∪ O), and states s1, …, sk+1 ∈ S, such that (si, ai, si+1) ∈ λ
for all i = 1, …, k - 1 and s1 = s. L executes trace u if L makes a sequence of transitions
from its starting state and the corresponding action sequence projected onto I ∪ O is
u. We use traces(s) to denote the set of traces of L in state s, and sometimes, by using
L to refer to the set of L’s initial states, we use traces(L) to denote the union of traces
in L’s initial states. State s ∈ S with a sequence b1b2…bk ∈ O* such that (b1b2…bk)* ⊆
traces(s) is called an oscillating state. L oscillates if there is an oscillating state
reachable from a starting state.

IOTS L is called input-progressive if it neither oscillates nor deadlocks. If L is
input-progressive, it must consume an input action to make a transition in less than |S|
steps, where |S| is L’s number of states.

Following [13] and [12], we refer to a trace that takes IOTS L from state s ∈ S to a
stable state as a quiescent trace in s, and we use qtraces(s) to denote the set of all
quiescent traces in s. Similar to the case of traces, qtraces(L) denotes the union of the
quiescent traces in L’s initial states. Traces and quiescent traces can be used to
distinguish non-deterministic systems, whereas traces alone are sufficient to
distinguish deterministic systems.

We use a usual operator after. For IOTS L, L-after-U denotes the set of states that
are reachable by L when it executes the traces in the set U.

We use suspension traces to refer to sequences of quiescent traces executable by an
IOTS. As usual ([12]), the symbol δ indicates quiescence, i.e., the absence of output
and internal actions in a system. To explicitly represent quiescence in IOTS L, we add
self-looping δ transitions to the stable states of L, similar to [12]. The augmented
IOTS is denoted as Lδ, where the δ actions are treated as output actions. For state s of
L, we define a suspension trace in s to be a trace of Lδ in s. We use straces(L) to
denote the set of all suspension traces of L in the initial states. straces(L) is a superset
of traces and quiescent traces augmented with intermediate quiescence.

Composition of IOTS formalizes the interaction of several systems. Here, we use
the traditional parallel composition || of labeled transition systems (LTS), i.e.,
transition systems that do not distinguish input from output.

Formally, for IOTS L1 = <S, I1, O1, λ1, S0> and L2 = <T, I2, O2, λ2, T0> such that O1

∩ O2 = ∅ , the parallel composition L1 || L2 is the IOTS <R, (I1 ∪ I2) \ (O1 ∪ O2), O1 ∪
O2, λ, S0 × T0>, where the set of states R ⊆ S × T and the transition relation λ are the
smallest sets obtained by applying the following inference rules:
• S0 × T0 ⊆ R;
• if a ∈ (I1 ∪ O1) ∩ (I2 ∪ O2), (s1, a, s2) ∈ λ1, and (t1, a, t2) ∈ λ2, then s2t2 ∈ R and

(s1t1, a, s2t2) ∈ λ;
• if a ∈ {τ} ∪ (I1 ∪ O1) \ (I2 ∪ O2) and (s1, a, s2) ∈ λ1, then s2t1 ∈ R and (s1t1, a,

s2t1) ∈ λ;
• if a ∈ {τ} ∪ (I2 ∪ O2) \ (I1 ∪ O1) and (t1, a, t2) ∈ λ2, then s1t2 ∈ R and (s1t1, a,

s1t2) ∈ λ.

Sometimes, we have to transform a partially specified IOTS to a fully specified one
by completing the former’s input transitions, so we use a completion operator similar
to [6]. For IOTS L = <S, I, O, λ, S0>, operator Comp: IOTS(I, O) → IOTS(I, O) is
defined as Comp(L) = <S ∪ {st

L}, I, O, λc, S0> where st
L is a trap state and λc is

defined as λ ∪ {(s, a, st
L) | init(s) ∩ I ≠ ∅ , a ∈ I \ init(s)} ∪ {(st

L, b, st
L) | b ∈ I ∪ O}.

Notice that, unlike the operator in [6], Comp(L) is a fully specified IOTS, not input-
enabled, because the states, where all input actions are blocked, have no input enabled
in Comp(L).

3. Testing Architecture with Lossless Queues

When testing a communicating system, we assume the closed system shown in Fig. 1.
The tester and the implementation under test (IUT) are the end systems of the queues.
Both systems, along with the queues, are modeled by IOTS. The interaction between
the components in the closed system is described by their parallel composition.

The IUT Imp belongs to IOTS(I, O) and the tester Test belongs to IOTS(O ∪ {δ},
I), where symbol δ denotes the detection of quiescence, i.e., output queue of Imp is
empty. The input actions of Imp correspond to the output actions of Test, and vice
versa. When seen in the closed system, the action types of Imp, Test, the input queue
QI, and the output queue QO' are assigned according to Fig. 3, to avoid using the same
action types at different interfaces.

QI

QO'

I I'

O'O

I

O∪ {δ}

Q(Imp)Q(Imp)δ

Imp'Test

Fig. 3. The input and output action types of the components in the testing architecture: Test ∈
IOTS(O ∪ {δ}, I), Imp' ∈ IOTS(I', O'), QI ∈ IOTS(I, I'), and QO' ∈ IOTS(O', O)

In the closed system, the actions of Imp are relabeled by '. Formally, operator ' is
defined on actions: (a)' = a', and (a')' = a. We lift the operator to sets of actions,
traces, and IOTS: for action set A, A' = {a' | a ∈ A}; for traces, ' is recursively defined
as ε' = ε and (ua)' = u'a' for trace u and action a; for IOTS L ∈ IOTS(I, O), L' belongs
to IOTS(I', O') and is derived from L by relabeling each action a ∈ I ∪ O to a'. Imp in
the closed system is relabeled by '.

For the queues, each input action a (or a') corresponds to an output action a' (or a).
We define the queue model with the ' operator. Formally, an unbounded queue with
input set A, QA, is a deterministic IOTS <SA, A, A', λA, {ε}>, where the state set SA =
A* and the transition relation λA = {(u, a, ua) | u, ua ∈ SA} ∪ {(av, a', v) | av, v ∈ SA}.

By definition, QA is input-enabled and has infinitely many states, so it is
“unbounded”. As an example, Fig. 4 shows an unbounded queue Q{a} with a single
input action a.

!a'

?a ?a

!a'
…

Fig. 4. An unbounded queue with a single input action a

As seen in Fig. 3, the input queue is QI, and the output queue is QO' (notice the
property of the ' operator: a'' = a). The behavior of the closed system shown in Fig. 3
can be described by the IOTS Test || (QI || Imp' || QO')δ, where Lδ is IOTS L augmented
by adding self-looping δ transitions (see Section 2).

Imp composed with its input/output queues can be described by the operator Q().
For L ∈ IOTS(I, O), Q(L) = hide(I' ∪ O')(QI || L' || QO'), where operator hide(A)()
relabels transitions of an IOTS with actions in A to internal action τ. Q(L) is similar to
the queue operator as in [13] and [14]. From the tester’s point of view, the observable
behavior of the closed system shown in Fig. 3 can be described by Test || Q(Imp)δ,
since the actions in I' ∪ O' are not observable.

Some properties are usually assumed for IOTS in a composition, e.g., input-
enabledness [7] and full compatibility [8]. Here, we state a compatibility condition for
each interface in the closed system shown in Fig. 3.

For Test and Imp, output actions are usually under their total control, so the output
actions of Test and Imp have to be accepted immediately by Q(Imp)δ and QO',
respectively.

Definition 1 Let L1 = <S, I1, O1, λ1, S0> and L2 = <T, I2, O2, λ2, T0>, L1 is output
compatible with L2 if, for any state st of L1 || L2 and any action a ∈ O1 ∩ I2, a ∈ init(s)
implies a ∈ init(t).

If L1 is output compatible with L2, the output of L1 is not blocked by L2 in the
composition. L1 is output compatible with L2 if L2 is input-enabled, but the condition
is not necessary. In Fig. 3, Test is output compatible with Q(Imp)δ, and Imp is output
compatible with QO', because the queues are input-enabled (and therefore, Q(Imp)δ is
input-enabled).

On the other hand, requiring the queues in the testing architecture (Fig. 3) to be
output compatible with the tester or IUT (as in [8]) is too strong for the closed system
with lossless queues. Here, output actions of queues can be stored for a later
consumption. This means that an input queue can be composed with a system without
being output compatible with the system. Such a queue is a storage media that does
not lose data not requested immediately, such as message queues, so it is lossless. A
queue that is not output compatible with the system must be lossless. In [8], on the
contrary, a queue is a media that only transfers data, but does not keep it, such as shift
registers, so that some data might be lost if the system at the end of the queue is not
receptive to the queue’s output.

We require that, before executing a test case, Q(Imp) must be properly initialized,
i.e., Imp, QI, and QO' must be in (one of) their initial states, respectively. The

requirement can be met with the following three assumptions. First, we can reset Imp
reliably. Second, the input queue QI, which is usually under the control of Imp, is
reset reliably to an empty queue when Imp is reset. Third, the tester only assigns the
verdict pass after emptying the output queue QO', which is usually under the tester’s
control. On the other hand, if the verdict fail is assigned, Imp is immediately rejected,
so there is no need to execute another test case.

Instead of assuming that we can clear the output queue before executing a test case,
we make the last assumption to prevent the situation where an IUT can produce a
wrong output after the tester reaches the verdict pass. This assumption immediately
excludes specifications that oscillate from further consideration, but still leaves us
with a wide class of specifications. Moreover, we require that specifications do not
have deadlock states, which are usually used to model system breakdown triggered by
unspecified behavior or implementation faults. Therefore, we only consider in the
paper input-progressive specifications, which do not oscillate or deadlock by
definition.

We find it convenient to use the delay operator as defined in [1] to describe the
behavior of Q(L). Delay operators are a subset of so-called semi-commutation
functions (see [4]). Intuitively, an IUT’s output actions can be delayed from the
viewpoint of a tester; whereas the tester’s output actions (i.e., the IUT’s input actions)
can be delayed from the viewpoint of the IUT. The delay operation expresses the
effect of queues on traces.

For a sequence set (language) E ⊆ A*, a subalphabet A1 ⊆ A, operator delay[A1]:
2A* → 2A* calculates the smallest superlanguage of E such that for u, v ∈ A*, any a ∈
A \ A1 and a1 ∈ A1:
• E ⊆ delay[A1](E) and
• ua1av ∈ delay[A1](E) implies uaa1v ∈ delay[A1](E).

According to the definition, delay[A1](E) derives a language from E by shifting
symbols in A1 towards the end of each word in E while keeping the relative order of
symbols in A1 and A \ A1, respectively.

From the viewpoint of a tester, the traces and quiescent traces of an input-
progressive IOTS L = <S, I, O, λ, S0> in a queue context are traces(Q(L)) =
pref(delay[O](traces(L))), where pref(U) is the prefix closure of trace set U, and
qtraces(Q(L)) = delay[O](qtraces(L)), respectively.

On the other hand, after a trace u is executed by the tester, L can execute any trace
in delay[I](uO*) ∩ traces(L). Since L is input-progressive, each input action can
cause at most |S| - 1 output actions, so u can cause at most l(u) = |u↓ I| × (|S| - 1) - |u↓O|
additional output actions in L. Therefore, the corresponding traces executable by L
can be refined as delay[I](uOl(u)) ∩ traces(L), where An is the sublanguage of A* with
at most n symbols in each word. Finally, when a quiescent trace u is executed by
Q(L), L executes any quiescent trace in delay[I](u) ∩ qtraces(L).

In the following, we use the variable Spec along with Imp. Spec and Imp represent
the specification and implementation of a system, respectively, that belong to IOTS(I,
O) and have finite number of states.

4. Testing Fully Specified IOTS through Unbounded Queues

We assume in this section that Spec is fully specified and input-progressive, whereas
Imp is fully specified. Neither Spec nor Imp has to be input-enabled. In Section 5, we
will lax the restriction on fully specified Spec.

There are a couple of conformance relations that can be formulated between Spec
and Imp in a context with unbounded queues, for example, see [13], [6], and [8]. We
briefly introduce them as follows.

Definition 2 For Spec, Imp ∈ IOTS(I, O),
• Imp is queue-context trace included into Spec if traces(Q(Imp)) ⊆

traces(Q(Spec));
• Imp is queue-context quiescent trace included into Spec if traces(Q(Imp)) ⊆

traces(Q(Spec)) and qtraces(Q(Imp)) ⊆ qtraces(Q(Spec));
• Imp is queue-context suspension trace included into Spec if straces(Q(Imp)) ⊆

straces(Q(Spec)).

Queue-context trace inclusion relation is similar to the ≤trQ relation in [13]. In [6],
the trace inclusion relation is used. Queue-context quiescent trace inclusion relation is
similar to the ≤O relation in [13]. Finally, the suspension trace inclusion relation is
used in the ioco testing framework [12], and the queued testing framework [8] uses
the queued suspension trace inclusion relation.

Since Q(L) usually has infinitely many states, its trace set may not be regular. In
[13], an attempt is made to use so-called tracks to characterize the traces and
quiescent traces of Q(Spec) and Q(Imp). However, [13] only proves that tracks are
finite if the specification has finite behavior, i.e., with finitely many traces and
quiescent traces. It is not known whether tracks are regular for (finite state)
specifications with infinite behavior, so it is not clear how the track characterization
can be applied to these specifications.

In the following, we restrict ourselves to the case of the queue-context quiescent
trace inclusion relation and derive tests directly from the original specification alone
according to the transition coverage criterion. The results for other relations can be
similarly formulated.

We first define a test case with respect to the set of traces of Q(Spec) that we want
to verify in Q(Imp) (test purposes) using the chosen conformance relation. As usual,
we require that a test case has finite behavior and is deterministic. The latter means
that in each state of the test case, either only one input action to Imp is enabled, or all
output actions of Imp (including quiescence, which indicates that the output queue of
Imp is empty) are enabled, except for deadlock states, where the test case terminates
and the verdicts are assigned. Therefore, the structure of a test case should be a tree,
which branches only when output actions of the IUT are read from the queue. The
verdicts are assigned in the following way. As assumed in Section 3, pass verdicts are
only assigned after the tester observes quiescence, i.e., only when the tester emptied
the output queue of the IUT. On the other hand, verdict fail is assigned when wrong
output or premature quiescence is observed. In particular, delay[I](βOl(β)) ∩
traces(Spec) contains all traces that can be executed by Spec after the tester executes
β and the input queue QI is empty. If the intersection is empty, verdict fail is assigned

to the tester state corresponding to the observation of β. Similarly, delay[I]({β}) ∩
qtraces(Spec) contains all quiescent traces that can be executed by Spec after the
tester executes β and observes quiescence of Q(Spec). Therefore, we assign fail if the
intersection is empty or pass otherwise.

Definition 3 For Spec ∈ IOTS(I, O),
1. An output-branching trace tree (OBTT) of Spec is a finite set of traces U ⊆

traces(Q(Spec)) that satisfies the following conditions: for ∀ u1, u2 ∈ U, there
exist v, w1, w2 ∈ (I ∪ O)* and b1, b2 ∈ O (b1 ≠ b2) such that u1 = vb1w1 and u2 =
vb2w2.

2. For OBTT U of Spec, a test case T(U) with respect to the queue-context quiescent
trace inclusion relation is a deterministic IOTS T(U) = <St ∪ {pass, fail}, O ∪
{δ}, I, λt, {ε}>, where the state set St and the transition relation λt are the smallest
sets derived by the following inference rules:
• pref(U) ⊆ St ⊆ traces(Q(Spec));
• for β, βa ∈ pref(U), where a ∈ I, (β, a, βa) ∈ λt;
• for β ∈ St, where there is no a ∈ I such that βa ∈ pref(U),

• for b ∈ O, (β, b, fail) ∈ λt if delay[I](βbOl(βb)) ∩ traces(Spec) = ∅ ;
otherwise, βb ∈ St and (β, b, βb) ∈ λt;

• (β, δ, fail) ∈ λt if delay[I]({β}) ∩ qtraces(Spec) = ∅ ; otherwise, (β, δ,
pass) ∈ λt.

3. The test length of a test case T(U) is the length of the longest input sequences that
the tester has to apply, i.e., max{|u↓ I| | u ∈ traces(T(U))}.

4. A test suite is a set of test cases.

The number of expected output actions is finite because Spec is input-progressive;
moreover, test case has no cycles. Therefore, a test case has finite behavior.

We have the following proposition claiming the soundness of the test cases.

Proposition 1 For Spec, Imp ∈ IOTS(I, O), if Imp is queue-context quiescent trace
included into Spec, then for any test case T(U) of Spec as in Definition 3, no state of
T(U) || Q(Imp)δ contains fail as a substate.

One possible way to define an output-branching trace tree is covering a transition
of Spec. Transition coverage is a widely used criterion in software testing. In protocol
testing, covering a given transition is also a typical test purpose.

A trace u ∈ traces(L) covers a transition (s1, a, s2) of L ∈ IOTS(I, O) if there exist β
∈ pref(u) and, if a ∈ (I ∪ O), βa ∈ pref(u) such that s1 ∈ L-after-β. A test case T(U)
covers a transition (s1, a, s2) of Spec if there is a trace u in the composition T(U) || (QI

|| Spec' || QO)δ such that u↓ I'∪ O' covers (s1, a', s2) of Spec'. According to the discussion
in Section 3, a test case T(U) covers a transition of Spec if and only if there exists a
trace v ∈ delay[I](traces(T(U))O*) covering the transition of Spec. A test suite is a
transition cover test of Spec if each transition (s1, a, s2) of Spec is covered by at least
one test case in the suite.

Notice that, due to limited control, a test case covering a transition cannot
guarantee that the transition is actually executed in any test run. We can only assume

that if the test case is executed a sufficient number of times, the transition will
eventually be executed. This is a so-called fairness or all-the-weather assumption.

The following proposition states that it is sufficient to look into the traces of Spec,
not the traces of Q(Spec), to derive a transition cover test.

Proposition 2 For Spec = <S, I, O, λ, S0>, a transition (s1, a, s2), and a test case T(U1),
where U1 ⊆ traces(Q(Spec)), that covers the transition, there exists a test case T(U2),
where U2 ⊆ traces(Spec), that also covers the transition; moreover, the test length of
T(U2) does not exceed that of T(U1).
Proof: According to the definition of a test case covering a transition of Spec, there is
a trace u of T(U1) || (QI || Spec' || QO')δ such that u↓ I'∪ O' covers transition (s1, a', s2) of
Spec'. Therefore, (u↓ I'∪ O')' is a trace of Spec and covers (s1, a, s2). Let U2 = {(u↓ I'∪ O')'}
(a singleton) and T(U2) be the test case for the OBTT U2. T(U2) is a test case covering
(s1, a, s2) because a1a1'a2a2'a3a3'…, where a1a2a3… = (u↓ I'∪ O')', is a trace of T(U1) ||
(QI || Spec' || QO')δ and (a1a1'a2a2'a3a3'…)↓ I'∪ O' = a1'a2'a3'… = u↓ I'∪ O' covers (s1, a', s2).

Moreover, if T(U1) executes u↓ I∪ O, the traces executable by Spec is a subset of
pref(delay[I](u↓ I∪ OO*)), so (u↓ I'∪ O')' ∈ pref(delay[I](u↓ I∪ OO*)) ((u↓ I'∪ O')' is a trace of
Spec). Thus, T(U2)’s test length |(u↓ I'∪ O')'↓ I| is equal to or less than |(u↓ I∪ O)↓ I|. Since
u↓ I∪ O is a trace executable by T(U1), the test length of T(U2) does not exceed that of
T(U1). QED

Intuitively, if a tester T(U) can execute a trace u of Spec, then it is possible that the
trace u' is executed by Spec' in the closed system T(U) || (QI || Spec' || QO')δ. As a
result, T(U) covers all transitions of Spec that are covered by u in Spec.

According to Proposition 2, to derive a test suite that is a transition cover test of
Spec, we only have to find a set of traces that cover every transition of Spec. Since the
trace set is based on a regular language, i.e., traces(Spec), there is an algorithm to
derive such a set. Here, we propose an algorithm to derive a transition cover test with
the shortest (in terms of the test length) test cases.

Procedure 1 To derive a transition cover test for Spec
Input: Spec = <S, I, O, λ, S0>
Output: A transition cover test of Spec {T(U1), T(U2), …}
Step 1: Let U = ∅ , V = O|S|-1 ∩ traces(Spec). While Spec has a transition not
covered by traces in U, do:

Step 1.1: for each v ∈ V:
add v to U if v covers a transition that is not covered by any trace in U;

Step 1.2: let V = VIO|S|-1 ∩ traces(Spec);
end of the while-loop in Step 1.
Step 2: For each u ∈ U

delete u from U if u ∈ pref(U \ {u}).
Step 3: Let i = 1. While U ≠ ∅ , do:

Step 3.1: let Ui = U;
Step 3.2: for each pair of traces β, βa ∈ pref(Ui) such that a ∈ I, let Ui = Ui \
β(I ∪ O \ {a})(I ∪ O)*;
Step 3.3: let U = U \ Ui and i = i + 1;

end of the while-loop in Step 3.

Step 4: Use Definition 3 to build test cases T(U1), T(U2), …, and return the test
suite {T(U1), T(U2), …}.

Step 1 of Procedure 1 implements a breadth-first search for the traces covering
transitions of Spec with the shortest input projections. The resulting traces are stored
in the set U. Step 2 deletes the traces that are prefixes of other traces in U. Step 3
groups traces in U to derive the output-branching trace trees, since we need two
different test cases for two traces in U that have a common prefix followed by two
different actions, at least one of which is an input action. Step 4 builds test cases
according to the trace trees.

?a ?a

!x?a

?a!x

?a

!x

?a

fail

!x ?a δ
pass

δ

?a

!x

fail

!x ?a δ
pass

δ

Spec

Fig. 5. A specification IOTS and a transition cover test for it

Example 1 Fig. 5 shows a specification and a transition cover test derived by
Procedure 1. After Step 1 is applied, U could be {a, ax, aa, aax, axa, aaxa}. After
Step 2, traces a, ax, aa, and aax are deleted from U because a, ax ∈ axa and aa, aax ∈
aaxa, respectively. Step 3 separates axa and aaxa into two different output branching
trace trees, and Step 4 builds the test cases as shown in the figure.

Notice that, due to the fact that the order of traces examined in Step 1.1 is not
fixed, other transition cover tests could also be derived by the procedure. For
example, we could have U = {a, ax, axa, aa, aax, axaa} after Step 1 and, accordingly,
U = {aax, axaa} after Step 2. The largest test length of the test cases (three) is not
influenced, however, by this non-deterministic choice of traces.

In each step of Procedure 1, set U has at most |λ| traces, each with the input
projection of at most |S| actions, where |λ| and |S| are the number of transitions and the
number of states in Spec, respectively. The reason is that any transition of Spec can be
covered by a trace of at most |S| actions, and each trace in U covers at least one new
transition. Therefore, Procedure 1 stops in finite steps for a finite state Spec, so the
procedure is an algorithm that derives a test suite with at most |λ| test cases, whose
test lengths are at most |S|.

5. Testing Partially Specified IOTS through Unbounded Queues

In this section, we assume that Spec is partially specified and input-progressive,
whereas Imp is fully specified.

For partially specified IOTS, we might have some unexpected results when the test
cases by Definition 3 are executed.

?a, ?b

?a ?b, !x

?a, ?b
Spec

!x

?b ?a, ?b

?a ?b, !x

?a, ?b
Imp1

!x

?a, ?b ?a, ?b

?a ?b, !x

?a, ?b
Imp2

!x

?b ?a

Fig. 6. A partially specified IOTS Spec and two implementations

Example 2 In Fig. 6, since the transition on input action a is not specified in Spec
after sequence ax, Imp1 should be considered a correct implementation for Spec.
However, Imp1 fails a test with trace aax. According to Definition 3, the test case will
reach the verdict fail if trace aaxx is observed. However, aaxx ∈ delay[O](axax), so
the trace can be observed when testing Imp1.

There are several solutions to this problem when testing partially specified IOTS,
one of which is to complete the specification and let any implementation pass a test if
unspecified input actions are executed ([6] and [2]). However, when the closed system
of our testing architecture is considered (Fig. 3), this solution may cause some
problems.

Example 3 In Fig. 6, Imp2 should also be a correct implementation of Spec. When a
test case with trace aaxbx is executed, Imp2 may execute the trace axa. This trace
leads Imp2 to a deadlock state, where input action b is blocked. According to
Definition 3, the tester observes premature quiescence: aaxbδ.

The problem in Example 3 is inherent to the solution of completing the
specification because the intuition behind the completion operation is that all input
actions should be accepted by the IUT, which is not the case if we consider systems
that can refuse to read their input actions from queues. Intuitively, the problem can be
solved by restraining the tester from applying any input that might not be specified in
Spec. As a result, some transitions may not be testable, in other words, covered by the
resulting test cases.

To avoid executing unspecified input actions of Spec, traces covering the
transitions to the trap state st

Spec of Comp(Spec) should be excluded from
consideration. If st

Spec is reached, there is no need to further test Spec as its behavior
might not be specified.

A state of Q(Comp(L)) is an exception state if it has the trap state st
L as a substate.

We define the set of all exception states of Q(Comp(L)) as SE(L). The exception trace
set of Q(Comp(L)) is defined as etraces(L) = {u ∈ traces(Q(Comp(L))) | Q(Comp(L))-
after-u ∩ SE(L) ≠ ∅ }. The exception suspension trace set of Q(Comp(L)) is defined
as estraces(L) = {u ∈ (I ∪ O ∪ {δ})* | ∃ v ∈ pref(u) ∩ straces(Q(Comp(L))) s.t.
Q(Comp(L))-after-v ∩ SE(L) ≠ ∅ }. Due to the definition of operator Comp,

estraces(L) contains sequences that are not in straces(Q(Comp(L))), but their prefixes
are in straces(Q(Comp(L))) and lead Q(Comp(L)) to some exception states.

The conformance relations introduced in Section 4 are rewritten below to account
for partially specified Spec:

Definition 4 For Spec, Imp ∈ IOTS(I, O),
• Imp is queue-context trace included into Spec if traces(Q(Imp)) \ etraces(Spec) ⊆

traces(Q(Comp(Spec))) \ etraces(Spec);
• Imp is queue-context quiescent trace included into Spec if traces(Q(Imp)) \

etraces(Spec) ⊆ traces(Q(Comp(Spec))) \ etraces(Spec) and qtraces(Q(Imp)) \
etraces(Spec) ⊆ qtraces(Q(Comp(Spec))) \ etraces(Spec);

• Imp is queue-context suspension trace included into Spec if straces(Q(Imp)) \
estraces(Spec) ⊆ straces(Q(Comp(Spec))) \ estraces(Spec).

When Spec is fully specified, Definition 4 reduces to Definition 2. In Definition 4,
the exclusion of Spec’s exception sets eliminates all unspecified behavior, so that the
rest of Imp should be specified by Spec. Based on this discussion, we refine the
definition of output-branching trace trees.

Definition 5 For Spec ∈ IOTS(I, O), an output-branching trace tree of Spec is a finite
set of traces U ⊆ traces(Q(Spec)) \ etraces(Spec) that satisfies the following
conditions: for ∀ u1, u2 ∈ U, there exist v, w1, w2 ∈ (I ∪ O)* and b1, b2 ∈ O (b1 ≠ b2)
such that u1 = vb1w1 and u2 = vb2w2.

At the same time, Definition 3 still applies to test cases for partially specified
IOTS.

Similar to Section 4, we want to derive a transition cover test of Spec with respect
to the queue-context quiescent trace inclusion relation. The definitions of a trace and
test case covering a transition of Spec remain the same as in Section 4. The definition
of transition cover test, on the other hand, should take into account exception traces.
Formally, a transition of Spec is coverable if there is a test case that covers the
transition. A test suite is a transition cover test of Spec if each coverable transition of
Spec is covered by at least one test case in the suite.

The following statement is the generalization of Proposition 2 to the case of
partially specified Spec.

Proposition 3 For Spec = <S, I, O, λ, S0>, a coverable transition (s1, a, s2), and a test
case T(U1), where U1 ⊆ traces(Q(Spec)) \ etraces(Spec), that covers the transition,
there exists a test case T(U2), where U2 ⊆ traces(Spec), that also covers the transition;
moreover, the test length of T(U2) does not exceed that of T(U1).

Proof: According to the definition of a test case covering a transition of Spec, there
is a trace u of T(U1) || (QI || Spec' || QO')δ such that u↓ I'∪ O' covers transition (s1, a', s2) of
Spec'. Similar to the proof of Proposition 2, we let U2 = {(u↓ I'∪ O')'}, and prove that
T(U2) is a test case covering (s1, a, s2), and the test length of T(U2) does not exceed
that of T(U1). The only difference from that proof is that we now have to prove
(u↓ I'∪ O')' ∉ etraces(Spec) so that U2 is an OBTT according to Definition 5.

The states reachable by Spec, after the tester executes a trace v and the input queue
is empty, is Comp(Spec)-after-delay[I](vO*) (see Section 3), so checking whether v ∈

etraces(Spec) is equivalent to checking whether the trap state st
Spec ∈ Comp(Spec)-

after-delay[I](vO*).
Suppose (u↓ I'∪ O')' ∈ etraces(Spec), then st

Spec ∈ Comp(Spec)-after-
delay[I]((u↓ I'∪ O')'O*), which implies that st

Spec ∈ Comp(Spec)-after-delay[I](u↓ I∪ OO*)
(because (u↓ I'∪ O')' ∈ pref(delay[I](u↓ I∪ OO*))), which in turn implies that u↓ I∪ O ∈
etraces(Spec). This result, however, contradicts the fact that u↓ I∪ O ∈ pref(U1) ⊆
traces(Spec) \ etraces(Spec). Therefore, (u↓ I'∪ O')' ∉ etraces(Spec). QED

Attempts to generalize Procedure 1 to the case of partially specified Spec faces the
problem that it is unknown how to determine which transitions of Spec are coverable
because etraces(Spec) is not regular.

Here, we take a pragmatic approach by restricting the test length of the test cases,
which allows us to determine which transitions are coverable with the given
constraint. Formally, a transition of Spec is k-coverable if there is a test case T(U)
with test length k that covers the transition. We can verify that if a transition is k-1
coverable, it is k-coverable. A test suite is a transition k-cover test if all k-coverable
transitions are covered by at least one test case in the suite.

Given a bound k, we can now generalize Procedure 1 to derive a transition k-cover
test for a partially specified Spec. Intuitively, this can be done by examining traces of
Spec incrementally to derive the test cases whose test lengths are not larger than k.
When examining trace va ∈ traces(Spec), where a ∈ I, we have to verify whether va
belongs to etraces(Spec). Similar to the proof of Proposition 3, checking whether va ∈
etraces(Spec) is equivalent to checking whether st

Spec ∈ Comp(Spec)-after-
delay[I](vaOl(va)). Since vaOl(va) is a finite set, delay[I](vaOl(va)) is a finite set, too. The
problem of verifying whether va ∈ etraces(Spec) is, therefore, decidable.

Based on the discussions above, we have the following algorithm.

Procedure 2 To derive a transition k-cover test for Spec
Input: Spec ∈ IOTS(I, O) and bound k
Output: A transition k-cover test of Spec {T(U1), T(U2), …}
Step 1: Let U = ∅ , V = O|S|-1 ∩ traces(Spec), i = 0. While Spec has a transition
not covered by traces in U and i ≤ k, do:

Step 1.1: for each v ∈ V
add v to U if v covers a transition that is not covered by any trace in U;

Step 1.2: let V = VIO|S|-1 ∩ traces(Spec), for v ∈ V:
delete v from V if st

Spec ∈ Comp(Spec)-after-delay[I](vOl(v));
Step 1.3: i = i + 1;

end of the while-loop in Step 1.
Step 2: For each u ∈ U

delete u from U if u ∈ pref(U \ {u}).
Step 3: Let i = 1. While U ≠ ∅ , do:

Step 3.1: let Ui = U.
Step 3.2: for each pair of traces β, βa ∈ pref(Ui) such that a ∈ I, let Ui = Ui \
β(I ∪ O \ {a})(I ∪ O)*;
Step 3.3: let U = U \ Ui and i = i + 1;

end of the while-loop in Step 3.

Step 4: Use Definition 3 to build test cases T(U1), T(U2), … , and return the test
suite {T(U1), T(U2),…}.

Step 1 of Procedure 2 is different from that of Procedure 1: it stops when the bound
k is reached and checks whether a trace in set V belongs to etraces(Spec).

!a

fail

pass?x !b !b ?x?x

δ

!a

fail

pass!b ?x

δ

?x

δ

!b

fail

?x

δ
pass

δ
δ

?x

δ

?x

δ

?x

δ

δ

!a

fail

pass?x !b ?x

δ
δ

?xδ

Fig. 7. A transition cover test for the Spec in Fig. 7

Example 5 Fig. 7 shows a transition 3-cover test derived by Procedure 2 for the Spec
in Fig. 6. All transitions on action a, except the one from the starting state, are not
covered by this suite. However, it can be proved that these transitions on a are, in fact,
not coverable, so the obtained test suite is a transition cover test for the Spec.

To obtain the test suite in Fig. 7, U = {a, ax, b, ab, axb, axbx, axbb} after Step 1,
and U = {b, ab, axbx, axbb} after Step 2.

6. Testing IOTS through Bounded Queues

The test suites derived by Procedures 1 and 2 have finitely many test cases, and
each test case, by definition, has finite behavior. Therefore, once a test suite is
constructed, we can calculate the capacity of the queues used when a conforming
implementation of an input-progressive specification is tested. This suggests that
bounded queues (i.e., queues with bounded capacity) can be used in the testing
architecture (Fig. 3) for a given test suite. Intuitively, this can be done by requiring
that the queue capacities be large enough so that the queues do not overflow when a
conforming IUT is tested. Since we assume that Spec is input-progressive, there is a
lower bound of the queue capacities to meet the condition. When the output queue
overflows, on the other hand, we are sure that a non-conforming IUT is tested.

!a'

?a ?a ?a, !a'
st

{a}-1

Fig. 8. A bounded queue with capacity 1 and a single input action a

We start with the definition of bounded queues. Formally, a bounded queue with
input set A and capacity n, QA-n, is a deterministic IOTS <SA-n ∪ {st

A-n}, A, A', λA-n,
{ε}>, where the set SA-n = {u ∈ A* | |u| ≤ n}, and the transition relation λA-n = {(u, a,

ua) | u, ua ∈ SA-n} ∪ {(av, a', v) | av, v ∈ SA-n} ∪ {(u, a, st
A-n) | u ∈ SA-n, |u| = n, and a

∈ A} ∪ {(st
A-n, a, st

A-n) | a ∈ A ∪ A'}. The trap state st
A-n once reached indicates that

the queue overflows. Fig. 8 shows an example of a bounded queue, Q{a}-1.
According to the definition, bounded queues are input-enabled, so the

compatibility conditions of the testing architecture (Section 3) are not violated when
we replace unbounded queues with bounded ones.

When bounded queues are used, the execution of a test case Test can be described
by Test || (QI-n || Imp' || QO'-m)δ. The queue capacities n and m, for input and output
queues, respectively, should be large enough to ensure that there is no state of Test ||
(QI-n || Spec' || QO'-m)δ that has st

I-n or st
O'-m as a substate. The value n can always be

taken equal to the longest test length of the test cases, which is at most |S| or k for
fully or partially specified Spec, respectively, and m could be estimated similarly.
Further reducing the estimated value of n and m is an optimization problem and is not
discussed here due to the lack of space.

7. Conclusion

In this paper, we discussed how to derive tests when testing (not necessarily input-
enabled) IOTS through lossless queues with the intention to cover each transition of a
non-deterministic specification. We introduced the testing architecture, along with the
compatibility condition at each interface. Although the traces of IOTS composed with
a pair of unbounded queues are usually not regular, we demonstrated that the
transition cover test can be derived from a regular language, namely, the trace set of
the specification. We first considered testing fully specified IOTS and formalized the
basic ideas of the test derivation algorithm. Treating partially specified IOTS, where
coverability of transitions is still an open problem, we took a pragmatic approach by
restricting the test length of test cases. Based on the test suites derived for testing
IOTS through unbounded queues, we discussed how to use bounded queues in the
testing architecture, which makes our method more practical.

Our work differs from previous work by distinguishing between blocked and
unspecified input actions, which brings our model closer to the real-world designs of
communicating systems. IOTS in this paper can have states that block input actions,
where the system does not read its input queue. Unspecified input actions are treated
as “don’t care” situation in the specification, so our test derivation method does not
require fully specified designs.

An important contribution of this paper is that we use a widely used (transition)
coverage criterion to derive a finite test suite directly from a specification. This allows
us to avoid either explicitly composing the specification with unbounded queues (as in
[14]) or devising IUT with a local observer (as in [6]).

Concerning future work, it is interesting to explore how to determine whether a
transition of a partially specified IOTS is coverable, so that we could estimate the
bound k for which a transition k-cover test is a transition cover test. Moreover, it is
still unknown, when testing IOTS through unbounded queues, whether there is an
algorithm to derive test cases based on some fault models. Also, we only
demonstrated how to derive transition cover tests for the queue-context quiescent

trace inclusion relation. It would be interesting to derive tests for more stringent
conformance relations, e.g., queue-context suspension trace inclusion. A foreseeable
difficulty of this work is that intermediate quiescence of a system is not always
observable through the queue contexts. Some other conformance relations could be
tested by exploiting the ability to observe overflow of bounded queues. Consider two
single-state IOTS, where both states are stable. One IOTS is input-enabled, whereas
the other deadlocks. They are not distinguishable according to the conformance
relations in this paper. In fact, they cannot be distinguished when tested through
unbounded queues. On the other hand, if a bounded input queue is used with the IOTS
that deadlocks, the queue could eventually overflow, so the deadlocking IOTS is
distinguishable from the input-enabled one. Last, but not least, although the test cases
derived by Procedures 1 and 2 are the shortest in terms of test lengths, the number of
test cases is not the smallest. Some test cases are redundant because the transitions
that they cover are covered by other test cases. Further reducing the number of test
cases is an optimization problem still under investigation.

Acknowledgement

This work was in part supported by the NSERC discovery grant OGP0194381.

References

1. Balemi, S.: Control of Discrete Event Systems: Theory and Application. Ph.D. thesis, Swiss
Federal Inst. of Technology, Zurich, Switzerland (1992)

2. van der Bijl, M., Rensink, A., Tretmans, J.: Compositional Testing with IOCO. In: Proc. 3rd
Intl. Workshop on Formal Approaches to Testing of Software, FATES 2003. Canada (2003)

3. Brinksma, E., Tretmans, J.: Testing Transition Systems: An Annotated Bibliography. In:
Cassez, F., Jard, C., Rozoy, B., Ryan, M. (eds.): Modeling and Verification of Parallel
Processes. Lecture Notes in Computer Science, Vol. 2067. Springer-Verlag, Berlin
Heidelberg New York (2001)

4. Clerbout, M., Latteux, M., Roos, Y.: Semi-Commutations. In: Diekert, V., Rozenberg, G.
(Eds.): The Book of Traces. World Scientific (1995)

5. Herrink, L., Tretmans, J.: Refusal Testing for Classes of Transition Systems with Inputs and
Outputs. In: Mizuno, T., Shiratori, N., Higashino, T., Togashi, A. (Eds.): Formal Description
Techniques and Protocol Specification, Testing and Verification. Chapman & Hill (1997)

6. Jard, C., Jéron, T., Tanguy, L., Viho, C.: Remote Testing Can be as Powerful as Local
Testing. In: The Proceedings of the IFIP Joint International Conference, Methods for
Protocol Engineering and Distributed Systems, FORTE XII/PSTV XIX. China (1999)

7. Lynch, N., Tuttle, M. R.: An Introduction to Input/Output Automata. In: CWI Quarterly,
Vol. 2, No. 3 (1989)

8. Petrenko, A., Yevtushenko, N., Huo, J. L.: Testing Transition Systems with Input and Output
Testers. In: Proc. IFIP 15th Int. Conf. Testing of Communicating Systems. TestCom'2003,
France. Lecture Notes in Computer Science, Vol. 2644. Springer-Verlag, Berlin Heidelberg
New York (2003)

9. Phalippou, M.: Executable Testers. In: The Proceedings of the IFIP Sixth International
Workshop on Protocol Test Systems, IWPTS’93. France (1993)

10. Segala, R.: Quiescence, Fairness, Testing and the Notion of Implementation. In: The
Proceedings of CONCUR’93. Lecture Notes in Computer Science, Vol. 715. Springer-
Verlag, Berlin Heidelberg New York (1993)

11. Tan, Q. M., Petrenko, A.: Test Generation for Specifications Modeled by Input/Output
Automata. In: The Proceedings of the IFIP 11th International Workshop on Testing of
Communicating Systems, IWTCS'98. Russia (1998)

12. Tretmans, J.: Test Generation with Inputs, Outputs and Repetitive Quiescence. In:
Software-Concepts and Tools, Vol. 17, Issue 3 (1996)

13. Tretmans, J., Verhaard, L.: A Queue Model Relating Synchronous and Asynchronous
Communication. In Linn, R. J., Jr., Üyar, M. Ü. Eds.: Protocol Specification, Testing and
Verification, XII. Elsevier Science Publishers B. V. (North-Holland) (1992)

14. Verhaard, L., Tretmans, J., Kim, P., Brinksma, E.: On Asynchronous Testing. In: The
Proceedings of the IFIP 5th International Workshop on Protocol Test Systems, IWPTS’92.
Canada (1992)

