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Abstract. Following the success of CORBA based systems the OMG has 
standardized the CORBA Component Model (CCM) to improve the 
implementation process of large distributed systems. The European project 
COACH [16] has been set up to build an Open Source development platform to 
construct CCM applications. As part of COACH a toolset for CCM components 
and system testing has been defined and implemented. This paper introduces 
the various components and features which have been foreseen and 
implemented for test activities such as interactive component testing, test trace 
visualization, or the application of abstract test specifications. The resulting test 
infrastructure addresses the CCM specifics but also benefits from CCM, e.g. by 
incorporating component communication facilities. 

1 Introduction  

This contribution presents a framework for testing software components and systems 
that are based on the CORBA Component Model (CCM)[17] standard. An important 
aspect of CCM based systems is that the system must be verifiable and testable at the 
abstraction level of its design and independent of the chosen component 
implementation language. Component based systems allow the development and 
testing of components to be partitioned across development groups, working in 
parallel. However, dependencies between separately developed components may 
cause delay in testing. Component oriented software engineering has enjoyed an 
increasing interest in research and industry over the last decade. Component oriented 
software engineering focuses on system composition from components as elementary 
building blocks. This approach has many advantages and is generally regarded as an 
efficient way to handle complexity in large systems and (when properly applied) to 
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improve overall system quality. Component frameworks such as Enterprise Java 
Beans (EJB) from Sun Microsystems, COM (and more recently .NET) from 
Microsoft have gained widespread acceptance in software development communities 
in a short time. The CCM is the component model proposed by the Object 
Management Group (OMG). As opposed to EJB and .NET the CCM is not 
proprietary but is an open industry standard. While EJB and .NET are usually applied 
in web based, client-server application domains, the CCM can be applied in many 
industrial domains including the telecommunication industry. 

Using the CCM requires a different approach to the development cycle. Software 
systems are now composed from multiple components and separate the task of 
component development from system composition. This also requires a different 
approach for the testing of CCM based systems. 

There are multiple parts during the whole development cycle of a CCM based 
system where testing is needed. For example, a component developer needs to test 
individual components, or small clusters of components working together. System 
developers compose systems from readily available components but must test the 
various interaction scenarios for the specific composition in which the components 
are used. Finally, with large and complex systems integration and conformance 
testing is often done by specialized system testers and not by developers.  

In the context of testing CCM components there is less related work to be 
mentioned. The majority of the CCM implementers did not address testing by specific 
techniques or tools. Furthermore we did not assume the availability of an UML 
specification of the System under Test (SUT) as it has been done in other approaches 
[4][6]. 

We have only found the following work carried out by L. Johnson and E. Teiniker 
on a project called CORBA Component Model Tools [12]. Their aim is to provide 
tools used for generating CORBA components, test components, and test programs 
based on source IDL files. Testing has been identified as an important issue. They 
intend to test their applications on different levels during development: Every class of 
the business logic that will be part of a component has to be tested (Class Level 
Testing). For every component a counter component that looks like a mirror to the 
original component will be created. This counter component has a receptacle for 
every facet of the original component and vice versa (Component Level Testing). 
Testing should include a set of connected components (Assembly Level Testing).  

Johnson and Teiniker follow the methodology of Beck [3] who introduces the Test 
Driven Development and starts implementing the test before implementing the 
application. A test client coordinates creating and connecting the components, as well 
as the test calls to the facets of a given component C. The mirror component C’ and 
the test client are always generated at the same time as the component itself, without 
additional development effort. The process begins automatically after compiling. The 
development of the local component is separated from the development of the test 
client. A deployed component can be used in different applications at the same time. 
Currently there are no test tools documented in the project that have been started 
recently in 2003.  

From this latest survey of existing testing tools no test implementations do fit the 
requirements stated within the COACH project [1][9] and there is still the need to 
build an appropriate CCM testing environment. 



 

 
The test architecture described in this paper addresses two distinct test audiences, 

developers and system testers. Although both groups have a common goal of testing 
the overall quality of a CCM system, each group has a different focus and a different 
approach to reach that goal. Component programmers are concerned with testing at a 
lower level and have to take infrastructure specifics into account such as concurrency, 
performance, stress testing etc. During the development cycle, component 
programmers also often use test tools as a debugging facility to locate implementation 
errors in components, or for regression testing to verify modifications done on a 
component implementation has not affected other component functions.  

Considering system testing there is a special need to compare application tests and 
the test results gathered from test campaigns executed with different vendor 
implementations and heterogeneous user environments. In this context the 
conformance to (standardized) system requirements has to be shown and an 
international standardized test notation has to be applied. Test languages such as 
TTCN-3 [13] are specifically designed by ETSI and ITU-T for such kind of testing. 

Our CCM test architecture describes a full set of tools that cover both component 
developer oriented testing and system integration and conformance testing for system 
testers. 

This paper is organised as follows: Section 2 specifies the component test 
framework describing the different parts of our framework. Section 3 addresses test 
notations which can be applied to the components under test in order to automate the 
tests. Section 4 investigates in the test trace viewing facilities. Section 5 describes an 
application of the test tools. And finally the conclusions will summarise the major 
results of this paper. 

2 Component Test Framework Description 

Our test framework, i.e. the COACH test framework, is only concerned with testing 
CCM components and interactions between CCM components. This means that the 
framework can be used to identify components that do not behave according to their 
specifications. Once a component containing a fault has been identified, further 
localization of the fault within the component can be done using the test and debug 
facilities that are usually part of the implementation language specific development 
environment. This implementation language specific testing and debugging is outside 
the scope of the test framework specified in this contribution.  

Tests on CCM components and the observation of interactions between 
components are expressed using IDL data types and are independent of the data types 
of the implementation language of the component. Our CCM test framework provides 
the testers with the following essential capabilities: 
 
• The ability to invoke CORBA operations on selected component facets and 

observe the response, using a so-called Actor component. 

• The ability to intercept CORBA operations on two different levels: 



 

- Inside a component using the portable interceptors 

- Outside the component using so-called Proxy Components 

• The ability to extend the range of test scenarios for components that have 
dependencies with other components whose implementation is unavailable; using 
so-called Reactor components as substitutes.  

• The ability to visualize causality relations between invocations at runtime. 

• The ability to run standardized abstract TTCN-3 test cases against CCM 
applications under test. 

The following figure gives an overview of the test framework. The elements that 
are above and on the right side of the SUT are used during the development phase of 
the system under test. The elements left from the SUT are used after the SUT is 
finished and ready for deployment.  
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Fig. 1.  Component Test Framework 

 
The CCM test framework addresses each capability as will be explained further in 

the next sections. 

2.1 Developers Testing Tools 

The CCM is well suited to develop large-scale distributed applications. Teams of 
developers typically develop these types of applications where each team is 
responsible for a subsystem. One developer may be responsible for the development 



 

of a group of components that will eventually need to be integrated into the system. A 
developer will need to test the set of components (s)he is responsible for as much as 
possible before integrating them into the whole system.  

The ability to test components may be severely restricted when the components 
under test depend on interactions between other components that are not yet 
implemented. To reduce this restriction, the dependent components can be substituted 
by, so-called, Reactor components for the purpose of testing only. Reactor 
components must provide the same set of facets, operations and events as their real 
counterparts. If the IDL specification is known, Reactor component implementations 
can be generated automatically.  

The Reactor-implementation-generation process is similar to the generation of 
Stub, Skeleton and other implementation classes by the IDL compiler. The IDL 
specification is read as input and Reactor implementation classes are produced as 
output that then needs to be compiled by the implementation language compiler. 
Although IDL can be translated into different kind of implementation languages, the 
Reactor components do not necessarily need to be implemented in the same language 
as the components they are substituting. After all, one of the strengths of CORBA 
systems is heterogeneity. It does not matter in what language a component is 
implemented as long as it supports the same IDL interfaces. For practical purposes we 
have chosen to generate Reactor components in Java. 

The implementation of the Reactor component must be configurable to allow 
different kind of responses. The response may be interactive allowing the tester to 
examine the parameter values and construct a reply using an interactive IDL type 
editor, or the response is automated. The Reactor can be hard-coded to give an 
automated response, or by executing a general purpose scripting language that can be 
loaded and interpreted by the Reactor at runtime. The latter is obviously more flexible 
but may not be necessary for simple test cases or may have an unacceptable 
performance penalty.  In any case, the tester must be able to make the choice. When 
an invocation arrives on a Reactor component facet it can reply (within limits) as if 
the real component is in place. The range of possible test scenarios is now extended 
for the components under test and can reduce the probability of errors when the final 
components replace the Reactor components when they are available. 

Of course, the behavior of Reactor components is determined by the interactive or 
programmed response and will most likely differ from their real implementation. 
Nevertheless, the presence of Reactor components can demonstrate correct behavior 
of the components under test for various interaction scenarios. In particular error 
conditions occurring in the Reactor components can usually be simulated more easily 
using Reactors then real implementations. Even when real implementations become 
available, Reactor components are still useful for regression testing. 

Another part of the test framework is the Actor component that acts as a general 
purpose CCM client component that can invoke operations on other components. The 
Actor can also load and execute test scripts or can be run in interactive mode. In 
interactive mode the tester can interactively fill in parameter values for a selected 
operation, invoke the operation and examine the result. In order to invoke an 
operation on a facet of a target component, the Interoperable Object Reference (IOR) 
of the component must be obtainable. In CCM systems, key components usually 
publish their IORs using a naming server. References to other components may be 



 

passed as return values of operations. References to component facets can be obtained 
by using the navigation operations provided by the component interface.  

In addition to providing the tester with a means of testing components using an 
actor and reactor, the CCM test framework allows the tester to trace and visualize the 
propagation of invocations between CCM components, see section 4 for the details.  

With the combination of Actor, Reactor, and Invocation tracing viewer the 
implementers of CCM components have a powerful set of tools available to test their 
CCM components at an early stage. 

To illustrate the developers’ test approach with an example, suppose a developer 
has implemented components C1 and C2 as depicted in Figure 2. Component C1 
interacts with C2 using facet f3. The implementation of C1 also needs to interact with 
facet f5 of component R1 and facet f6 of component R2 as shown in Figure 2. This 
figure also shows that component C2 interacts with facet f7 of component R2. The 
implementation of R1 and R2 is outside the scope of our developer and the 
implementation may not become available for some time. This situation limits the test 
scenario possibilities for components C1 and C2 since the test scenarios in which 
invocations of R1 and R2 occur must be omitted. However, with the IDL specification 
known for R1 and R2, Reactor components are generated and instantiated as part of 
the test system. The test scenarios for C1 and C2 are now extended to include 
invocations to R1 and R2.  
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Fig. 2. Actor-reactor test environment 

 
To test C1 and C2 the Actor is used. Figure 2 shows how the Actor user interface is 

used to invoke operations on the facets of the components under test C1 and C2 
interactively. The Actor includes a naming server browser that allows the tester to 
examine the content of the naming server and to select one of the registered 



 

references. If the selected reference is a component reference, the Actor will 
introspect the component to obtain information about the facets it supports and will 
display a new window that allows the tester to select a target facet reference. Once a 
target facet is selected, another window is shown in which parameter values can be 
interactively filled in. The signatures of the operations and the structure of the 
parameters is obtained from an interface repository. In this example Figure 3 shows 
the selected operation of facet f2 of C1 on the left panel. After ‘method3’ has been 
invoked the result of the operation is shown on the right panel. 

 

 
Fig. 3.  Actor invocation dialog 

After the test scenarios for C1 and C2 are completed by repeating the method 
described above for each step in the scenario the tester can visualize the propagation 
of invocations between C1 and C2, this invocation trace is presented in standard web 
browser. Figure 7 shows a similar trace from another example. The tester can now 
compare this message sequence chart with the same chart in the specification and 
verify if the components behave accordingly.  

2.2 Systems Testing Tools 

System testers are more engaged in the acceptance of the complete (customers) target 
application. The requirements and test purposes from the application users are 
different from the developer’s viewpoint. System testers focus on the whole system or 
at least a meaningful subsystem that fulfills a particular work. The in-depth testing 
phase of the component developer using such test tools as described in the previous 
section is a prerequisite for the examination of a large composed system. Single 
components A and B have to operate according to their interface definitions and 



 

semantics specification. A system including multiple components A and B 
interworking possibly with each other and further components of different type fulfills 
an overall functionality which has to be evaluated and/or demonstrated according to 
an unambiguous test plan and has to deliver a meaningful test report. 

It is often sufficient to run applications tests at the API provided for end-customers 
only. In this situation the test engineers have a choice between lots of test tools 
provided at the software market. An easy approach to integrate observation points into 
component-based system implementation is proposed for system testing: We have 
implemented CCM components that can be introduced at communication points 
between components under test (SUT components). The primary task of such so-
called proxy components is the collection of proper information about the interaction 
between SUT components and the distribution of corresponding notifications to 
various applications (e.g. an arbiter). In contrast to the interceptor approach the proxy 
approach is more flexible (e.g. if C++ is used it does not need any component 
sources). 

Due to the expressiveness of the IDL specification of the involved SUT 
components we had to address a number of design questions which we considered 
with the following features and decisions for the proxy components: 
• One proxy component will cover a full communication profile (interfaces and 

event sinks) provided by one original SUT component; i.e. the proxy reflects the 
“incoming” side of a SUT component. 

• It is subject to the test engineer (i.e. his interests and preferred test configuration) 
to couple (deploy) all or only parts of the proxy interfaces (e.g. in the following 
figure a proxy for component C2 is introduced, but only one facet will be used). 
 
 

 
 

Fig. 4.  Sample proxy configuration 

 
• Each proxy component requires an individual component identifier to be 

identified within the SUT after deployment. 
• In case of synchronous communication proxy components should not block any 

interaction during waiting for a reaction in response to an operation invocation. 
 

Other major questions address the test system applications that should take care on 
the observations of the proxy component and how to distribute the proxy 
notifications. The approach depends on the facilities and intention of the test 
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engineers. Conceptionally a specific test system component is foreseen to adapt the 
preferred test system application responsible for filtering, analysis or presentation of 
the observations (see the following sections for sample applications).  

A comprehensive IDL3 event type has been defined to serve as a common 
interface for the different adaptation approaches. Such proxy notifications are 
delivered using CCM event channels. In our implementation we’ ve distinguished 
proxy_request, proxy_reply and proxy_exception notifications for synchronous SUT 
interaction (see Figure 5) and a single proxy_event notification for asynchronous SUT 
interaction. Transported data comprise details on operation name, parameters (in/out, 
results), location (proxy identifier) and timestamps of the observations. 
 

 

Fig. 5. Proxy component interactions 

With the broadcast (publishing) feature of the CCM event communication it is 
possible to use different concurrent adaptation components, i.e. evaluation systems. 
Such adaptation components fulfill a bridge function to a non CCM-based test 
equipment. Unfortunately it is required to implement the specific needs for each 
application. On the other hand there is no implementation necessary to get the proxy 
components: We’ ve selected the Open source CCM development environment Qedo 
[21] to generate proxy source code which can be compiled, linked and deployed with 
conventional tools. Due to the CCM standardized interfaces the SUT components can 
be based on any implementation language and do not need to be developed with 
Qedo. 

Our implementation extends the Qedo compiler in such a way that it is sufficient to 



 

list the components (using the new “- - proxy” option) for which proxies should be 
build when Qedo is called for an IDL3 specification of the SUT. Proxy components 
will be generated once and can be instantiated and deployed multiple times. 

3 Test Definition Languages 

The COACH test framework contains a library, which allows scripts written in the 
popular TCL language to interact with the CCM environment. The TCL library works 
closely with the IdlTree library and uses the freely available Jacl [8] implementation 
of TCL written in Java. Although TCL is currently used for the COACH test tools, 
libraries for other scripting languages such as Python [2] can easily be used in the 
same way. The choice for TCL is mainly made from a pragmatic point of view since 
it easily integrates with Java and because it is widely accepted as an effective 
scripting language.  

The goal of the COACH TCL library is to support CCM programmers, which need 
to test their components in an easy way. The TCL library consists of a set of TCL 
procedures that provide an API with the CORBA and CCM environment. With the 
help of the IdlTree library, complex IDL parameter values can be easily constructed 
and modified within a TCL script. These API procedures allow CCM components to 
be located, their facet references obtained, parameter values to be constructed and 
invocations to be done on a facet from a TCL script. The result of the invocation can 
be compared or used as a parameter value for subsequent operations.  

The Actor can load and execute TCL test script in a TCL shell window. The tester 
can also interactively type in TCL statements and observe the result in the shell.  

If large SUT from different vendors have to be validated in multiple user 
environments abstract test specifications are recommended for system testing. Their 
advantages are good readability as well as a standardized and common understanding 
of the test semantics. Test languages such as TTCN are specifically designed by the 
ITU for such kind of testing while scripting languages such as TCL, Python and 
IDLscript are more suitable for developers. 

Standardized test notations like TTCN-3 [13] or the testing profile for UML [18] 
are mature candidates and go beyond XML-based test notations as proposed in [5]. 
Message-based protocol conformance testing and operation-based CORBA 
application tests have already been done with TTCN-3 [10][11]. The UML testing 
profile was another alternative test notation but it was due to the incomplete 
standardization process of UML2.0 within the OMG not available at the beginning of 
our work. 

In principle a TTCN-3 based test system can access operations under test at every 
known (or registered) CCM component. Initial trails for the application of TTCN-3 to 
test CCM applications have been already presented in [7], but have been limited to 
operation-based component interfaces and did not consider the proxy components 
introduced above. Furthermore, in the meanwhile the IDL2.* to TTCN-3 mapping 
standard from ETSI [14] could be used and requires only small additions for covering 
IDL3 event communication: Events can be exchanged at message-based TTCN-3 
ports. Event types can be expressed by TTCN-3 record structures. The TTCN-3 group 



 

definition may collect all data types and templates that are related to an event type.  
Our CCM adaptation component for TTCN-3 assumes a CORBA interface (for 

each proxy) provided by the TTCN-3 system adapter that collects (incoming) 
operation calls to related port instances defined in the TTCN-3 abstract test suite. 
Figure 6 illustrates the situation and the interfaces exemplarily involving two proxy 
components with a TTCN-3 system adapter that provides the related CORBA 
interfaces and applies to the TTCN-3 runtime interface (TRI) [15]. 

 

Fig. 6.  TTCN-3 test system adaptation sample 

4 Test Trace Viewing Facilities 

In addition to providing the tester with a means of testing components using an actor 
and reactor, the CCM test framework allows the tester to trace and visualize the 
propagation of invocations between CCM components. Invocation tracing is useful 
for such things as comparing the runtime behavior of a planned system with its design 
specifications. The Tracer framework presented in this section consists of two parts: 

• TraceServer 

• TraceViewer 

The TraceServer is a CCM component that contains a collection of events that 
occurred within the system under test. An event basically is an interaction between 
CCM components.  The TraceServer responds to queries by returning the requested 
event data formatted in XML, including complex parameter data types. 

The TraceViewer (see Figure 7)  is a combination of a web server and a web client. 
The web server acts as an intermediary between the TraceServer and the web client.  
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It translates HTTP requests from the web client into TraceServer queries using 
CORBA invocations. The result is send back to the web client as plain text XML. The 
web client is the vehicle to visualize the data received from the web server in a user-
friendly manner. The client depends heavily on JavaScript code, not only for dynamic 
SVG [24] creation but also for user control about how the information is presented.  

 

  
  

Fig. 7.  Invocation tracing viewer 

Events are part of an invocation trail with a start point and an end point. As an 
invocation propagates through a CCM system it carries context information. This 
context information is extracted and updated at each interaction point.  

The trace framework is generally concerned with tracing and visualizing 
invocations between CCM components. However, in a CCM system several 
communicating entities can be distinguished such as facets, receptacles event sources, 
event sinks, components, containers and plain CORBA objects. In order to present a 
meaningful picture of the various interactions we must know what the relation 
between an event and the communication entity is. 

The underlying communication mechanism in CCM is still based on standard 
CORBA. The CORBA IDL compiler generates stubs and skeletons. An invocation on 
a CORBA object passes through a stub instance on exit and passes through a skeleton 
on entry. At the CORBA level, an invocation enters an entity at the POA_IN. It leaves 
an entity at the STUB. This results in the definition of the interaction points as shown 
in Listing 1. Each trace event contains information from which interaction point it 
was sent. 



 

 

module tracing { 
    enum InteractionPoint { 
        STUB_OUT, 
        POA_IN, 
        POA_OUT, 
        POA_OUT_EXCEPTION, 
        STUB_IN, 
        STUB_IN_EXCEPTION, 
        ONEWAY_STUB_OUT, 
        ONEWAY_POA_IN 
    }; 
}; 
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IDL Interaction points specification. 

 
At each interaction point a trace event must be send to the TraceServer component 

with timing and identity information about the interaction. This requires that the 
invocation flow at the interactions points is intercepted to allow for the additional 
actions to collect and sent the trace information. The CORBA Portable Interceptor 
(PI) specification [19] defines a portable mechanism to intercept the invocation flow 
of an operation on a CORBA object. Since CCM Component facets are implemented 
as normal CORBA objects, this mechanism is also suitable for the implementation of 
invocation tracing for CCM component interactions. The PI mechanism also allows 
additional service data to be propagated transparently between CORBA invocations. 
This is used for example with a transaction service to propagate a transaction context. 
For the purpose of invocation tracing, a TraceService can be created which propagates 
tracing context information between CORBA invocations. The IDL specification of 
the propagation context is show in Listing 2.  

 
 

 

    struct PropagationContext { 
        // user defined indentification string to mark a segment of an invocation trail 
        string trail_label; 
 
        // Id of the originating thread at the start of the invocation chain. 
        string trail_id; 
        long interaction_counter; 
    }; 

 
Listing 2. IDL Propagation Context specification. 

 
The originator_id field is initialised at the start of an invocation trail and uniquely 

labels the trail as it propagates through distributed components. The 
interaction_counter field is incremented at each interaction point and is used to 
determine the proper order between interactions. The trailLabel field is an optional, 
additional label to mark an invocation trail. It can be used in combination with the 
Actor and the scripting environment to highlight specific sections of an invocation 
trail with a user defined label. TraceViewer applications can use this label to visualize 
such segment in the graphical output. 



 

5 Application of the Test Tools 

Due to the scope of the different test tools introduced above there are various 
possibilities for test engineers to benefit, i.e. the tools can be combined according to 
the specific needs (e.g. see Figure 8 which illustrates a combination of the proxy 
components with the tracing tools). The preliminary version of the test tools are an 
input to the COACH project workpackages developing large CCM based applications 
for the telecom domain (a Network Management Framework and a Parlay Platform) 
which are due to the COACH project termination in spring 2004. At the time of 
writing the experiences with the usage of our toolset are restricted to our own test 
applications.  

 

Fig. 8.  Sample test configuration for online monitoring 

The developers testing tools have been already successfully used during the 
implementation of some own components like e.g. the TraceServer. Predecessors of 
the Actor and Reactor test components were already successfully used in the 
WINMAN project [23] starting at the specification phase until the final integration 
phase. During the integration phase they used Reactor components to isolate part of 
the system without disturbing the operation of the rest of the system. The actor was 
used to execute acceptance test scripts. 

The systems testing tools have been applied to the standard CCM examples 
supplied by the OMG (e.g. “dining philosophers”). It has been already demonstrated 
within the project how proxy components are suitable for feeding there observations 
to the COACH TraceServer (see section 4) and also in combination with a TTCN-3 
based online monitoring system that compares observed interactions from the SUT 
based on abstract TTCN-3 test definitions. In the latter case the proxy components 
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which had been generated once have been applied in multiple test cases and address 
various test purposes according to the selected test configurations. 

6 Summary and Conclusions 

The area of component based testing is a rather new area in the sense that there are 
almost no specialized tools in testing the development or acceptance of CCM 
components. The work presented in this paper is a first step to realize a test and 
acceptance framework for these components. A comprehensive set of testing tools 
have been described and implemented which can be used at an early stage of the 
production of CCM based applications as well as during the system acceptance testing 
because its scope covers the needs of component software implementers and the 
requirements of system test engineers.  

Test concepts like the Actor and Reactor have already proven their usefulness. 
Visualization techniques as implemented in the trace viewer provide useful feedback 
for verifying the correctness of the implementation. Although two distinct user groups 
have been identified the test framework is flexible enough to allow other usage as 
well. It is at the discretion of the user whether to use the proxy based approach that 
can be used without modifying the component under test or the interceptor approach 
that allows for a rich choice in interaction points in the component under test at any 
stage of the development or acceptance.   

The use of test scripts allows for test automation and a reproducible way of testing 
the components. Different needs such as monitoring, trace visualization and 
adaptation of well accepted (standardized) test notations have been considered and 
satisfied. The availability and active usage of such test tools in the CCM based 
software production shall support the quality, confidence and acceptance of CORBA 
components applications. 

The Open Source implementations developed in the COACH project have been 
adopted and extended to create a meaningful test environment. The test facilities will 
be available with the CCM platforms OpenCCM [20] and Qedo [21].   
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