
FSM Based Interoperability Testing Methods
for Multi Stimuli Model

Khaled El-Fakih1, Vadim Trenkaev2, Natalia Spitsyna2, Nina Yevtushenko2
1 American University of Sharjah, PO Box 26666, Sharjah, United Arab Emirates

kelfakih@aus.ac.ae
2 Tomsk State University, 36 Lenin str., Tomsk, 634050, Russia

snv@kitidis.tsu.ru, {vad, yevtushenko}@elefot.tsu.ru

Abstract. In this paper, we propose two fault models and methods for the
derivation of interoperability test suites when the system implementation is
given in the form of two deterministic communicating finite state machines. A
test suite returned by the first method enables us to determine if the
implementation is free of livelocks. If the implementation is free of livelocks,
the second method returns a test suite that checks if the implementation
conforms to the specification. Application examples are used to illustrate the
methods.

1. Introduction

The objective of interoperability testing is to assure that two or more protocol
implementations can interact and if so whether they behave together as expected
[KSK00, VBT01]. As usual, to guarantee the fault coverage we need a formal model
of protocol specifications and implementations as well as a formal model of possible
faults. One of the widely used formal models for protocol specification and testing is
the Finite State Machine (FSM) model. Then, two communicating protocol
implementations can be considered as a system of two communicating FSMs
(SCFSM). The FSMs communicate asynchronously via bounded internal queues
where messages are stored. We consider the case of multiple stimuli [SKC02] where
two external messages (multiple stimuli input) from the environment can be sent
simultaneously to both protocol implementations. We study some properties of a
multiple stimuli SCFSM and we use reachability analysis [Wes78, Boc80, BrZa83] to
derive the joint behavior of two communicating FSMs.

Often protocol specifications contain optional commands or options that are not
specified or parameters that have no restrictions on their implementations. As a
corollary, such specifications are not complete and are described by partial FSMs. On
the other hand, the implementations of these machines are complete and usually tested
in isolation using the quasi-equivalence conformance relation. According to this
relation, for each defined behavior of a protocol specification the corresponding
implementation has to have the same behavior. However, the undefined transitions of
the protocol specifications can be completed in different ways by different vendors.

This can cause a livelock when an input sequence that traverses undefined transitions
is applied to the system implementation. In the first part of the paper, we present a
fault model and a method for interoperability testing for livelocks when the system
implementation is given in the form of two deterministic communicating finite state
machines. A complete test suite detects livelocks (if exist) in any possible system
implementation. A livelock is detected by means of a time-out period when traversing
a transition that leads to a livelock i.e. a complete test suite has to traverse, for each
two possible protocol implementations a transition that can lead to a livelock. Thus, in
this case, the considered fault model [STEY03] is different than that usually used in
conformance testing. The fault model does not include the specification of the whole
system; it only contains the fault domain, i.e. the set of possible protocol
implementations. For the compact representation of the fault we use a mutation
machine [KPY99].

We note that when an implementation at hand has no livelocks, we are still
required to test if it satisfies its specification. Accordingly, in the second part of the
paper, we present a related test derivation method. Assuming that the protocol
implementations are tested in isolation and found quasi-equivalent to their
specification, the test derivation method uses the incremental test derivation methods
presented in [EYB02, Elf02] in order to generate tests only for the untested parts of
the system implementation. The performed experiments clearly show significant gains
in using incremental testing when the tested part of the system implementation
consists of up to 80% of the whole implementation.

This paper is organized as follows. Section 2 includes necessary definitions and
Section 3 introduces a multiple stimuli model for a system of communicating finite
state machines. Section 4 includes a livelock testing method, and Section 5 contains a
test derivation method w.r.t. a given specification. Both methods are illustrated using
simple application examples. Section 6 concludes the paper

2. Preliminaries

A finite state machine (FSM) A is a 5-tuple 〈S,I,O,h,s0〉, where S is a finite nonempty
set with s0 as the initial state; I and O are input and output alphabets; and h⊆S×I×O×S
is a behavior relation. The behavior relation defines all possible transitions of the
machine. Given a current state sj and input symbol i, a 4-tuple (sj,i,o,sk)∈h represents
a transition from state sj under the input i to the next state sk with the output o, usually
written as sj → oi / sk.

We assume that a FSM A has a reset capability, i.e. there is a special reset input “r”
that takes the FSM from any state to the initial state. As usually, we assume that each
transition with the reset input is correctly implemented, i.e. we do not include the
reset input into the input alphabet I.

A transition from a state sj under input symbol i is called deterministic if there
exists the only pair (o ,sk) such that (sj,i,o,sk)∈h. If FSM A has only deterministic
transitions then FSM A is said to be deterministic; otherwise, A is non-deterministic.
In the deterministic FSM A instead of behavior relation h we use two functions:
transition function ψ :D A⊆S×I→S and output function ϕ:D A⊆S×I→O where DA

is called the specification domain of the FSM. Therefore, in general, a deterministic
FSM is a 7-tuple 〈S,I,O,ψ ,ϕ,D A ,s0〉. An FSM is called Chaos if it has only chaos
transitions, i.e. if h=S×I×O×S. When at least one of the sets S, I and O is not a
singleton a chaos FSM is non-deterministic.

If for each pair (s , i)∈S×I there exists (o ,s ′)∈O×S such that (s , i ,o ,s ′)∈h then
FSM A is said to be complete; otherwise, A is partial. For a complete deterministic
FSM, the specification domain D A coincides with the Cartesian product S×I, i.e. a
complete deterministic FSM is a 6-tuple 〈S,I,O,ψ ,ϕ,s0〉.

FSM B= 〈S ′ ,I ,O ,g ,s0〉 , S ′⊆S , is a submachine of FSM A=〈S,I,O,h,s0〉 if S ′⊆S
and g⊆h , i.e. if each transition of FSM B is obtained by fixing an appropriate
transition of the FSM A. Given a complete FSM A, we let Sub(A) denote the set of all
complete deterministic submachines of A.

In usual way, the behavior relation is extended to input and output sequences.
Given state s∈S , input sequence α= i 1 i 2… i k∈I* and output sequence
β=o 1o 2…o k∈O*, the input-output sequence i 1o 1 i2o 2… i ko k is called a trace of A
at state s if there exists state s ′ such that (s,i 1 i 2… i k ,o 1o 2…o k ,s ′)∈h, i.e. there exist
states s 1=s, s 2 , … , s k , s k + 1=s′ such that (si,ii,oi,si+1)∈h, i=1, … , k. A trace at the
initial state is simply called a trace of A.

Given deterministic FSMs B and A and states t of FSM B and s of FSM A, state t is
quasi-equivalent to s, written t≈ q u a s i s , if the set of traces of FSM B at state t contains
that of FSM A at state s. If the sets of traces at states t and s coincide, then states t and
s are equivalent, written s≅ t . FSM B is quasi-equivalent to A, written B≈ q u a s iA , if
the set of traces of FSM B contains that of A. FSMs A and B are equivalent, written
A≅B , if their sets of traces coincide.

3. Multi Stimuli Model of a System of Communicating Finite State
Machines

3.1. A system of communicating FSMs

Many complex systems are typically specified as a collection of communicating
components. We consider here a system that consists of two communicating FSMs
(SCFSM) (Fig.1). We let the alphabets I1∪I2 and O1∪O2 represent the externally
observable input/output actions (or messages) of the system, while the alphabets E1
and E2 represent the internal (hidden) input/output interactions between the two
component FSMs. The FSMs communicate asynchronously via bounded internal
queues where messages are stored. We consider the case of multiple stimuli [KSK02]
where simultaneously two external inputs (multiple stimuli input) from the
environment can be sent to both component machines. Moreover, in response to an
input each component machine can produce a pair of outputs, one to the environment
and one to other component machine [TKS03]. We also assume that the system works
in a slow environment [PYBD96]. This means that the next external input is applied

only when the processing of previous external input by the system has been
completed, i.e. when the internal queues become empty. Due to this assumption, if the
system queues are empty and a multiple stimuli input is applied to the system, each
internal queue can get a message. After the processing an internal message by one of
the component machines one of the queues will become empty while another message
can be added to the input queue of the other component machine. In this case the
component machine that has two messages in its input queue processes one of these
messages and as a corollary it can produce an input message to the other component
machine. Thus, at any time, the length of the input queues does not exceed two.

Under the above assumptions, the collective behavior of the two communicating
FSMs can be described by a finite composed machine that describes the observable
behavior of the system. The composed machine is obtained from a reachability graph
[Wes78, BoSu80, BrZa83] that described the collective behavior of the system
components in terms of internal and external actions of the system. In the following
subsection we give the details of building a reachability graph and a composed
machine.

O1

A1

C12

E2

I1

A2

I2 O2

E1

C21
Fig.1 A system of two communicating finite state machines

We note that after submitting an appropriate external input to the system, i.e. when

the input queues are empty, the two component machines can carry on an infinite
internal dialogue. In this case we say that the system falls into a livelock. Here, as in
the single stimuli mode, a livelock of the system can result in the absence of an
external output at least at one external port. Moreover, differently from the single
stimuli mode [PYBD96], we also have another type of livelocks that occurs when one
of the system components produces an infinite external sequence.

If the system can fall into livelock under an appropriate input sequence then the
composed machine enters the designated Livelock state with the designated livelock
output [STEY03]. In this case, the corresponding transition of the composed machine
is called suspicious and takes the machine to the designated Livelock state.

3.2. Reachability graph and composed FSM

Formally, we consider a system of two communicating FSMs
A1=〈Q,I1∪E2,O1×E1,h 1 ,q0〉 and A2=〈T,I2∪E1,O2×E2,h 2 ,t0〉 (Fig. 1) where the channel
C12 (C21) is a FIFO queue linking the FSM A1 (A2) to the FSM A2 (A1). Thus, the
FSM A1 has I1∪E2 as the set of inputs and O1×E1 as the set of outputs and the FSM
A2 has I2∪E1 as the set of inputs and O2×E2 as the set of outputs. The alphabets I1, I2
and O1, O2 represent the externally observable input/output actions of the system,
while the alphabets E1 and E2 represent the internal input/output interactions between

the two component machines that are non-observable (hidden). As in [PYBD96] we
assume that all the alphabets are pair-wise disjoint.

In order to deal with the situation where a component FSM in response to an input
produces only an internal or an external output, we assume that the alphabets O1, E1,
O2 and E2 include the silent message ε. Thus, the output pair (o,ε)∈O1×E1
corresponds to the situation where A1 produces only the external output o to the
environment.

To describe the joint behavior of a SCFSM we build a reachability graph G
[Wes78, BoSu80, BrZa83]. The reachability graph G is a pair (V,E), where the set V
of vertices represents the set of so-called global states of the system. The set E of
edges represents transitions between global states. A global state of a SCFSM is a 4-
tuple (q,t,c12,c21) where q∈Q, t∈T, c12∈E1

2 and c21∈E2
2 are the contents of the internal

queues C12 and C21, respectively, where E2 is the set of all sequences over the
alphabet E of length at most two. A global state is called stable if all internal queues
are empty. Otherwise, it is called transient.

Under the above assumptions, a component machine of SCFSM can produce a pair
of outputs in response to an input. By this reason, given a stable state and an external
input, the system can produce a pair of external output sequences. In case of finite
dialogue, the length of these sequences cannot exceed an appropriate integer k. In case
of infinite dialogue, the system falls into a livelock, i.e. the system enters the
designated Livelock state. This happens when at least one component machine of the
system does not produce an external output or produces an infinite sequence of
external outputs. As usual we assume that a livelock can be detected by means of a
timer. In other words, if after an appropriate period of time the system does not
produce any external output sequence in at least one of its external ports or it
continues producing output actions, then we conclude that the system falls into a
livelock.

Given a SCFSM of A1 and A2, in order to derive the composed machine we
construct a reachability graph G that describes the joint behavior of A1 and A2 under
single inputs of the sets I1 and I2 and under multi stimuli inputs of the set I1×I2. The
externally observable behavior of the SCFSMs, i.e. the composed machine A1◊A2,
can be obtained from the reachability graph by hiding all internal actions and pairing
inputs with corresponding output sequences of length up to k similar to the single
stimuli model [PYBD96]. Each transition of the FSM A1◊A2 has i1i2∈I1×I2, i1∈I1, or
i2∈I2 as an input label and as an output label it has the designated livelock output, in
case the transition leads to the designated Livelock state, or a pair of finite output
sequences (β ,γ) of length at most k, where β is defined over the external alphabet O1
and γ is defined over the external alphabet O2.

Given a state of the composed machine A1◊A2 and an external (single or multiple
stimuli) input, if there exists a path in the reachability graph that starts at the state and
includes a cycle with only transient states, then the system falls into livelock at the
state when the input that labels the head transition of the path is applied. In this case,
the composed machine includes a corresponding suspicious transition to the
designated livelock state labeled with the given input and the designated livelock
output. Thus, the composed FSM A1◊A2 under a given input either transits to the

livelock state producing the livelock output or it transits to another global state
producing a pair of finite output sequences.

As an example, consider the FSMs MM1 and MM2 shown in Figures 2 and 3
below. The sets of external inputs and outputs of MM1 are {x1, ε} and {y1,ε}, and the
sets of external inputs and outputs of MM2 are {x2, x3, ε} and {y2,y3,ε}. The set of
internal inputs of MM1 (internal outputs of MM2) is {v1,v2,ε}, and the set of internal
inputs of MM2 (internal outputs of MM1) is {u1,ε}. Figure 4 shows a part of the
reachability graph of FSMs MM1 and MM2. For example, from state 1a under the
input (x1x3) the system can reach the stable state 2b and produce the output pair (ε,y2
y2) or it can fall into livelock. Thus, in the corresponding composed machine
MM1◊MM2, we add an outgoing suspicious transition from state 1a to the livelock
state labeled with the input/output (x1x3)/Livelock. Similarly, we include the following
suspicious transitions in MM1◊MM2. From state 1b, transitions x1/Livelock and
x2/Livelock. From state 2b, transitions x2/Livelock and (x1x2)/Livelock. The composed
machine MM1◊MM2 is shown in Figure 5.

Fig. 2. FSM MM1

Fig. 3. FSM MM2

Fig. 4. Part of reachability graph

 (3) (1) x2/(ε,y3); x3/(ε,y2); x1x3/(y1,y3)

 (2) x3/(ε,y3); x1x3/(y1,y3);
 x1x3/(ε,y2y3)

 (3) x1/(y1,ε),(ε,y2); x2/(y1,ε),(ε,y2);
 x3/(ε,y2); x1x2/(y1y1, ε);

 x1x2/(y1,y2);
 x1x2/(ε,y2y2); x1x3/(y1,y2) (16)

 (4) x2/(y1,ε); x1/(y1,ε); x1x2/(y1y1,ε); x1x2/(y1,y2); (5) x1x3/(y1,y3)

(4)

(17)
(15)

(14)
(13)

(12)

(11)

(10)

(9)(8)

(7) (6) (5)

Livelock

2b2a

1b1a
(1) (2)

(6) x1/(ε,y2); x1x2/(ε,y2y3); x1x3/(ε,y2y3); x1x3/(ε,y2y2); x1x3/(y1,y3)
(7) x2/(y1,ε); x3/(y1,ε); x1x2/(y1y1,ε); x1x3/(y1y1,ε)
(8) x1x3/Livelock (9) x1x2/Livelock; x1/Livelock; x2/Livelock
(10) x1/(y1,ε),(ε,y2); x2/(ε,y2); x3/(ε,y2); x1x2/(y1y1,ε); x1x2/(y1,y2); x1x2/(ε,y2y2)
(11) x2/(y1,ε),(ε,y2); x1x2/(y1y1,ε); x1x2/(y1,y2) (12) x1x2/Livelock; x2/Livelock
(13) x1/(y1,ε); x2/(y1,ε) (14) x3/(ε,y3); x1x3/(y1,y3) (15) x2/(y1,ε); x1x2/(y1y1,ε)
(16) x1/(y1,ε); x2/(ε,y3); x3/(ε,y2); x1x2/(y1,y3); x1x3/(y1,y2)
(17) x1/(y1,ε); x2/(y1,ε),(ε,y2); x1x2/(y1y1,ε); x1x2/(y1,y2)

Fig. 5. The composed FSM MM1◊MM2

The composition of two component machines can be partial or complete,

deterministic or non-deterministic depending on these machines. Here we note that
differently from the single stimuli mode in the multi stimuli mode at each transient
state one of the component machines can be faster than the other in producing a
response to an applied input or both component machines can produce simultaneously
their outputs. However, according to the following proposition, if the component
machines are deterministic then their composed machine is also deterministic.

Proposition 1. If the component machines A1 and A2 of a SCFSM are

deterministic and the system does not fall into a livelock, then the composed FSM
A1◊A2 is deterministic.
Proof. Let (q,t,ε,ε) be a stable state of the system. Consider the mode “multiple
external input”, i.e. the case when the composed FSM has an input i1i2∈I1×I2. The
cases with a single stimulus from the environment can be proved in the same way.

Let under the input i1 and i2 the FSMs A1 and A2 at a states q and t produce the
output pairs (o1,e1) and (o2,e2) and enter states q’ and t'. Then in the reachability graph
there is the transition labeled with i1i2/(o1,e1)&(o2,e2) from the node (q,t, ε,ε) to the
transient node (q',t',e1,e2). Since the FSM A1 and the FSM A2 communicate
asynchronously then there are three cases: one of the FSMs A1 or A2 starts to work
first, or the two FSMs work simultaneously. To prove the statement it is enough to
show that in all cases the system enters one and the same state with the same pair of
external outputs. Let under the input e2 the FSM A1 at state q' produce the output pair
(o3,e3) and enter the state q''. Let also under the input e1 the FSM A2 at a state t'
produce the output pair (o4,e4) and enter the state t''. If FSM A1 starts to work first
then in the reachability graph there is the transition labeled with e2/(o3,e3) from the

state (q',t',e1,e2) to the state (q'', t', e1e3, ε). Now, since the channel queue C21 is
empty, the stimulus e1 is taken from the queue of the channel C12, and FSM A2 starts
to work, i.e., in the reachability graph there is the transition labeled with e1/(o4,e4)
from the node (q'', t', e3e1, ε) to the node (q'', t'', e3,e4). Thus, the system enters the
transient state (q'', t'', e3, e4) with the external output (o3,o4). By direct inspection, one
can assure that we have the same next state and the same external output when the
FSM A2 starts to work first. Let now FSMs A1 and A2 work simultaneously. Then in
the reachability graph there is the transition labeled e1e2/(o4,e4) & (o3,e3) from the
node (q',t',e1,e2) to the node (q'', t'', e3, e4) and the external output (o3,o4).

Thus the reachability graph has three different paths from the node (q',t',e1,e2) to
the node (q'', t'', e3, e4) with the same external output (o3,o4), i.e. the composed
machine is deterministic.

4. Testing Livelocks

We recall that one of the purposes of interoperability testing is to test if the joint
behavior of two component implementations has no livelocks. As usual, to guarantee
complete fault coverage we need a formal model of possible faults. In general the
traditional fault model <specification, conformance relation, fault domain> [PYB96]
is used. However, in order to test for livelocks, we do not need the specification of the
whole system. Accordingly, in the following we introduce a more general fault model
and a method for complete test derivation w.r.t. this model.

4.1 A Fault Model for Livelock Testing

Often protocol specifications contain optional commands or options that are not
specified or parameters that have no restrictions on their implementations. As a
corollary, such specifications are not complete and are described by partial FSMs.
Thus, hereafter, we consider two partial deterministic component specifications A1
and A2. The implementations of A1 and A2 are usually tested in isolation using the
quasi-equivalence conformance relation. According to this relation, for each defined
behavior of A1 (or A2) the corresponding implementation has to have the same
behavior. However, the undefined transitions of A1 and A2 can be completed in
different ways by different vendors. When there are no restrictions imposed, the
designers can complete the undefined transitions according to their preferences. This
can cause a livelock when an input sequence that traverses undefined transitions is
applied to the system implementation.

Formally, we consider two deterministic partial component specifications A1 and A2
and we assume that their implementations are complete and deterministic. We let ℜ1
and ℜ2 denote the sets of all possible complete deterministic implementations of A1
and A2. We assume that each machine of the sets ℜ1 (ℜ2) is quasi-equivalent to the
corresponding partial specification A1 (A2). An implementation system is the
composition of two complete deterministic FSMs of the sets ℜ1 and ℜ2, i.e.

ℜ = {Imp1◊Imp2 | Imp1∈ℜ1, Imp2∈ℜ2}. Thus, the set ℜ is the set of all possible
system implementations.

We say that a test suite is complete w.r.t. the fault model <ℜ, livelock-free> if the
test suite detects each system implementation that falls into a livelock under some
input sequence. Usually a livelock is detected by means of a timer. Therefore, in order
to detect a livelock, it is sufficient to traverse a transition of an implementation system
that leads to a livelock. In other words, a test suite is complete w.r.t. the fault model
<ℜ, livelock-free> if for each possible system implementation Imp of the set ℜ that
has transitions leading to a livelock, the test suite traverses at least one of these
transitions.

A straightforward approach for deriving a complete test suite w.r.t. the fault model
<ℜ, livelock-free> is to explicitly enumerate all possible system implementations and
for each implementation with at least one transition leading to a livelock to derive an
input sequence that traverses one of these transitions. However, in order to avoid the
explicit enumeration of all possible implementation machines, a mutation machine
[KPY99] can be used.

The fault domain ℜj of a component machine Aj, j = 1,2, can be described by a
complete mutation machine MMj. This mutation machine is obtained from Aj by
completing its undefined transitions in all possible ways, i.e. for each undefined
transition of Aj we add new transitions to all possible states with all possible outputs,
or due to the imposed restrictions.

Given a mutation machine MMj, j=1,2, the set of all deterministic submachines of
MMj coincides with the set ℜj. That is the set ℜ1 = Sub(MM1) and the set ℜ2 =
Sub(MM2). Thus, each possible implementation system is a submachine of the
machine MM ≅ MM1◊MM2. Accordingly, we can use the fault model <Sub(MM),
livelock-free> [STEY03] for livelock testing. In the following subsection we present a
method for deriving a complete test suite w.r.t. the model <Sub(MM), livelock-free>
without enumerating submachines of the mutation machine MM.

4.2 Test Suite Derivation Method

State s of an FSM A is reachable if there exists an input sequence that takes the FSM
from the initial state to s. If state s of FSM A is reachable while traversing only
deterministic transitions then s is said to be deterministically reachable. In this case,
we call an input sequence that takes A from the initial state to s while traversing only
deterministic transitions a deterministic transfer sequence for state s. The set of
deterministic transfer sequences for all deterministically reachable states of A is called
a deterministic cover set of A. Moreover, given the FSM MM≅MM1◊MM2, we let
MMNoLTr denote the submachine obtained from MM by deleting all transitions leading
to the Livelock state.

In order to derive a complete test suite w.r.t. the fault model <Sub(MM), livelock-
free>, we consider the following cases.

Extreme Case 1. There are no suspicious transitions in MM. That is, the composition
of any two complete sub-machines of MM1 and MM2 does not fall into livelock. In
this case, we do not need to test for livelocks.

Extreme Case 2. Each state of the submachine MMNoLTr is reachable via
deterministic transitions. In this case, for each outgoing suspicious transition of the
state pair st of MM labeled with the input x, we include in the test suite the input
sequence r.αx where α is an input sequence that deterministically takes the
submachine MMNoLTr from its initial state to the state st.

General Case. Generally, not each suspicious transition of the submachine MM is
deterministically reachable. In this case, we derive a complete test suite as follows.

Algorithm 1. Test suite derivation algorithm
Input: A non-deterministic mutation machine MM ≅ MM1◊MM2
Output: A complete test suite w.r.t. the fault model <Sub(MM), livelock-free>
Step 1. Determine the minimal length deterministic cover set D of the submachine
MMNoLTr, let m=|D|. Moreover, let αj∈D be a deterministic transfer sequence for state
sj.
Step 2. For each deterministically reachable state sj of MMNoLTr we derive a traversal
set Tr(sj) in the following way. Let α be an input sequence such that the length of α is
not greater than n-m+1, where n is number of states of the FSM MM. We include α
into Tr(sj) if there exists an output sequence β of MM to α such that the following
conditions hold:
• the trace α/β does not traverse twice a state of MM,
• α/β does not traverse a deterministically reachable state of MMNoLTr,
• the last transition traversed by α/β is suspicious.

Step 3. For each deterministically reachable state sj of the submachine MMNoLTr we
derive the set Ej = r.αj.Tr(sj). The test suite is the union of the sets Ej over all
deterministically reachable states.

Proposition 2. The test suite returned by Algorithm 1 is complete w.r.t. the fault
model <Sub(MM), livelock-free>.

As an example, consider the mutation machine MM = MM1◊MM2 shown in Figure 5.
States 1a and 2b are deterministically reachable from the initial state through the
inputs ε and x1. Thus, we derive the traversal sets for the states 1a and 2b. The input
sequences in the traversal set for state 1a have to traverse the outgoing suspicious
transitions of state 1b. These are transitions labeled with the inputs x1, x2 and (x1x2).
State 1b can be reached from state 1a under the inputs x3 and (x1x3). Therefore,
Tr(1a)={x3.x1, x3.x2, x3.(x1x2), (x1x3).x1, (x1x3).x2, (x1x3).(x1x2)}. Moreover, the input
sequences of the traversal set for state 2b have to traverse the outgoing suspicious
transitions of 1b. In addition, they have to traverse the outgoing suspicious transitions
of state 2b. These are the transitions labeled with the inputs x2 and (x1x2). State 1b can
be reached from state 2b under the inputs x2 and x1x2. Thus, Tr(2b)={x1, x2, (x1x2)} ∪
{x2.x1, x2.x2, x2.(x1x2), (x1x2).x1, (x1x2).x2, (x1x2).(x1x2)}. Therefore, Algorithm 1 returns
the complete test suite, {r.x3.x1, r.x3.x2, r.x3.(x1x2), r.(x1x3).x1, r.(x1x3).x2,
r.(x1x3).(x1x2)} ∪ {r.x1.x2, r.x1.(x1x2), r.x1.x2.x1, r.x1.x2.x2, r.x1.x2.(x1x2), r.x1.(x1x2).x1,
r.x1. (x1x2).x2, r.x1.(x1x2).(x1x2)}.

5. Testing w.r.t. Specification

If a system implementation is free of livelocks, we are still required to test if it
satisfies the specification. Given the partial specifications A1 and A2 of the
communicating protocol entities and their corresponding implementations Imp1 and
Imp2, we assume that Imp1 and Imp2 are deterministic, complete, tested in isolation
and found quasi-equivalent to A1 and A2. Thus, we assume that the joint behavior of
the complete protocol implementations (i.e. the system implementation) is checked
w.r.t. the defined behavior of the partial specifications. Given the specification Spec
of the whole system, we are required to determine if Imp1◊Imp2 ≅ Spec.

Here we note that Spec of a given SCFSM can be obtained in various ways. For
example, Spec can be derived based on our knowledge how the whole SCFSM has to
work. In this paper Spec is assumed to be deterministic and complete1. However, the
components implementations can be completed in different ways by different
vendors. Since Imp1 and Imp2 were tested in isolation and found quasi-equivalent to
A1 and A2, we assume that Imp1◊Imp2 is quasi-equivalent to Spec. However, the
behavior of the complete implementation machine Imp1◊Imp2 has also to be tested
w.r.t. the specification under undefined input sequences. In this case, the incremental
testing methods [EYB02, Elf02] are known to return shorter test suites than the
W[Chow78], Wp[Fuj91], or HIS[PYLD93] methods. If the fault domain is
represented as the set of deterministic submachines of an appropriate mutation
machine, then the length of a test suite returned by incremental testing methods is
known to essentially depend on the number of deterministic transitions in the
mutation machine. By this reason, in this paper, we divide the fault domain into three
parts assuming that the implementation of at most one component machine can be
faulty or that both component implementations can be faulty. To do this we augment
the given partial specification machines A1 and A2 according to our preference and
we obtain CompA1 and CompA2 as the complete forms of A1 and A2. In the
following two subsections we present a fault model and a test derivation method
based on the above assumptions.

5.1 A Fault Model for Testing w.r.t. Specification

Let Imp1 and Imp2 be two deterministic complete implementations of the partial
deterministic protocol specifications A1 and A2. We recall that Imp1 and Imp2 are
submachines of the mutation machines MM1 and MM2. In order to determine if the
joint behavior of Imp1 and Imp2, i.e. Imp1◊Imp2, is equivalent to the reference
specification Spec, we use a traditional fault model <Spec, ≅ , Sub(MM)>, where the
fault domain is the set Sub(MM) of all deterministic submachines of the mutation
machine MM ≅ MM1◊MM2.

Here we reasonably assume that both implementations can be faulty. A test suite is
complete w.r.t. the fault model <Spec, ≅ , Sub(MM)> if the test suite detects each

1 In the general case an implementation system can be tested w.r.t. the reduction relation since

there can occur several options of the behavior under undefined input sequences.

system implementation that is not equivalent to Spec. In the following subsection we
derive a complete test suite w.r.t. to this fault model.

5.2 Test Derivation Method

In order to generate a complete test suite for the fault model is <Spec, ≅ ,

Sub(MM)>, one can use the known W[Chow78], Wp[Fuj91], or HIS[PYLD93] test
derivation methods assuming an upper bound m on the number of states of the
implementation system is given. This bound can be calculated as the number of states
in the composed system A1◊A2. However, these methods generate tests not only for
Sub(MM) but also for every possible implementation with up to m states. Thus, we
need a more appropriate approach that generate tests for the domain fault domain
Sub(MM) taking into account the fact that Imp1 and Imp2 are tested in isolation and
found quasi-equivalent to A1 and A2, i.e. the machine Sub(MM) has many
deterministic transitions. In other words, an approach based on the incremental testing
methods presented in [EYB02,Elf02] can be effectively used. These methods generate
tests that check the untested parts of an implementation utilizing some information
from the tested parts. However, since the lengths of the test suites generated using the
incremental methods significantly depend on the number of nondeterministic
transitions of MM, which can be too many, we consider three subdomains of the fault
domain Sub(MM). Then, we generate tests, using the incremental testing methods, for
one subdomain and we reduce, using the reduction algorithm presented in [EPYB03],
the other domains based on the expected behavior of the implementation system (or
System Under Test (SUT)) to these tests. In other words, we delete from other
subdomains nonconforming submachines that are detected with the derived part of a
test suite. Particularly, we consider the fault subdomains Sub(MM1◊CompA2) where
Imp2 is assumed to be fault free, i.e. Imp2≅CompA2, and the subdomain
Sub(CompA1◊MM2), where Imp1 is assumed to be fault free. We generate
incremental tests for the subdomain Sub(MM1◊CompA2) and we use these tests to
reduce the mutation machines MM and CompA1◊MM2 [EPYB03]. Then, we derive
tests for the reduced subdomain of Sub(CompA1◊MM2) and we use these tests to
reduce MM. Finally, we generate tests for the fault domain Sub(MM′), where MM′ is a
reduced submachine of the initial mutation machine MM. The details of the method
are presented in the algorithm given below.

Here we note that in order to assess the gains of using incremental testing v.s.
complete testing of the whole system implementation, we have implemented and
experimented with the methods presented in [EYB02]. The experiments show that
when the tested part is up to 95% of the whole implementation, on average, the HIS
based test suites are 36 times bigger than the corresponding incremental test suites.
Moreover, these test suites are on average 11.3, 6.1, and 4.0 times bigger when the
tested parts are up to 90%, 85%, and 80% respectively. Moreover, the experiments
showed that the ratios of the lengths of the test suites do not significantly depend on
the size of specifications.

Algorithm 2. Test suite derivation algorithm
Input: A specification of the whole system Spec, partial deterministic components A1
and A2, and their completed forms CompA1 and CompA2.
Output: A complete test suite TS w.r.t. the fault model <Spec, ≅, Sub(MM).

Step 1. Derive MM1 and MM2 by completing in all possible ways (or due to some

preferences) all the undefined transitions of A1 and A2. Then, derive the
mutation machines MM ≅ MM1◊MM2, MM1◊CompA2, and
CompA1◊MM2.

Step 2. Use an incremental test derivation method for deriving the complete test
suite TS1 w.r.t. the fault model <Spec, ≅, Sub(MM1◊CompA2)>.
Reduce MM and CompA1◊MM2 and obtain MM′ and F2 using TS1 and the
expected output behavior of the SUT to TS1.

Step 3. Use an incremental test derivation method for deriving the complete test
suite TS2 w.r.t. the fault model <Spec, ≅, Sub(F2)>.

Reduce MM′ and obtain MM′′ using TS2 and the expected output behavior of
the SUT to TS2.

Step 4. Use an incremental test derivation method for deriving the tests suite TS3
w.r.t. the fault model <Spec, ≅, Sub(MM′′))>.

 Output TS = TS1∪TS2 ∪TS3
Proposition 3. The test suite TS generated using Algorithm 2 is complete w.r.t. the

fault model <Spec, ≅, Sub(MM)>.

As an application example, consider the partial deterministic component machines

A1 and A2, shown in Figures 6.1 and 6.2, respectively. The set of external inputs and
outputs of A1 are X=
are I={i, ε} and O=
V={v1,v2,ε}, and the
The initial state of A

 1
x 1/(ε, u) 2
v1 2/(ε, u)
v2 1/(y, ε)/ 2

Fig. 6.1 Machine A1

 1
x 1/(ε, u)
v1 2/(ε, u)
v2 1/(y, ε)

Fig. 7.1 Machine Co

The specification
sequence x as a dis
Spec to x are dif
{x1,ε} and Y={y1,ε}. The set of external inputs and outputs of A2
{o,ε}, the set of internal inputs of A1 (internal outputs of A2) is
 set of internal inputs of A2 (internal outputs of A1) is U={u,ε}.
1 is the state labeled by “1”.

2 a 1a 2a
/(y, ε) i x 1a/(y, o) 2a/(y,ε)

 u a/(o, v2) i 2a(y, o) 1a/(yy, o)
/(y, ε) xi 2a/(yy, oo) 1a/(yyy, o)
 Fig. 6.2 Machine A2 Fig. 6.3 The machine Spec

2 a
2/(y, ε) i a/(ε, v1)
1/(y, u) u a/(o, v2)
2/(y, ε)
mpA1 Fig. 7.2 Machine CompA2

 of the given specification Spec is shown in Fig. 6.3 and it has the
tinguishing sequence, i.e. the outputs at the states 1a and 2a of
ferent output pairs (y, o) and (y, ε). We assume that the

implementations Imp1 and Imp2 of the A1 and A2 were tested in isolation and found
quasi-equivalent to A1 and A2, respectively.

 1a 2a 1a 2a

x 1a/(y,o) 2a/(y,ε) x 1a/(y,o) 2a/(y,ε)
i 2a/(y,o) 1a/(y,ε); 2a/(y,ε);

2a/(y,o); 1a/(yy,o);
2a/(yy,o)

 i 2a/(y,o);
2a/(y,oo);
1a/(y,o);
1a/(y,ε)

1a/(yy,o);
1a/(yy,oo);
2a/(y,ε);
2a/(y,o)

xi 2a/(yy,oo) 1a/(yy,ε); 2a/(yy,ε);
1a/(yyy,o);
2a/(yyy,o); 2a/(yy,o)

 xi 1a/(y,oo);
2a/(yy,oo);
1a/(yy,o);
2a/(yy,ooo);
1a/(yy,oo);

1a/(yyy,o);
1a/(yyy,oo);
2a/(yy,ε);
2a/(yy,o)

Fig. 8.1. Mutation machine MM1 ◊CompA2 Fig. 8.2. Mutation machine CompA1◊MM2

 1a 2a
x 1a/(y,o) 2a/(y,ε)
i 2a/(y,o); 2a/(y,oo); 1a/(y,o);

1a/(y,ε); 1a/(ε,o);
1a/(yy,o); 1a/(y,oo); 1a/(yy,oo); 1a/(y,o);
1a/(y,ε);
2a/(yy,oo); 2a/(yy,o); 2a/(y,oo); 2a/(y,ε);
2a/(ε,o); 2a/(y,o);

xi 1a/(y,oo);
2a/(yy,oo);
1a/(yy,o);
2a/(yy,ooo);
1a/(yy,oo);

1a/(yyy,o); 1a/(yyy,oo); 1a/(yy,oo); 1a/(yy,o);
1a/(yy,ε);
2a/(yyy,oo); 2a/(yyy,o); 2a/(yy,oo); 2a/(yy,o);
2a/(yy,ε); 2a/(y,o)

Fig. 8.3. Mutation machine MM when both implementations can be faulty

In order to test if Imp1◊Imp2 ≅ Spec, we first complete the undefined transitions of

A1 and A2 in all possible ways and we obtain the machines MM1 and MM2. Then, we
derive the mutation machine MM ≅ MM1◊MM2 shown in Fig. 8.3. By direct
inspection one can observe that MM has no livelocks. We assume that the designers
complete the partial specifications A1 and A2 according to their preferences and
obtain the complete deterministic FSMs CompA1 and CompA2 shown in Figures 7.1
and 7.2, where the added transitions are shown in bold. Moreover, we derive the
mutation machines MM1◊CompA2 and CompA1◊MM2 shown in Figure 8.1 and 8.2,
respectively. All nondeterministic transitions of these mutation machines have to be
tested. Afterwards, in Step 2 of Algorithm 2, we derive the input sequences TS1 =
{riix, ri(x,i)x} using the incremental methods presented in [EYB02]. Particularly, for
the non-deterministic transitions of MM1◊CompA2, we determine the corresponding
transitions in Spec. These are transitions, (2a)-i/(yy, o)->(1a) and (2a)- (x, i)/(yyy, o)-
> (1a). The characterization set W = {x} of Spec does not traverse these transitions,
accordingly, according to the so-called Case-1 of [EYB02], we derive the incremental
tests riix, ri(x,i)x for testing these transitions. If the SUT is equivalent to Spec, the
expected behavior of the SUT to the input sequences of TS1 is ri/(y, o)i/(yy,o)x/(y,o)

and ri/(y, o) (xi)/(yyy,o)x/(y,o). Afterwards, using these sequences, we reduce
CompA1◊MM2 of Fig. 8.2. The reduced machine is that in Fig. 8.2 without underlined
transitions. Afterwards, for the untested (i.e. non-deterministic) transitions of
CompA1◊MM2, we determine the corresponding transitions in Spec. This is the
transition (1a)-(x, i)/(yy, oo)->(2a). In order to test this transition, we apply again the
so-called Case-1 of [EYB02] that returns the input sequence r(x,i)x, i.e., TS2 =
{r(x,i)x}. The expected output of a fault-free SUT to r(x,i)x is r.x,i/(yy, oo).x/(y, ε).
Finally, in Step 3, using TS1 and TS2 and their expected outputs, we reduce the
mutation machine MM. In this example, TS1 and TS2 completely reduce MM, i.e., all
transitions of MM become deterministic and MM is equivalent to Spec in Fig. 6.3.
Thus, we skip Step 4 and the test suite TS1∪TS2 completely checks if Imp1◊ Imp2 ≅
Spec. The total length of the union of the test suites is 11, while the length of the test
suite derived using the W method for the whole specification Spec is 18.

6. Conclusion

In this paper, we have proposed two fault models and methods for the derivation of
interoperability test suites when the system implementation is given in the form of
two deterministic communicating finite state machines. A test suite returned by the
first method determines if the implementation is free of livelocks. If the
implementation is free of livelocks, the second method returns a test suite that checks
if the implementation conforms to the specification.

Acknowledgements

The authors would like to thank Rita Dorofeeva at Tomsk State University for
implementing and experimenting with the incremental testing methods. Moreover, the
authors from Tomsk State University also acknowledge a partial support from the
program “Russian Universities”.

References

[BrZa83] D.Brand and P.Zafiropulo, On communicating finite state machines, J.
ACM 30(2), (1983) 323-342.

[BoSu80] G. v. Bochmann, and C. A. Sunshine, “Formal methods in communication
protocol design”, IEEE Trans. on Comm., Vol 28, 1980, pp 624-631.

[Chow78] T. S. Chow, “Test Design Modeled by Finite-State Machines,” IEEE
Trans. SE, vol. 4, no.3, 1978, pp. 178-187.

[Elf02] K. El-Fakih, Protocol retesting and diagnostic testing methods, Ph.D.
Thesis, University of Ottawa, 2002.

[EYB02] K. El-Fakih, N. Yevtushenko and G.Bochmann, Protocol re-testing
methods, Proc. of the IFIP 14th International Conference on Testing of
Communicating Systems, 2002, Berlin, Germany, 19-22.

[EPYB03] K. El-Fakih, S. Prokopenko, N.Yevtushenko, G. Bochmann, Fault
diagnosis in extended finite state machines. Proc. of the IFIP 15th
International Conference on Testing of Communicating Systems. Lecture
Notes in Computer Science 2644, pp. 197-210, 2003.

 [Fuj91] S. Fujiwara, G. v. Bochmann, F. Khendek, M. Amalou, and A. Ghedamsi,
“Test Selection Based on Finite State Models,” IEEE Trans. SE, vol. 17,
no. 6, 1991, pp. 591-603.

[KSK00] S.Kang,, J.Shin, M.Kim, Interoperability Test Suite Derivation for
Communication Protocols. Computer Networks, 32 (2000) 347-364.

[KPY99] I. Koufareva, A. Petrenko, N. Yevtushenko, Test generation driven by
user-defined fault models, Proceedings of IFIP TC6 12th International
Workkshop on Testing of Communicating Systems, Hungary, 1999. – pp.
215-233.

[PYB96] A. Petrenko, N. Yevtushenko, G. v. Bochmann. Fault models for testing in
context. FORTE’96.

[PYBD96] A. Petrenko, N. Yevtushenko, G. v. Bochmann, and R. Dssouli, Testing in
context: framework and test derivation, Computer communications, Vol.
19, pp. 1236-1249, 1996.

[PYLD93] A. Petrenko, N. Yevtushenko, A. Lebedev, and A. Das, “Nondeterministic
State Machines in Protocol Conformance Testing,” Proc. of the IFIP 6th
IWPTS, France, 1993, pp. 363-378.

[SKC02] S.Seol, M.Kim, and S.T.Chanson, Interoperability Test Generation for
Communication Protocols based on Multiple Stimuli Principle,
Proceedings of the IFIP 14th Inter. Conf. TestCom2002, Berlin, pp.151-
169.

[STEY03] N. Spitsyna , V. Trenkaev, K. El-Fakih, and N. Yevtushenko, FSM based
interoperability testing-work in progress, presented as work in progress at
FORTE 03, Berlin, Germany, Sept. 2003.

[TKS03] Trenkaev V., Kim M., and Seol S. Interoperability Testing Based on a
Fault Model for a System of Communicating FSMs // Lecture Notes in
Computer Science, Vol. 2644: D.Hogrefe, A.Wiles (Eds.), Testing of
Communicating Systems, Proceedings, 2003, pp. 226-241

[VBT01] C. Viho, S.Barbin and L. Tanguy, Towards a formal framework for
interoperability testing, Proceedings of the 21st Inter. Conf. FORTE 2001,
Korea, pp.51-68.

[West78] C.H. West, An automated technique of communication protocols validation,
IEEE Trans. Comm., 26 (1978) 1271-1275.

	3.2. Reachability graph and composed FSM
	4.2 Test Suite Derivation Method
	6. Conclusion

