BCMP Performance Test with
TTCN-3 Mobile Node Emulator

Sarolta Dibuz, Tibor Szabd and Zsolt Torpis

Conformance Laboratory, Ericsson Hungary Ltd.
Laborc 1, HU-1037 Budapest, Hungary
{Sarolta.Dibuz, Tibor.Szabo, Zsolt.Torpis}@eth.ericsson.se

Abstract. In this paper we show guidelines for performance testing
through BRAIN Candidate Mobility Management Protocol (BCMP). At
first, we investigate the main issues of our tests, then we describe briefly
the applied TTCN-3 based distributed parallel test environment. We
present the structure of the network to be tested and the Mobile Node
Emulator, the main functional element of the performance test. We de-
scribe the actual test and the results. Finally, we summarize our experi-
ences and proposals.

1 Introduction

Conformance testing of telecommunication protocols, services and applications
has become an unavoidable process within a lifecycle of a product. To achieve
high quality one has to ensure that a protocol implementation meets the re-
quirements of the corresponding specification. Objectives, methods and tools of
conformance testing are standardized, deeply studied and deployed. The most
widely used conformance testing notation is TTCN version 3 [1]. There are some
tools available to compile and execute TTCN-3 test suites against protocol im-
plementations.

However, there are non-functional requirements such as performance, quality
of service (QoS) and scalability characteristics of an implementation that are
out of scope of conformance and functional testing. These requirements are as
important as functional requirements. It is often needed to verify that a pro-
tocol, an equipment or a network meets non-functional requirements. The goal
of performance testing is to ensure that an implementation can operate at a
certain performance level. On the other hand, the purpose of scalability testing
is to determine whether an application scales for the workload growth.

One of the main differences between conformance and performance testing
is the different interpretation of time. Timers in a conformance test ensure that
an event occured too early, too late or not at all. In performance testing, one
has to establish streams of data, not separated protocol events. Correct timing
of the generated load becomes very important.

For performance and scalability testing the conformance of the implementa-
tion is assumed. However, since high load may affect correct functionality of the

implementation, it is necessary to track functional correctness during a perfor-
mance test [2].

2 Related Work

There are numerous contributions to the field of performance testing with TTCN.
PerfTTCN [2] proposes architecture for three types of performance testing: test-
ing for a server, an end-to-end service and a protocol. It introduces foreground
testers, which generate test load to the IUT; and background testers, which bring
the IUT into a specific load state. PerfTTCN is an extension to TTCN-2. With
the proposed new tables it is possible to describe the test configuration, traf-
fic streams, traffic models, measurements, and to give performance constraints.
Unfortunately, no known commercial TTCN-2 tool supports PerfTTCN.

Real-time TTCN [3] extends the capability of TTCN-2 to test real-time sys-
tems. It defines labels that specify the earliest and latest execution times for
statements. It also defines an operational semantics for real-time TTCN by map-
ping it to timed transition systems.

TimedTTCN-3 [4] is a real-time extension to TTCN-3 that supports the test
and measurement of real-time requirements. Timed TTCN-3 introduces absolute
time, allows definition of synchronization requirements for test components and
provides possibility to specify online and offline evaluation procedures for real-
time requirements.

The authors of [5] showed a case study using TTCN-2 for performance test
of an HTTP server. They applied the concepts of Perf TTCN, but not the lan-
guage extensions. Thus, application of a commercial TTCN test executor was
possible. The paper shows guidelines to design different parts of testing software
(e.g. test port) that have to operate in a performance testing environment and
consequently, must have themselves a good performance.

Some papers deal with investigation of BCMP. The most widely known con-
tribution [6] presents the protocol itself and results of simulations performed with
ns-2 simulation environment. The goal of simulations was to examine correctness
and expected performance of BCMP.

The paper [7] describes a mobile testbed implementation using real network
components. [8] concentrates on the scalability aspects of micro-mobility man-
agement from a theoretical point of view. Description of implementation of IP
micro-mobility protocols and some tests can be found in [9]. Unfortunately, none
of the papers above includes performance or scalability test results of networks
running BCMP as mobility management protocol.

The main innovation of our measurements is the deployment of a TTCN-3
based parallel testing environment. This environment enables good approxima-
tion of real network scenarios while providing comparable results and being
extremely flexible and reconfigurable.

3 Requirements on Performance Testing Environment
Components

For a functional test of an implementation, in most cases, a few (or a single)
test components are enough. However, performance tests may need several par-
allel components, e.g. foreground and background test components [2], monitor
components etc. To control the start of test components a main control utility
is needed. The components must have an internal communication protocol and
path to communicate with each other and with the main control utility.

3.1 Distributed Parallel Test Environment

The architecture of our test system is based on the TTCN-3 standard [1]. Figure
1 depicts the distributed architecture and its components.

PTG | =4 PTC

SUT

Fig. 1. Distributed test architecture

The Main Controller (MC) creates, starts and terminates the Main Test
Component (MTC). MC maintains a control connection with all other com-
ponents. The Host Controller (HC) is responsible for controlling Parallel Test
Components (PTCs) on a host. There is only one MTC in the whole distributed
test system. MTC controls creation, start and termination of PTCs. MTC and
PTCs are TTCN-3 test components while MC is a standalone utility.

Connections between different test components can carry protocol data used
in testing and control messages between different test components. Connections
between an abstract test component (either MTC or PTC) and the real test
system interface are called mappings.

In a typical performance test configuration, several (possibly many) PTCs act
as background testers, i.e., generate load against the System Under Test (SUT)
and bring it into a specific load state. Some PTCs act as foreground testers
and perform test sequences against the SUT. One of the advantages of TTCN-3

test environment is that backround testers are not implemented as dummy load
generators but as test components that can fully track the protocol behaviour.

All of the test components are dynamically reconfigurable, thus enabling
adaptation to different test scenarios.

3.2 Critical Performance Problems of the Test System

A performance test system in general, must have better performance than a
test system used for functional test only. It has to keep correct timing, packet
rate and response time. The test system hardware has to run its own operating
system as well. It is essential to track the load on the test system and ensure
that enough resources are available during the whole test campaign.

Performance Test Port The test port connects the abstract test system to the
real test system interface. Since a test port is always implementation-dependent,
it can not be coded in TTCN-3. One possibility is to write the test port in C++.

The code of the test port should remain small and should not use much
CPU power. In many cases it is necessary to simplify an existing test port (that
has been used for function testing) to be more efficient [5]. For example, many
functions of the test port can possibly be unnecessary for background testers,
but fast execution is a critical issue.

Data Definition Modules Data definition modules that describe Abstract
Service Primitives (ASPs), Protocol Data Units (PDUs) etc. of the tested proto-
cols can be quite extensive, especially if the test system must cope with multiple
protocols or protocol layers at the same time. Large size of modules implies
long compilation time. Moreover, that is even more important, a large protocol
definition module runs slowly on the test hardware.

Protocol data definitions given in ASN.1 are also problematic: in most cases,
these modules are automatically compiled and the encoder/decoder functions are
automatically generated. The resulting code has often a suboptimal performance.
Consequently, data modules for performance test should be kept as small and
simple as possible. One has to consider using manual encoding instead of ASN.1
automatic encoder/decoder functions.

Estimating Performance Limit of Test System When the load on SUT
is increased, the load on test system also increases. If the load (processor or
memory utilization, network bandwidth usage) on the test system is too high,
it may degrade correct behaviour of the tester. A heavily loaded processor can
not keep correct timing, consequently, it can not guarantee the required traffic
and can not provide authentic test results.

It is essential to keep workload on test system below its upper bound. To
achieve this, we need a method that indicates overloading of the test system.

4 BCMP Performance Test and Experiences

We chose a typical performance test configuration and process to show an ex-
ample for the considerations mentioned above. In this section we describe the
tested system, the objectives and tools of performance test. Finally, we present
the results and our experiences.

4.1 System Under Test

The system that we investigated is an IP mobility test network. It consists of
mobile IP network elements and test hosts. The network can work with several
mobile TP protocols. We investigated BRAIN Candidate Mobility Management
Protocol (BCMP) [6].

BCMP Network A BCMP network can be built on top of a legacy IP routed
network, running an arbitrary routing protocol. Any number of IP routers may
lie between network entities.

Anchor Routers (ANP) maintain a tunnel for each Mobile Node and transmit
packets addressed to the Mobile Node toward its current location. ANPs are
legacy routers with minimal BCMP specific functionality.

Access routers (AR) serve as attachment points for Mobile Nodes. They are
routers at the edge of the network equipped with wireless interface. They manage
handovers, maintain and transfer context for each served Mobile Node. ARs
also act as packet filters and drop all packets that were not transmitted by /to
authorized Mobile Nodes.

Mobile Nodes (MN) represent devices (subscriber’s equipment) that wish
to access the Internet via the network. They have a wireless interface and the
appropriate protocol implementation.

Test Network The test network is depicted on Fig. 2.

We used three Access Routers (AR1, AR2, AR3) that connect to a single
Anchor Router (ANP). Several hundred mobile nodes are necessary for testing
the handover performance of the network. Moreover, these mobile nodes must
be coordinated and controlled during the execution of tests. It is practically
unfeasible to use real mobile terminals with wireless interface for this purpose.
Instead, we emulated nodes in TTCN-3 Mobile Node Emulator (MN Emulator).
This tool is described in the following subsection.

The MN Emulator software runs on two hosts as a distributed parallel TTCN-
3 test environment. The hosts are PCs with P-III 1 GHz processors and 256 MB
of memory. We used Linux kernel version 2.4.20 on all PCs (with BCMP features
developed at Ericsson). All connections are 100 Mbit Ethernet links.

Since the handover performance of the core BCMP netwok is independent of

the physical layer, the wireless connections also can be substituted with Ethernet
links.

rest of the network

AR2 |-

Controllr
Test1 Test2

Fig. 2. BCMP test network

BCMP Test Network

s |

i Test i i Test i i Test i i Test i i Test i i Test i
{ PortA | | PortB | { PortA | | PortB | { PortA | | PortB |
Parallel Test
Components Emulated MN Emulated MN Emulated MN
Instance 1 Instance n Instance n+1
P, b 1 1 1 1
! Port C] | Port C] | Port C !
i 1 i 1 i 1
‘ ‘ Host Test1 ‘ ‘ ‘ ‘ Host Test2
| [o] |
| Port C
— } Main Test Component
Test !
Control

Test Component
Control
/3]

Main Controller

GUI

TTCN-3 Runtime

Environment

Fig. 3. Mobile Node Emulator — functional view

Mobile Node Emulator Figure 3 shows a functional view of MN Emulator.

The Mobile Nodes are represented by Parallel Test Components. The number
of PTC instances can be set before the test execution. The behaviour of the
mobility protocol is implemented in a protocol module. The tester can specify
abstract test events (e.g. login, handover, logout) for each mobile node. Thus,
it is possible to use an IP mobility protocol module other than BCMP without
changing anything else in the test. This makes comparison of different IP mobility
protocols easier.

Each Mobile Node has its own behaviour, message sequence and timer set
theoretically independent from the others. However, in a real emulator, parallel
test components running on a single-processor machine share the available com-
mon resources, e.g. processor and memory capacity. This leaves the problem of
synchronization and can lead to undesirable interference that causes false test
results (see Sect. 4.2).

Components of the test system communicate with themselves through in-
ternal message ports (Port C, Port D). Communication towards the SUT is
done through BCMP test port (Test Port A, Test Port B). The BCMP test
port is capable to work both with IPv4 and IPv6 network layer. The user plane
traffic between mobile nodes is emulated as constant bitrate UDP traffic; i.e.,
UDP packets are sent out in equal time intervals. Although it is possible to
implement a sophisticated traffic model in TTCN-3, in our case it would unac-
ceptably degrade the performance of the test system due to the large number of
test components.

The distribution of parallel test components on the two test hosts is done
automatically by the TTCN-3 test environment.

The Graphical User Interface (GUI) is used to control execution of the test.
In order to reduce load on the test system, it is run on a separate host.

Test Objectives The main goal of the test is to investigate handover trans-
action time (i.e., the length of time interval between the beginning and the
successful end of a handover) as a function of varying handoff activity of Mobile
Nodes. The handover transaction time influences the number of lost packets dur-
ing a handover event, thus the quite short handover transaction time is critical
from the point of view of a real-time application.

We aimed to produce performance test results that are comparable to other
BCMP implementations and different IP micro-mobility protocols. Our tests
verify that the BCMP network can scale to handle several hundreds of handover
events within a short time. In the following scenario we used 300 emulated Mobile
Nodes performing periodic handovers. We measured the processor load on ARs,
handover transaction time and message load.

4.2 Test Results

On Fig. 4 the average AR processor load is shown.

100
920
80
70
60
50
40
30

20
0 T T T

12/min 20/min 30/min 60/min 120/min
handoff frequency

AR load [%]

Fig. 4. Access router processor load

Figure 5 shows the average length of a handover (as seen by the MN). It can
be seen that below a critical point, increasing number of handovers results in
gracefully degrading handover performance (i.e., increasing handover transaction
time). Going higher with handover frequency, the load on the AR reaches a
critical value resulting in rapidly increasing handover transaction times, which
results in very poor handover performance. A preliminary conclusion is that the
system sholud be dimensioned such that ARs stay below this critical point.

120

-
n
o

-
o
o

fecd
o

N
o

n
o

4 45 5 v

l:ll:ll:ll:l

o

12/min 20/min 30/min 60/min 120/min
handoff frequency

handover transaction time [ms]
(o2}
o

Fig. 5. Handover transaction time

Figure 6 depicts the measured average BCMP message load of the handover
activity.

Experiences During the development of MN Emulator we used some practical
tricks that enabled emulation of many nodes with keeping the load on the test
system below its upper bound.

If the load on the test host is near to the full utilization of resources (processor
and memory usage) then it can be obviously observable through quick decrease of

3000
2500
2000
1500
1000

A

12/min 20/min 30/min 60/min 120/min
handoff frequency

message load [1/sec]

Fig. 6. Message load

processor idle time and available memory, respectively. We used an other method
for observing the reach of load limit of test system. In the log files the actual
timestamps of initiated test events are registrated. If these timestamps deviates
significantly from the specified event times (a slip comes in the execution) then
the system is near to its upper bound of performance and it results incorrect
test operation.

It happens often in the test that several MNs have to perform an event (e.g.
a handover) at the same time. Obviously, in a one-processor system these events
occur not exactly in the same point of time. If we still specify the execution
for the same time, it results sharp load-peaks or even an overload for the test
system. For that reason timing of events to be generated by Mobile Nodes is
randomized. A At offset of constant distribution stochastic variable is added to
the mean execution time. This way the load on test system can be smoothed.

We observed that sometimes it is not efficient to extensively use the alt
mechanism of TTCN-3 in the performance-critical main event handler loop of
parallel test components. This property comes from the standard TTCN-3 se-
mantics and does not depend on the actual realization of the test execution
environment. Let us consider the following example:

alt

{
[1 MyPort.receive(template_1) {...}
[1 MyPort.receive(template_2) {...}

[1 MyPort.receive(template_n) {...}
}

When the execution of the test is at an alt statement and a message is arrived,
in a worst case situation, all n templates must be compared to the message.
If a few types of messages are expected to arrive significantly more often than
other ones, then it is better to use fewer, more general templates and analyse
the incoming message with if () conditional operators inside the alt construct.
Alternatively, use of multiple levels of alt statements with less alternatives in
the same level also solves the problem. Obviously, the most frequent message

should stand on the first place within an alt. We can thus save the time of some
template matching operations.

It is necessary to use templates as simple as possible for template matching.
Outgoing messages should not contain complicated structures, because they slow
down coding operations and result huge binary executables. Sometimes this can
lead to a difficult design problem.

With the considerations above we achieved that 600 emulated Mobile Nodes
can run on the two test hosts without overloading the test system.

5 Conclusions

In this paper we presented a BCMP performance test example focusing on some
problems of optimization of the test system. We described the distributed par-
allel TTCN-3 test system, the investigated test network and the Mobile Node
Emulator. Performance test optimization techniques and two methods of observ-
ing load limit of the test system were also presented. We showed some results of
the measurements and summarized our most important experiences.

Regarding further inverstigations, it would be interesting to study the pos-
sibility of using behaviour and traffic models in the emulator instead of simple
periodic event generation. Thus, a real scenario could be more precisely approxi-
mated. On the other hand, a complicated traffic model results worse performance
for the test system. We plan to find a compromise among these requirements.

References

1. ETSI Methods for Testing and Specification, The Testing and Test Control Notation
version 3, Part 1: TTCN-3 Core Language. ETSI ES 201 873-1 V2.2.0 (2002-03)

2. Ina Schieferdecker, Bernard Stepien, Axel Rennoch: PerfTTCN, a TTCN Language
Extension for Performance Testing. IWTCS 1997, Cheju Island, Korea. Testing of
Communicating Systems volume 10, Chapman & Hall.

3. Thomas Walter, Jens Grabowski: Real-Time TTCN for Testing Real-Time and Mul-
timedia Systems. IWTCS 1997, Cheju Island, Korea. Testing of Communicating
Systems volume 10, Chapman & Hall.

4. Zhen Ru Dai, Jens Grabowski, Helmut Neukirchen: TimedTTCN-3 — A Real-Time
Extension for TTCN-3. The IFIP 14th International Conference on Testing of Com-
municating Systems, 2002.

5. Roland Gecse, Péter Krémer, Janos Zoltdn Szabé: HTTP Performance Evaluation
with TTCN. The IFIP 13th International Conference on Testing of Communicating
Systems, Canada, 2000.

6. C. Keszei, N. Georganopoulos, Z. Turdnyi, A. Valké: Evaluation of the BRAIN
Candidate Mobility Management Protocol. IST Global Summit 2001, Barcelona,
September 2001.

7. J.C. Rault, L. Burness, E. Garca, T. Robles, J. Manner, N. Georganopoulos, P.
Ruiz: IP QoS and mobility experimentations within the MIND trial Workpackage.
PIMRC2002, Lisbon, Portugal, September 2002 (http://www.lx.it.pt/pimrc2002/)

8. P. Eardley, N. Georganopoulos, M. West: On the Scalability of IP micro mobility
management protocols. IEEE Conference on Mobile and Wireless Communication
Networks (MCWN2002) Stockholm, Sweden, 9-11 September 2002

9. K. Guillouard, Y. Khouaja, J.C. Rault: Advanced IP mobility management experi-
mentation within a Wireless Access Network WTC2002 Paris, 26th September 2002

