
Implementation of an Open Source Toolset for
CCM Components and Systems Testing

 *

Harold Batteram1, Wim Hellenthal1, Willem Romijn1,
Andreas Hoffmann2, Axel Rennoch2, Alain Vouffo2

 1 Bell Labs Advanced Technologies Nederland,
Larenseweg 50, NL-1200 BD Hilversum, The Netherlands

{batteram, whellenthal, romijn}@lucent.com
http://www.lucent.nl/bell-labs

2 Fraunhofer FOKUS, Competence Center TIP,
Kaiserin-Augusta-Allee 31, D-10589 Berlin, Germany

{a.hoffmann, rennoch, vouffo}@fokus.fhg.de
http://www.fokus.fhg.de/tip/

Abstract. Following the success of CORBA based systems the OMG has
standardized the CORBA Component Model (CCM) to improve the
implementation process of large distributed systems. The European project
COACH [16] has been set up to build an Open Source development platform to
construct CCM applications. As part of COACH a toolset for CCM components
and system testing has been defined and implemented. This paper introduces
the various components and features which have been foreseen and
implemented for test activities such as interactive component testing, test trace
visualization, or the application of abstract test specifications. The resulting test
infrastructure addresses the CCM specifics but also benefits from CCM, e.g. by
incorporating component communication facilities.

1 Introduction

This contribution presents a framework for testing software components and systems
that are based on the CORBA Component Model (CCM)[17] standard. An important
aspect of CCM based systems is that the system must be verifiable and testable at the
abstraction level of its design and independent of the chosen component
implementation language. Component based systems allow the development and
testing of components to be partitioned across development groups, working in
parallel. However, dependencies between separately developed components may
cause delay in testing. Component oriented software engineering has enjoyed an
increasing interest in research and industry over the last decade. Component oriented
software engineering focuses on system composition from components as elementary
building blocks. This approach has many advantages and is generally regarded as an
efficient way to handle complexity in large systems and (when properly applied) to

* This work is partly sponsored by the European IST Project Coach (IST-2001-34445,

Component Based Open Source Architecture for Distributed Telecom Applications).

improve overall system quality. Component frameworks such as Enterprise Java
Beans (EJB) from Sun Microsystems, COM (and more recently .NET) from
Microsoft have gained widespread acceptance in software development communities
in a short time. The CCM is the component model proposed by the Object
Management Group (OMG). As opposed to EJB and .NET the CCM is not
proprietary but is an open industry standard. While EJB and .NET are usually applied
in web based, client-server application domains, the CCM can be applied in many
industrial domains including the telecommunication industry.

Using the CCM requires a different approach to the development cycle. Software
systems are now composed from multiple components and separate the task of
component development from system composition. This also requires a different
approach for the testing of CCM based systems.

There are multiple parts during the whole development cycle of a CCM based
system where testing is needed. For example, a component developer needs to test
individual components, or small clusters of components working together. System
developers compose systems from readily available components but must test the
various interaction scenarios for the specific composition in which the components
are used. Finally, with large and complex systems integration and conformance
testing is often done by specialized system testers and not by developers.

In the context of testing CCM components there is less related work to be
mentioned. The majority of the CCM implementers did not address testing by specific
techniques or tools. Furthermore we did not assume the availability of an UML
specification of the System under Test (SUT) as it has been done in other approaches
[4][6].

We have only found the following work carried out by L. Johnson and E. Teiniker
on a project called CORBA Component Model Tools [12]. Their aim is to provide
tools used for generating CORBA components, test components, and test programs
based on source IDL files. Testing has been identified as an important issue. They
intend to test their applications on different levels during development: Every class of
the business logic that will be part of a component has to be tested (Class Level
Testing). For every component a counter component that looks like a mirror to the
original component will be created. This counter component has a receptacle for
every facet of the original component and vice versa (Component Level Testing).
Testing should include a set of connected components (Assembly Level Testing).

Johnson and Teiniker follow the methodology of Beck [3] who introduces the Test
Driven Development and starts implementing the test before implementing the
application. A test client coordinates creating and connecting the components, as well
as the test calls to the facets of a given component C. The mirror component C’ and
the test client are always generated at the same time as the component itself, without
additional development effort. The process begins automatically after compiling. The
development of the local component is separated from the development of the test
client. A deployed component can be used in different applications at the same time.
Currently there are no test tools documented in the project that have been started
recently in 2003.

From this latest survey of existing testing tools no test implementations do fit the
requirements stated within the COACH project [1][9] and there is still the need to
build an appropriate CCM testing environment.

The test architecture described in this paper addresses two distinct test audiences,

developers and system testers. Although both groups have a common goal of testing
the overall quality of a CCM system, each group has a different focus and a different
approach to reach that goal. Component programmers are concerned with testing at a
lower level and have to take infrastructure specifics into account such as concurrency,
performance, stress testing etc. During the development cycle, component
programmers also often use test tools as a debugging facility to locate implementation
errors in components, or for regression testing to verify modifications done on a
component implementation has not affected other component functions.

Considering system testing there is a special need to compare application tests and
the test results gathered from test campaigns executed with different vendor
implementations and heterogeneous user environments. In this context the
conformance to (standardized) system requirements has to be shown and an
international standardized test notation has to be applied. Test languages such as
TTCN-3 [13] are specifically designed by ETSI and ITU-T for such kind of testing.

Our CCM test architecture describes a full set of tools that cover both component
developer oriented testing and system integration and conformance testing for system
testers.

This paper is organised as follows: Section 2 specifies the component test
framework describing the different parts of our framework. Section 3 addresses test
notations which can be applied to the components under test in order to automate the
tests. Section 4 investigates in the test trace viewing facilities. Section 5 describes an
application of the test tools. And finally the conclusions will summarise the major
results of this paper.

2 Component Test Framework Description

Our test framework, i.e. the COACH test framework, is only concerned with testing
CCM components and interactions between CCM components. This means that the
framework can be used to identify components that do not behave according to their
specifications. Once a component containing a fault has been identified, further
localization of the fault within the component can be done using the test and debug
facilities that are usually part of the implementation language specific development
environment. This implementation language specific testing and debugging is outside
the scope of the test framework specified in this contribution.

Tests on CCM components and the observation of interactions between
components are expressed using IDL data types and are independent of the data types
of the implementation language of the component. Our CCM test framework provides
the testers with the following essential capabilities:

• The ability to invoke CORBA operations on selected component facets and

observe the response, using a so-called Actor component.

• The ability to intercept CORBA operations on two different levels:

- Inside a component using the portable interceptors

- Outside the component using so-called Proxy Components

• The ability to extend the range of test scenarios for components that have
dependencies with other components whose implementation is unavailable; using
so-called Reactor components as substitutes.

• The ability to visualize causality relations between invocations at runtime.

• The ability to run standardized abstract TTCN-3 test cases against CCM
applications under test.

The following figure gives an overview of the test framework. The elements that
are above and on the right side of the SUT are used during the development phase of
the system under test. The elements left from the SUT are used after the SUT is
finished and ready for deployment.

Actor
Component

IdlTree Library

Reactor
Component

System
Under
Test

Interceptor Component

Proxy N

Trace
Server

Trace
Viewer

(TTCN-3) Test system

Repository

Reactor
Component
Generator

Proxy
Component
Generator

IDL3

Proxy 1

CCM Adaptation component

Fig. 1. Component Test Framework

The CCM test framework addresses each capability as will be explained further in

the next sections.

2.1 Developers Testing Tools

The CCM is well suited to develop large-scale distributed applications. Teams of
developers typically develop these types of applications where each team is
responsible for a subsystem. One developer may be responsible for the development

of a group of components that will eventually need to be integrated into the system. A
developer will need to test the set of components (s)he is responsible for as much as
possible before integrating them into the whole system.

The ability to test components may be severely restricted when the components
under test depend on interactions between other components that are not yet
implemented. To reduce this restriction, the dependent components can be substituted
by, so-called, Reactor components for the purpose of testing only. Reactor
components must provide the same set of facets, operations and events as their real
counterparts. If the IDL specification is known, Reactor component implementations
can be generated automatically.

The Reactor-implementation-generation process is similar to the generation of
Stub, Skeleton and other implementation classes by the IDL compiler. The IDL
specification is read as input and Reactor implementation classes are produced as
output that then needs to be compiled by the implementation language compiler.
Although IDL can be translated into different kind of implementation languages, the
Reactor components do not necessarily need to be implemented in the same language
as the components they are substituting. After all, one of the strengths of CORBA
systems is heterogeneity. It does not matter in what language a component is
implemented as long as it supports the same IDL interfaces. For practical purposes we
have chosen to generate Reactor components in Java.

The implementation of the Reactor component must be configurable to allow
different kind of responses. The response may be interactive allowing the tester to
examine the parameter values and construct a reply using an interactive IDL type
editor, or the response is automated. The Reactor can be hard-coded to give an
automated response, or by executing a general purpose scripting language that can be
loaded and interpreted by the Reactor at runtime. The latter is obviously more flexible
but may not be necessary for simple test cases or may have an unacceptable
performance penalty. In any case, the tester must be able to make the choice. When
an invocation arrives on a Reactor component facet it can reply (within limits) as if
the real component is in place. The range of possible test scenarios is now extended
for the components under test and can reduce the probability of errors when the final
components replace the Reactor components when they are available.

Of course, the behavior of Reactor components is determined by the interactive or
programmed response and will most likely differ from their real implementation.
Nevertheless, the presence of Reactor components can demonstrate correct behavior
of the components under test for various interaction scenarios. In particular error
conditions occurring in the Reactor components can usually be simulated more easily
using Reactors then real implementations. Even when real implementations become
available, Reactor components are still useful for regression testing.

Another part of the test framework is the Actor component that acts as a general
purpose CCM client component that can invoke operations on other components. The
Actor can also load and execute test scripts or can be run in interactive mode. In
interactive mode the tester can interactively fill in parameter values for a selected
operation, invoke the operation and examine the result. In order to invoke an
operation on a facet of a target component, the Interoperable Object Reference (IOR)
of the component must be obtainable. In CCM systems, key components usually
publish their IORs using a naming server. References to other components may be

passed as return values of operations. References to component facets can be obtained
by using the navigation operations provided by the component interface.

In addition to providing the tester with a means of testing components using an
actor and reactor, the CCM test framework allows the tester to trace and visualize the
propagation of invocations between CCM components, see section 4 for the details.

With the combination of Actor, Reactor, and Invocation tracing viewer the
implementers of CCM components have a powerful set of tools available to test their
CCM components at an early stage.

To illustrate the developers’ test approach with an example, suppose a developer
has implemented components C1 and C2 as depicted in Figure 2. Component C1
interacts with C2 using facet f3. The implementation of C1 also needs to interact with
facet f5 of component R1 and facet f6 of component R2 as shown in Figure 2. This
figure also shows that component C2 interacts with facet f7 of component R2. The
implementation of R1 and R2 is outside the scope of our developer and the
implementation may not become available for some time. This situation limits the test
scenario possibilities for components C1 and C2 since the test scenarios in which
invocations of R1 and R2 occur must be omitted. However, with the IDL specification
known for R1 and R2, Reactor components are generated and instantiated as part of
the test system. The test scenarios for C1 and C2 are now extended to include
invocations to R1 and R2.

Dependencies substituted
by Reactors

Components under test

C1
f1

f2
R1

Reactor
script

Actor

Actor
script

C2

f3

f4

f5

R2
f6

f7

Fig. 2. Actor-reactor test environment

To test C1 and C2 the Actor is used. Figure 2 shows how the Actor user interface is

used to invoke operations on the facets of the components under test C1 and C2
interactively. The Actor includes a naming server browser that allows the tester to
examine the content of the naming server and to select one of the registered

references. If the selected reference is a component reference, the Actor will
introspect the component to obtain information about the facets it supports and will
display a new window that allows the tester to select a target facet reference. Once a
target facet is selected, another window is shown in which parameter values can be
interactively filled in. The signatures of the operations and the structure of the
parameters is obtained from an interface repository. In this example Figure 3 shows
the selected operation of facet f2 of C1 on the left panel. After ‘method3’ has been
invoked the result of the operation is shown on the right panel.

Fig. 3. Actor invocation dialog

After the test scenarios for C1 and C2 are completed by repeating the method
described above for each step in the scenario the tester can visualize the propagation
of invocations between C1 and C2, this invocation trace is presented in standard web
browser. Figure 7 shows a similar trace from another example. The tester can now
compare this message sequence chart with the same chart in the specification and
verify if the components behave accordingly.

2.2 Systems Testing Tools

System testers are more engaged in the acceptance of the complete (customers) target
application. The requirements and test purposes from the application users are
different from the developer’s viewpoint. System testers focus on the whole system or
at least a meaningful subsystem that fulfills a particular work. The in-depth testing
phase of the component developer using such test tools as described in the previous
section is a prerequisite for the examination of a large composed system. Single
components A and B have to operate according to their interface definitions and

semantics specification. A system including multiple components A and B
interworking possibly with each other and further components of different type fulfills
an overall functionality which has to be evaluated and/or demonstrated according to
an unambiguous test plan and has to deliver a meaningful test report.

It is often sufficient to run applications tests at the API provided for end-customers
only. In this situation the test engineers have a choice between lots of test tools
provided at the software market. An easy approach to integrate observation points into
component-based system implementation is proposed for system testing: We have
implemented CCM components that can be introduced at communication points
between components under test (SUT components). The primary task of such so-
called proxy components is the collection of proper information about the interaction
between SUT components and the distribution of corresponding notifications to
various applications (e.g. an arbiter). In contrast to the interceptor approach the proxy
approach is more flexible (e.g. if C++ is used it does not need any component
sources).

Due to the expressiveness of the IDL specification of the involved SUT
components we had to address a number of design questions which we considered
with the following features and decisions for the proxy components:
• One proxy component will cover a full communication profile (interfaces and

event sinks) provided by one original SUT component; i.e. the proxy reflects the
“incoming” side of a SUT component.

• It is subject to the test engineer (i.e. his interests and preferred test configuration)
to couple (deploy) all or only parts of the proxy interfaces (e.g. in the following
figure a proxy for component C2 is introduced, but only one facet will be used).

Fig. 4. Sample proxy configuration

• Each proxy component requires an individual component identifier to be

identified within the SUT after deployment.
• In case of synchronous communication proxy components should not block any

interaction during waiting for a reaction in response to an operation invocation.

Other major questions address the test system applications that should take care on
the observations of the proxy component and how to distribute the proxy
notifications. The approach depends on the facilities and intention of the test

 &��

 &��

3UR[\�
RI�&�� &��

engineers. Conceptionally a specific test system component is foreseen to adapt the
preferred test system application responsible for filtering, analysis or presentation of
the observations (see the following sections for sample applications).

A comprehensive IDL3 event type has been defined to serve as a common
interface for the different adaptation approaches. Such proxy notifications are
delivered using CCM event channels. In our implementation we’ ve distinguished
proxy_request, proxy_reply and proxy_exception notifications for synchronous SUT
interaction (see Figure 5) and a single proxy_event notification for asynchronous SUT
interaction. Transported data comprise details on operation name, parameters (in/out,
results), location (proxy identifier) and timestamps of the observations.

Fig. 5. Proxy component interactions

With the broadcast (publishing) feature of the CCM event communication it is
possible to use different concurrent adaptation components, i.e. evaluation systems.
Such adaptation components fulfill a bridge function to a non CCM-based test
equipment. Unfortunately it is required to implement the specific needs for each
application. On the other hand there is no implementation necessary to get the proxy
components: We’ ve selected the Open source CCM development environment Qedo
[21] to generate proxy source code which can be compiled, linked and deployed with
conventional tools. Due to the CCM standardized interfaces the SUT components can
be based on any implementation language and do not need to be developed with
Qedo.

Our implementation extends the Qedo compiler in such a way that it is sufficient to

list the components (using the new “- - proxy” option) for which proxies should be
build when Qedo is called for an IDL3 specification of the SUT. Proxy components
will be generated once and can be instantiated and deployed multiple times.

3 Test Definition Languages

The COACH test framework contains a library, which allows scripts written in the
popular TCL language to interact with the CCM environment. The TCL library works
closely with the IdlTree library and uses the freely available Jacl [8] implementation
of TCL written in Java. Although TCL is currently used for the COACH test tools,
libraries for other scripting languages such as Python [2] can easily be used in the
same way. The choice for TCL is mainly made from a pragmatic point of view since
it easily integrates with Java and because it is widely accepted as an effective
scripting language.

The goal of the COACH TCL library is to support CCM programmers, which need
to test their components in an easy way. The TCL library consists of a set of TCL
procedures that provide an API with the CORBA and CCM environment. With the
help of the IdlTree library, complex IDL parameter values can be easily constructed
and modified within a TCL script. These API procedures allow CCM components to
be located, their facet references obtained, parameter values to be constructed and
invocations to be done on a facet from a TCL script. The result of the invocation can
be compared or used as a parameter value for subsequent operations.

The Actor can load and execute TCL test script in a TCL shell window. The tester
can also interactively type in TCL statements and observe the result in the shell.

If large SUT from different vendors have to be validated in multiple user
environments abstract test specifications are recommended for system testing. Their
advantages are good readability as well as a standardized and common understanding
of the test semantics. Test languages such as TTCN are specifically designed by the
ITU for such kind of testing while scripting languages such as TCL, Python and
IDLscript are more suitable for developers.

Standardized test notations like TTCN-3 [13] or the testing profile for UML [18]
are mature candidates and go beyond XML-based test notations as proposed in [5].
Message-based protocol conformance testing and operation-based CORBA
application tests have already been done with TTCN-3 [10][11]. The UML testing
profile was another alternative test notation but it was due to the incomplete
standardization process of UML2.0 within the OMG not available at the beginning of
our work.

In principle a TTCN-3 based test system can access operations under test at every
known (or registered) CCM component. Initial trails for the application of TTCN-3 to
test CCM applications have been already presented in [7], but have been limited to
operation-based component interfaces and did not consider the proxy components
introduced above. Furthermore, in the meanwhile the IDL2.* to TTCN-3 mapping
standard from ETSI [14] could be used and requires only small additions for covering
IDL3 event communication: Events can be exchanged at message-based TTCN-3
ports. Event types can be expressed by TTCN-3 record structures. The TTCN-3 group

definition may collect all data types and templates that are related to an event type.
Our CCM adaptation component for TTCN-3 assumes a CORBA interface (for

each proxy) provided by the TTCN-3 system adapter that collects (incoming)
operation calls to related port instances defined in the TTCN-3 abstract test suite.
Figure 6 illustrates the situation and the interfaces exemplarily involving two proxy
components with a TTCN-3 system adapter that provides the related CORBA
interfaces and applies to the TTCN-3 runtime interface (TRI) [15].

Fig. 6. TTCN-3 test system adaptation sample

4 Test Trace Viewing Facilities

In addition to providing the tester with a means of testing components using an actor
and reactor, the CCM test framework allows the tester to trace and visualize the
propagation of invocations between CCM components. Invocation tracing is useful
for such things as comparing the runtime behavior of a planned system with its design
specifications. The Tracer framework presented in this section consists of two parts:

• TraceServer

• TraceViewer

The TraceServer is a CCM component that contains a collection of events that
occurred within the system under test. An event basically is an interaction between
CCM components. The TraceServer responds to queries by returning the requested
event data formatted in XML, including complex parameter data types.

The TraceViewer (see Figure 7) is a combination of a web server and a web client.
The web server acts as an intermediary between the TraceServer and the web client.

Adaptation
component

TTCN3
system
adapter

Proxy
id1

Proxy
id2

TRI

...SUT...
Proxy id1

Proxy id2

It translates HTTP requests from the web client into TraceServer queries using
CORBA invocations. The result is send back to the web client as plain text XML. The
web client is the vehicle to visualize the data received from the web server in a user-
friendly manner. The client depends heavily on JavaScript code, not only for dynamic
SVG [24] creation but also for user control about how the information is presented.

Fig. 7. Invocation tracing viewer

Events are part of an invocation trail with a start point and an end point. As an
invocation propagates through a CCM system it carries context information. This
context information is extracted and updated at each interaction point.

The trace framework is generally concerned with tracing and visualizing
invocations between CCM components. However, in a CCM system several
communicating entities can be distinguished such as facets, receptacles event sources,
event sinks, components, containers and plain CORBA objects. In order to present a
meaningful picture of the various interactions we must know what the relation
between an event and the communication entity is.

The underlying communication mechanism in CCM is still based on standard
CORBA. The CORBA IDL compiler generates stubs and skeletons. An invocation on
a CORBA object passes through a stub instance on exit and passes through a skeleton
on entry. At the CORBA level, an invocation enters an entity at the POA_IN. It leaves
an entity at the STUB. This results in the definition of the interaction points as shown
in Listing 1. Each trace event contains information from which interaction point it
was sent.

module tracing {
 enum InteractionPoint {
 STUB_OUT,
 POA_IN,
 POA_OUT,
 POA_OUT_EXCEPTION,
 STUB_IN,
 STUB_IN_EXCEPTION,
 ONEWAY_STUB_OUT,
 ONEWAY_POA_IN
 };
};

��� ����� �	��

�

IDL Interaction points specification.

At each interaction point a trace event must be send to the TraceServer component

with timing and identity information about the interaction. This requires that the
invocation flow at the interactions points is intercepted to allow for the additional
actions to collect and sent the trace information. The CORBA Portable Interceptor
(PI) specification [19] defines a portable mechanism to intercept the invocation flow
of an operation on a CORBA object. Since CCM Component facets are implemented
as normal CORBA objects, this mechanism is also suitable for the implementation of
invocation tracing for CCM component interactions. The PI mechanism also allows
additional service data to be propagated transparently between CORBA invocations.
This is used for example with a transaction service to propagate a transaction context.
For the purpose of invocation tracing, a TraceService can be created which propagates
tracing context information between CORBA invocations. The IDL specification of
the propagation context is show in Listing 2.

 struct PropagationContext {
 // user defined indentification string to mark a segment of an invocation trail
 string trail_label;

 // Id of the originating thread at the start of the invocation chain.
 string trail_id;
 long interaction_counter;
 };

Listing 2. IDL Propagation Context specification.

The originator_id field is initialised at the start of an invocation trail and uniquely

labels the trail as it propagates through distributed components. The
interaction_counter field is incremented at each interaction point and is used to
determine the proper order between interactions. The trailLabel field is an optional,
additional label to mark an invocation trail. It can be used in combination with the
Actor and the scripting environment to highlight specific sections of an invocation
trail with a user defined label. TraceViewer applications can use this label to visualize
such segment in the graphical output.

5 Application of the Test Tools

Due to the scope of the different test tools introduced above there are various
possibilities for test engineers to benefit, i.e. the tools can be combined according to
the specific needs (e.g. see Figure 8 which illustrates a combination of the proxy
components with the tracing tools). The preliminary version of the test tools are an
input to the COACH project workpackages developing large CCM based applications
for the telecom domain (a Network Management Framework and a Parlay Platform)
which are due to the COACH project termination in spring 2004. At the time of
writing the experiences with the usage of our toolset are restricted to our own test
applications.

Fig. 8. Sample test configuration for online monitoring

The developers testing tools have been already successfully used during the
implementation of some own components like e.g. the TraceServer. Predecessors of
the Actor and Reactor test components were already successfully used in the
WINMAN project [23] starting at the specification phase until the final integration
phase. During the integration phase they used Reactor components to isolate part of
the system without disturbing the operation of the rest of the system. The actor was
used to execute acceptance test scripts.

The systems testing tools have been applied to the standard CCM examples
supplied by the OMG (e.g. “dining philosophers”). It has been already demonstrated
within the project how proxy components are suitable for feeding there observations
to the COACH TraceServer (see section 4) and also in combination with a TTCN-3
based online monitoring system that compares observed interactions from the SUT
based on abstract TTCN-3 test definitions. In the latter case the proxy components

System
Under
Test

Repository

IDL3

Trace
Server

Trace
Viewer

Proxy
Component
Generator

Proxy N

Proxy 1

CCM Adaptation component

which had been generated once have been applied in multiple test cases and address
various test purposes according to the selected test configurations.

6 Summary and Conclusions

The area of component based testing is a rather new area in the sense that there are
almost no specialized tools in testing the development or acceptance of CCM
components. The work presented in this paper is a first step to realize a test and
acceptance framework for these components. A comprehensive set of testing tools
have been described and implemented which can be used at an early stage of the
production of CCM based applications as well as during the system acceptance testing
because its scope covers the needs of component software implementers and the
requirements of system test engineers.

Test concepts like the Actor and Reactor have already proven their usefulness.
Visualization techniques as implemented in the trace viewer provide useful feedback
for verifying the correctness of the implementation. Although two distinct user groups
have been identified the test framework is flexible enough to allow other usage as
well. It is at the discretion of the user whether to use the proxy based approach that
can be used without modifying the component under test or the interceptor approach
that allows for a rich choice in interaction points in the component under test at any
stage of the development or acceptance.

The use of test scripts allows for test automation and a reproducible way of testing
the components. Different needs such as monitoring, trace visualization and
adaptation of well accepted (standardized) test notations have been considered and
satisfied. The availability and active usage of such test tools in the CCM based
software production shall support the quality, confidence and acceptance of CORBA
components applications.

The Open Source implementations developed in the COACH project have been
adopted and extended to create a meaningful test environment. The test facilities will
be available with the CCM platforms OpenCCM [20] and Qedo [21].

References

1. H.J. Batteram and W.A. Romijn (editors), “Telecom domain requirements upon
component architectures”. COACH deliverable D1.1.

2. D. Beazley, “Python Essential Reference”, ISBN: 0735710910, New Riders, 416 pages
(June 2001)

3. K. Beck. Test-Driven Development by Example. Addison Wesley, 2003.
4. A. Bertolino, A. Polini: A Framework for Component Deployment Testing. Proceedings

of the 25th International Conference on Software engineering, Portland, Oregon, Oct.
2003.

5. G. Bundell et al.: A Software component Verification Tool. SMT’ 00. Wollongong (AUS)
Nov. 2000.

6. J. Hartmann et al.: UML-Based Integration Testing. ISSTA’ 00. Portland, Oregon, Aug.
2000.

7. A. Hoffmann et al.: CCM testing environment. ICSSEA’ 2002, Paris, Dec.2002.
8. R. Johnson, “ Tcl and Java Integration” , Sun Microsystems Laboratories, February 3, 1998

http://www.tcl.tk/software/java/tcljava.pdf
9. J. Reznik (editor), “ Requirements for the component tool chain and the component

architecture” , COACH deliverable D1.3.
10. M. Schünemann et al.: Improving test software using TTCN-3, GMD Report No. 153,

Dec. 2001. http://www.gmd.de/publications/report/0153/
11. A. Yin et al.: Operation-based interface testing on different abstraction levels.

ICSSEA’ 2001, Paris, Dec.2001.
12. CCMtools project: http://sourceforge.net/projects/ccmtools
13. ETSI: Testing and Test Control Notation (TTCN-3). http://www.etsi.org/ptcc/

ptccttcn3.htm
14. ETSI TS 102 219: Methods for Testing and Specification (MTS): The IDL to TTCN-3

Mapping, V1.1.1, 2003-06.
15. ETSI: TTCN-3 Runtime Interface (TRI). ES 201 873-5, Feb. 2003.
16. IST Project COACH web site, http://www.ist-COACH.org/
17. OMG, formal/02-06-65: CORBA Components, v3.0 full specification
18. OMG ADTF: UML testing profile. http://www.fokus.fhg.de/tip/u2tp/
19. OMG: Portable interceptors. TC Document orbos/99-12-02, December 1999.
20. Open CORBA Component Model Platform (OpenCCM).

http://corbaweb.lifl.fr/OpenCCM
21. The QEDO project http://www.qedo.org/
22. W3C Note on VML http://www.w3.org/TR/NOTE-VML
23. WDM and IP Network Management (WINMAN) project: http://www.winman.org/
24. Mozilla SVG project, http://www.mozilla.org/projects/svg/

