
Querying Parametric Temporal Logic Properties
on Embedded Systems

Hengyi Yang, Bardh Hoxha, and Georgios Fainekos

School of Computing, Informatics and Decision Systems Engineering,
Arizona State University

{hyang67,bhoxha,fainekos}@asu.edu

Abstract. In Model Based Development (MBD) of embedded systems,
it is often desirable to not only verify/falsify certain formal system spec-
ifications, but also to automatically explore the properties that the sys-
tem satisfies. Namely, given a parametric specification, we would like
to automatically infer the ranges of parameters for which the property
holds/does not hold on the system. In this paper, we consider parametric
specifications in Metric Temporal Logic (MTL). Using robust semantics
for MTL, the parameter estimation problem can be converted into an
optimization problem which can be solved by utilizing stochastic opti-
mization methods. The framework is demonstrated on some examples
from the literature.

1 Introduction

Software development for embedded control systems is particularly challenging.
The software may be distributed with real time constraints and must interact
with the physical environment in non trivial ways. Multiple incidents and acci-
dents of safety critical systems [1, 2] reinforce the need for design, verification
and validation methodologies that provide a certain level of confidence in the
system correctness and robustness.

Recently, there has been a trend to develop software for safety critical embed-
ded control systems using the Model Based Design (MBD) paradigm. Among the
benefits of the MBD approach is that it provides the possibility for automatic
code generation. Based on a level of confidence on the automatic code genera-
tion process, some of the system verification and validation can be performed
at earlier design stages using only models of the system. Due to the importance
of the problem, there has been a substantial level of research on testing and
verification of models of embedded and hybrid systems (see [3] for an overview).

In [4], we investigated a new approach for testing embedded and hybrid
systems against formal requirements in Metric Temporal Logic (MTL) [5]. Our
work was premised on the need to express complex design requirements in a
formal logic for both requirements analysis and requirements verification. Based
on the concept of robustness of MTL specifications [6], we were able to pose the
property falsification/testing problem as an optimization problem. In particular,
robust MTL semantics provide the user with an application depended measure



of how far a system behavior is from failing to satisfy a requirement. Therefore,
the goal of an automatic test generator is to produce a sequence of tests by
gradually reducing that positive measure until a system behavior with a negative
robustness measure is produced. In other words, we are seeking to detect system
behaviors that minimize the specification robustness measure.

Unfortunately, the resulting optimization problem is non-linear and non-
convex, in general. Moreover, embedded system models frequently contain black
boxes as subcomponents. Thus, only stochastic optimization techniques can be
employed for solving the optimization problem and, in turn, for solving the ini-
tial falsification problem. In our previous research [7, 8, 4], we have explored the
applicability of various stochastic optimization methods to the MTL falsification
problem with great success.

In this work, we take the MTL falsification method one step further. Namely,
not only would we like to detect a falsifying behavior if one exists, but also we
would like to be able to explore and determine system properties. Such a property
exploration framework can be of great help to the practitioner. In many cases, the
system requirements are not well formalized or understood at the initial system
design stages. Therefore, if the specification can be falsified, then it is natural
to ask for what parameter values the system still falsifies the specification.

In more detail, given an MTL specification with an unknown or uncertain
parameter [9], we automatically formulate an optimization problem whose so-
lution provides a range of values for the parameter such that the specification
does not hold on the system. In order to solve the resulting optimization prob-
lem, we utilize our MTL falsification toolbox S-TaLiRo [10], which contains a
number of stochastic optimization methods [7, 8, 4]. Finally, we demonstrate our
framework on a challenge problem from the industry [11] and we present some
experimental results on a small number of benchmark problems.

2 Problem Formulation

In this work, we take a general approach in modeling real-time embedded sys-
tems that interact with physical systems that have non-trivial dynamics. In the
following, we will be using the term hybrid systems or Cyber-Physical Systems
(CPS) for such systems to stress the interconnection between the embedded
system and the physical world.

We fix N ⊆ N, where N is the set of natural numbers, to be a finite set of
indexes for the finite representation of a system behavior. In the following, given
two sets A and B, BA denotes the set of all functions from A to B. That is, for
any f ∈ BA we have f : A→ B.

We view a system Σ as a mapping from a compact set of initial operating
conditions X0 and input signals U ⊆ UN to output signals Y N and timing (or
sampling) functions T ⊆ RN+ . Here, U is a compact set of possible input values
at each point in time (input space), Y is the set of output values (output space),
R is the set of real numbers and R+ the set of positive reals.

We impose three assumptions / restrictions on the systems that we consider:

2



1. The input signals (if any) must be parameterizable using a finite number of
parameters. That is, there exists a function U such that for any u ∈ U, there
exist two parameter vectors λ = [λ1 . . . λm]T ∈ Λ, where Λ is a compact
set, and t = [t1 . . . tm]T ∈ Rm+ such that m << maxN and for all i ∈ N ,
u(i) = U(λ, t)(i).

2. The output space Y must be equipped with a generalized metric d which
contains a subspace Z equipped with a metric d.

3. For a specific initial condition x0 and input signal u, there must exist a
unique output signal y defined over the time domain R. That is, the system
Σ is deterministic.

Further details on the necessity and implications of the aforementioned assump-
tions can be found in [12].

Under Assumption 3, a system Σ can be viewed as a function ∆Σ : X0×U→
Y N ×T which takes as an input an initial condition x0 ∈ X0 and an input signal
u ∈ U and it produces as output a signal y : N → Y (also referred to as
trajectory) and a timing function τ : N → R+. The only restriction on the
timing function τ is that it must be a monotonic function, i.e., τ(i) < τ(j) for
i < j. The pair µ = (y, τ) is usually referred to as a timed state sequence, which
is a widely accepted model for reasoning about real time systems [13]. A timed
state sequence can represent a computer simulated trajectory of a CPS or the
sampling process that takes place when we digitally monitor physical systems.
We remark that a timed state sequence can represent both the internal state
of the software/hardware (usually through an abstraction) and the state of the
physical system. The set of all timed state sequences of a system Σ will be
denoted by L(Σ). That is,

L(Σ) = {(y, τ) | ∃x0 ∈ X0 .∃u ∈ U . (y, τ) = ∆Σ(x0, u)}.

Our high level goal is to explore and infer properties that the system Σ sat-
isfies by observing its response (output signals) to particular input signals and
initial conditions. We assume that the system designer has some partial under-
standing about the properties that the system satisfies or does not satisfy and
he/she would like to be able to precisely determine these properties. In partic-
ular, we assume that the system developer can formalize the system properties
in Metric Temporal Logic (MTL) [5], but some parameters are unknown. Such
parameters could be unknown threshold values for the continuous state variables
of the hybrid system or some unknown real time constraints.

Example 1 As a motivating example, we will consider a slightly modified ver-
sion of the Automatic Transmission model provided by Mathworks as a Simulink
demo1. Further details on this example can be found in [14, 15, 12].

The only input u to the system is the throttle schedule, while the break sched-
ule is set simply to 0 for the duration of the simulation which is T = 30 sec.
The physical system has two continuous-time state variables which are also its

1 Available at: http://www.mathworks.com/products/simulink/demos.html

3



outputs: the speed of the engine ω (RPM) and the speed of the vehicle v, i.e.,
Y = R2 and y(t) = [ω(t) v(t)]T for all t ∈ [0, 30]. Initially, the vehicle is at rest
at time 0, i.e., X0 = {[0 0]T } and x0 = y(0) = [0 0]T . Therefore, the output
trajectories depend only on the input signal u which models the throttle, i.e.,
(y, τ) = ∆Σ(u). The throttle at each point in time can take any value between
0 (fully closed) to 100 (fully open). Namely, u(i) ∈ U = [0, 100] for each i ∈ N .
The model also contains a Stateflow chart with two concurrently executing Finite
State Machines (FSMs) with 4 and 3 states, respectively. The FSMs model the
logic that controls the switching between the gears in the transmission system.
We remark that the system is deterministic, i.e., under the same input u, we
will always observe the same output y.

In our previous work [12, 10, 7], on such models, we demonstrated how to
falsify requirements like: “The vehicle speed v is always under 120km/h or the
engine speed ω is always below 4500RPM.” A falsifying system trajectory appears
in Fig. 1. In this work, we provide answers to queries like “What is the fastest
time that ω can exceed 3250 RPM” or “For how long can ω be below 4500 RPM”.

Formally, in this work, we solve the following problem.

Problem 1 (Temporal Logic Parameter Estimation Problem) Given an
MTL formula φ[θ] with a single unknown parameter θ ∈ Θ = [θm, θM ] ⊆ R,
a hybrid system Σ, and a maximum testing time T , find an optimal range
Θ∗ = [θ∗m, θ

∗
M ] such that for any ζ ∈ Θ∗, φ[ζ] does not hold on Σ, i.e., Σ 6|= φ[ζ].

0 5 10 15 20 25 30
0

50

100
Throttle

0 5 10 15 20 25 30
0

5000
RPM

0 5 10 15 20 25 30
0

100

200
Speed

Fig. 1. Example 1: A piecewise con-
stant input signal u parameterized with
Λ ∈ [0, 100]6 and t = [0, 5, 10, 15, 20, 25]
and the corresponding output signals
that falsify the specification.

Ideally, by solving Problem 1, we
would also like to have the property
that for any ζ ∈ Θ−Θ∗, φ[ζ] holds on
Σ, i.e., Σ |= φ[ζ]. However, even for a
given ζ, the problem of algorithmically
computing whether Σ |= φ[ζ] is not
easy to solve for the classes of hybrid
systems that we consider in this work.

An overview of our proposed solu-
tion to Problem 1 appears in Fig. 2.
The sampler produces a point x0 from
the set of initial conditions, a parame-
ter vector λ that characterizes the con-
trol input signal u and a parameter θ.
The vectors x0 and λ are passed to the
system simulator which returns an ex-
ecution trace (output trajectory and
timing function). The trace is then analyzed by the MTL robustness analyzer
which returns a robustness value representing the best estimate for the robust-
ness found so far. In turn, the robustness score computed is used by the stochas-
tic sampler to decide on a next input to analyze. The process terminates after a

4



System Σ Temporal Logic 
Robustness

Stochastic 
Optimization

parameter 
range

output timed state sequence μ = (y,τ)

robustness ε

initial conditions x0 & input signal u parameter θ

Fig. 2. Overview of the solution to the MTL parameter estimation problem on CPS.

maximum number of tests or when no improvement on the parameter estimate
θ has been made after a number of tests.

3 Robustness of Metric Temporal Logic Formulas

Metric Temporal Logic (MTL) was introduced in [5] in order to reason about the
quantitative timing properties of boolean signals. In the following, we present
directly MTL in Negation Normal Form (NNF) since this is needed for the
presentation of the new results in Section 5. We denote the extended real number
line by R = R ∪ {±∞}.

Definition 1 (Syntax of MTL in NNF) Let R be the set of truth degree con-
stants, AP be the set of atomic propositions and I be a non-empty non-singular
interval of R≥0. The set MTL of all well-formed formulas (wff) is inductively
defined using the following rules:

– Terms: True (>), false (⊥), all constants r ∈ R and propositions p, ¬p for
p ∈ AP are terms.

– Formulas: if φ1 and φ2 are terms or formulas, then φ1∨φ2, φ1∧φ2, φ1 UIφ2
and φ1RIφ2 are formulas.

The atomic propositions in our case label subsets of the output space Y . In
other words, each atomic proposition is a shorthand for an arithmetic expression
of the form p ≡ g(y) ≤ c, where g : Y → R and c ∈ R. We define an observation
map O : AP → P(Y ) such that for each p ∈ AP the corresponding set is
O(p) = {y | g(y) ≤ c} ⊆ Y .

In the above definition, UI is the timed until operator and RI the timed
release operator. The subscript I imposes timing constraints on the temporal
operators. The interval I can be open, half-open or closed, bounded or un-
bounded, but it must be non-empty (I 6= ∅) (and, practically speaking, non-
singular (I 6= {t})). In the case where I = [0,+∞), we remove the subscript I
from the temporal operators, i.e., we just write U , and R. Also, we can define
eventually (3Iφ ≡ >UIφ) and always (2Iφ ≡ ⊥RIφ).

5



Before proceeding to the actual definition of the robust semantics, we in-
troduce some auxiliary notation. A metric space is a pair (X, d) such that the
topology of the set X is induced by a metric d. Using a metric d, we can define
the distance of a point x ∈ X from a set S ⊆ X. Intuitively, this distance is the
shortest distance from x to all the points in S. In a similar way, the depth of a
point x in a set S is defined to be the shortest distance of x from the boundary
of S. Both the notions of distance and depth will play a fundamental role in the
definition of the robustness degree.

Definition 2 (Signed Distance) Let x ∈ X be a point, S ⊆ X be a set and d
be a metric on X. Then, we define the Signed Distance from x to S to be

Distd(x, S) :=

{
−distd(x, S) := − inf{d(x, y) | y ∈ S} if x 6∈ S
depthd(x, S) := distd(x,X\S) if x ∈ S

We remark that we use the extended definition of the supremum and infimum,
i.e., sup ∅ := −∞ and inf ∅ := +∞.

MTL formulas are interpreted over timed state sequences µ. In the past [6],
we proposed multi-valued semantics for MTL where the valuation function on
the predicates takes values over the totally ordered set R according to a metric d
operating on the output space Y . For this purpose, we let the valuation function
be the depth (or the distance) of the current point of the signal y(i) in a set
O(p) labeled by the atomic proposition p. Intuitively, this distance represents
how robustly is the point y(i) within a set O(p). If this metric is zero, then even
the smallest perturbation of the point can drive it inside or outside the set O(p),
dramatically affecting membership.

For the purposes of the following discussion, we use the notation [[φ]] to
denote the robustness estimate with which the timed state sequence µ satisfies
the specification φ. Formally, the valuation function for a given formula φ is
[[φ]] : (Y N × T) × N → R. In the definition below, we also use the following
notation : for Q ⊆ R, the preimage of Q under τ is defined as : τ−1(Q) := {i ∈
N | τ(i) ∈ Q}.

Definition 3 (Robustness Estimate) Let µ = (y, τ) ∈ L(Σ), r ∈ R and
i, j, k ∈ N , then the robustness estimate of any formula MTL φ with respect to
µ is recursively defined as follows

[[r]](µ, i) := r [[>]](µ, i) := +∞ [[⊥]](µ, i) := −∞
[[p]](µ, i) := Distd(y(i),O(p)) [[¬p]](µ, i) := −Distd(y(i),O(p))

[[φ1 ∨ φ2]](µ, i) := max([[φ1]](µ, i), [[φ2]](µ, i))

[[φ1 ∧ φ2]](µ, i) := min([[φ1]](µ, i), [[φ2]](µ, i))

[[φ1 UIφ2]](µ, i) := sup
j∈τ−1(τ(i)+I)

(
min([[φ2]](µ, j), inf

i≤k<j
[[φ1]](µ, k))

)
[[φ1RIφ2]](µ, i) := inf

j∈τ−1(τ(i)+I)

(
max([[φ2]](µ, j), sup

i≤k<j
[[φ1]](µ, k))

)

6



Recall that we use the extended definition of supremum and infimum. When
i = 0, then we simply write [[φ]](µ).

The robustness of an MTL formula with respect to a timed state sequence
can be computed using several existing algorithms [6, 15, 16].

4 Parametric Metric Temporal Logic over Signals

In many cases, it is important to be able to describe an MTL specification with
unknown parameters and, then, infer the parameters that make the specifica-
tion true/false. In [9], Asarin et. al. introduce Parametric Signal Temporal Logic
(PSTL) and present two algorithms for computing approximations for parame-
ters over a given signal. Here, we review some of the results in [9] while adapting
them in the notation and formalism that we use in this paper.

We will restrict the occurrences of unknown parameters in the specification
to a single parameter that may appear either in the timing constraints of a
temporal operator or in the atomic propositions.

Definition 4 (Syntax of Parametric MTL (PMTL)) Let λ be a parame-
ter, then the set of all well formed PMTL formulas is the set of all well formed
MTL formulas where either λ appears in an arithmetic expression, i.e., p[λ] ≡
g(y) ≤ λ, or in the timing constraint of a temporal operator, i.e., I[λ].

We will denote a PMTL formula φ with parameter λ by φ[λ]. Given some
value θ ∈ Θ, then the formula φ[θ] is an MTL formula.

Since the valuation function of an MTL formula is a composition of mini-
mum and maximum operations quantified over time intervals, a formula φ[λ] is
monotonic with respect to λ.

Example 2 Consider the PMTL formula φ[λ] = 2[0,λ]p where p ≡ (ω ≤ 3250).
Given a timed state sequence µ = (y, τ) with τ(0) = 0, for θ1 ≤ θ2, we
have: [0, θ1] ⊆ [0, θ2] =⇒ τ−1([0, θ1]) ⊆ τ−1([0, θ2]). Therefore, [[φ[θ1]]](µ)
= infi∈τ−1([0,θ1])(−Distd(y(i),O(p))) ≥ infi∈τ−1([0,θ2])(−Distd(y(i),O(p))) =
[[φ[θ2]]](µ). That is, the function [[φ[θ]]](µ) is non-increasing with θ. See Fig. 3
for an example using an output trajectory from the system in Example 1.

The previous example can be formalized in the following result.

Proposition 1 Consider a PMTL formula φ[λ] such that it contains a sub-
formula φ1OpI[λ]φ2 where Op ∈ {U ,R}. Then, given a timed state sequence

µ = (y, τ), for θ1, θ2 ∈ R≥0, such that θ1 ≤ θ2, and for i ∈ N , we have:

1. if (i) Op = U and sup I[λ] = λ or (ii) Op = R and inf I[λ] = λ, then
[[φ[θ1]]](µ, i) ≤ [[φ[θ2]]](µ, i), i.e., the function [[φ[λ]]](µ, i) is nondecreasing
with respect to λ, and

2. if (i) Op = R and sup I[λ] = λ or (ii) Op = U and inf I[λ] = λ, then
[[φ[θ1]]](µ, i) ≥ [[φ[θ2]]](µ, i), i.e., the function [[φ[λ]]](µ, i) is non-increasing
with respect to λ.

7



0 5 10 15 20 25 30
1000

1500

2000

2500

3000

3500

t

ω
(t

)

0 5 10 15 20 25 30
−1000

0

1000

2000

3000

θ

R
ob

us
te

ns
s

Fig. 3. Example 2. Left: Engine speed ω(t) for constant throttle u(t) = 50. Right: The
robustness of the specification 2[0,θ](ω ≤ 3250) with respect to θ.

Proof (Sketch). The proof is by induction on the structure of the formula and
it is similar to the proofs that appear in [6].

For completeness, we present the case [[φ1 U〈α,λ〉φ2]](µ, i), where 〈∈ {[, (} and
〉 ∈ {], )}. The other cases are either similar or they are based on the monotonicity
of the operators max and min. Let θ1 ≤ θ2, then:

[[φ1 U〈α,θ1〉φ2]](µ, i) ≤ max
(

[[φ1 U〈α,θ1〉φ2]](µ, i), [[φ1 U〈θ1,θ2〉φ2]](µ, i)
)

= [[φ1 U〈α,θ2〉φ2]](µ, i)

where 〈 ∈ {[, (} such that 〈α, θ1〉∩〈θ1, θ2〉 = ∅ and 〈α, θ1〉∪〈θ1, θ2〉 = 〈α, θ2〉. ut

We can derive similar results when the parameter appears in the numerical
expression of the atomic proposition.

Proposition 2 Consider a PMTL formula φ[λ] such that it contains a paramet-
ric atomic proposition p[λ] in a subformula. Then, given a timed state sequence
µ = (y, τ), for θ1, θ2 ∈ R≥0, such that θ1 ≤ θ2, and for i ∈ N , we have:

1. if p[λ] ≡ g(x) ≤ λ, then [[φ[θ1]]](µ, i) ≤ [[φ[θ2]]](µ, i), i.e., the function
[[φ[λ]]](µ, i) is nondecreasing with respect to λ, and

2. if p[λ] ≡ g(x) ≥ λ, then [[φ[θ1]]](µ, i) ≥ [[φ[θ2]]](µ, i), i.e., the function
[[φ[λ]]](µ, i) is non-increasing with respect to λ.

Proof (Sketch). The proof is by induction on the structure of the formula and
it is similar to the proofs that appear in [6].

For completeness, we present the base case [[p[λ]]](µ, i) where p[λ] ≡ g(x) ≤ λ.
Since θ1 ≤ θ2, O(p[θ1]) ⊆ O(p[θ2]). We will only present the case for which
y(i) 6∈ O(p[θ2]). We have:

O(p[θ1]) ⊆ O(p[θ2]) =⇒ distd(y(i),O(p[θ1])) ≥ distd(y(i),O(p[θ2])) =⇒
Distd(y(i),O(p[θ1])) ≤ Distd(y(i),O(p[θ2])) =⇒ [[p[θ1]]](µ, i) ≤ [[p[θ2]]](µ, i)ut

The results presented in this section can be easily extended to multiple pa-
rameters. However, in this work, we will focus on a single parameter in order to
derive a more tractable optimization problem.

8



5 Temporal Logic Parameter Bound Computation

The notion of robustness of temporal logics will enable us to pose the parameter
estimation problem as an optimization problem. In order to solve the resulting
optimization problem, falsification methods and S-TaLiRo can be utilized in
order to estimate Θ∗ for Problem 1.

As described in the previous section, the parametric robustness functions
that we are considering are monotonic with respect to the search parameter.
Therefore, if we are searching for a parameter over an interval Θ = [θm, θM ], we
know that Θ∗ is going to be either of the form [θm, θ

∗] or [θ∗, θM ]. In other words,
depending on the structure of φ[λ], we are either trying to minimize or maximize
θ∗ such that for all θ ∈ Θ∗, we have [[φ[θ]]](Σ) = minµ∈Lτ (Σ)[[φ[θ]]](µ) ≤ 0.

Example 3 Let us consider again the automotive transmission example and the
specification φ[λ] = 2[0,λ]p where p ≡ (ω ≤ 4500). The specification robustness
[[φ[θ]]](∆Σ(u)) as a function of θ and the input u appears in Fig. 4 (left) for
constant input signals. The creation of the graph required 100 × 30 = 3, 000
tests. The contour under the surface indicates the zero level set of the robustness
surface, i.e., the θ and u values for which we get [[φ[θ]]](∆Σ(u)) = 0. From
the graph, we can infer that θ∗ ≈ 2.8 and that for any θ ∈ [2.8, 30], we have
[[φ[θ]]](Σ) ≤ 0. The approximate value of θ∗ is a rough estimate based on the
granularity of the grid that we used to plot the surface.

In summary, in order to solve Problem 1, we would have to solve the following
optimization problem:

optimize θ (1)

subject to θ ∈ Θ and [[φ[θ]]](Σ) = min
µ∈Lτ (Σ)

[[φ[θ]]](µ) ≤ 0

However, [[φ[θ]]](Σ) neither can be computed using reachability analysis algo-
rithms nor is known in closed form for the systems that we are considering.
Therefore, we will have to compute an under-approximation of Θ∗.

Our focus will be to formulate an optimization problem that can be solved
using stochastic search methods. In particular, we will reformulate optimization
problem (1) into a new one where the constraints due to the specification are
incorporated into the cost function:

optimizeθ∈Θ

(
θ +

{
γ ± [[φ[θ]]](Σ) if [[φ[θ]]](Σ) ≥ 0
0 otherwise

)
(2)

where the sign (±) and the parameter γ depend on whether the problem is a
maximization or a minimization problem. The parameter γ must be properly
chosen so that the optimum of problem (2) is in Θ if and only if [[φ[θ]]](Σ) ≤ 0.
In other words, we must avoid the case where for some θ, we have [[φ[θ]]](Σ) > 0
and (θ + [[φ[θ]]](Σ)) ∈ Θ. Therefore, if the problem in Eq. (1) is feasible, then
the optimum of equations (1) and (2) is the same.

9



5.1 Non-increasing Robustness Functions

First, we consider the case of non-increasing robustness functions [[φ[θ]]](Σ) with
respect to the search variable θ. In this case, the optimization problem is a
minimization problem.

To see why this is the case, assume that [[φ[θM ]]](Σ) ≤ 0. Since for θ ≤ θM ,
we have [[φ[θ]]](Σ) ≥ [[φ[θM ]]](Σ), we need to find the minimum θ such that we
still have [[φ[θ]]](Σ) ≤ 0. That θ will be θ∗ since for all θ′ ∈ [θ∗, θM ], we will have
[[φ[θ′]]](Σ) ≤ 0.

We will reformulate the problem of Eq. (2) so that we do not have to solve
two separate optimization problems. From (2), we have:

min
θ∈Θ

(
θ +

{
γ + minµ∈Lτ (Σ)[[φ[θ]]](µ) if minµ∈Lτ (Σ)[[φ[θ]]](µ) ≥ 0
0 otherwise

)
=

= min
θ∈Θ

(
θ + min

µ∈Lτ (Σ)

{
γ + [[φ[θ]]](µ) if [[φ[θ]]](µ) ≥ 0
0 otherwise

)
=

= min
θ∈Θ

min
µ∈Lτ (Σ)

(
θ +

{
γ + [[φ[θ]]](µ) if [[φ[θ]]](µ) ≥ 0
0 otherwise

)
(3)

where γ ≥ max(θM , 0).
The previous discussion is formalized in the following result.

Proposition 3 Let θ∗ and µ∗ be the parameters returned by an optimization
algorithm that is applied to the problem in Eq. (3). If [[φ[θ∗]]](µ∗) ≤ 0, then for
all θ ∈ Θ∗ = [θ∗, θM ], we have [[φ[θ]]](Σ) ≤ 0.

Proof. If [[φ[θ∗]]](µ∗) ≤ 0, then [[φ[θ∗]]](Σ) ≤ 0. Since [[φ[θ]]](Σ) is non-increasing
with respect to θ, then for all θ ∈ [θ∗, θM ], we also have [[φ[θ]]](Σ) ≤ 0.

Since we are utilizing stochastic optimization methods [7, 10, 8, 4] to solve
problem (3), if [[φ[θ∗]]](µ∗) > 0, then we cannot infer that the system is correct
for all parameter values in Θ.

Example 4 Using Eq. (3) as a cost function, we can now compute the opti-
mal parameter for Example 3 using our toolbox S-TaLiRo [10]. In particular,
using Simulated Annealing as a stochastic optimization function, S-TaLiRo re-
turns θ∗ ≈ 2.45 as optimal parameter for constant input u(t) = 99.8046. The
corresponding temporal logic robustness for the specification 2[0,2.45](ω ≤ 4500)
is −0.0445. The total number of tests performed for this example was 500 and,
potentially, the accuracy of estimating θ∗ can be improved if we increase the
maximum number of tests. However, we remark that based on several tests the
algorithm converges to a good approximation within 200 tests.

5.2 Non-decreasing Robustness Functions

The case of non-decreasing robustness functions is symmetric to the case of
non-increasing robustness functions. In particular, the optimization problem is

10



a maximization problem. We will reformulate the problem of Eq. (2) so that we
do not have to solve two separate optimization problems. From (2), we have:

max
θ∈Θ

(
θ +

{
γ −minµ∈Lτ (Σ)[[φ[θ]]](µ) if minµ∈Lτ (Σ)[[φ[θ]]](µ) ≥ 0
0 otherwise

)
=

= max
θ∈Θ

(
θ +

{
γ + maxµ∈Lτ (Σ) (−[[φ[θ]]](µ)) if maxµ∈Lτ (Σ) (−[[φ[θ]]](µ)) ≤ 0
0 otherwise

)
=

= max
θ∈Θ

(
θ + max

µ∈Lτ (Σ)

{
γ − [[φ[θ]]](µ) if − [[φ[θ]]](µ) ≤ 0
0 otherwise

)
=

= max
θ∈Θ

max
µ∈Lτ (Σ)

(
θ +

{
γ − [[φ[θ]]](µ) if [[φ[θ]]](µ) ≥ 0
0 otherwise

)
(4)

where γ ≤ min(θm, 0).

The previous discussion is formalized in the following result.

Proposition 4 Let θ∗ and µ∗ be the parameters returned by an optimization
algorithm that is applied to the problem in Eq. (4). If [[φ[θ∗]]](µ∗) ≤ 0, then for
all θ ∈ Θ∗ = [θm, θ

∗], we have [[φ[θ]]](Σ) ≤ 0.

Proof. If [[φ[θ∗]]](µ∗) ≤ 0, then [[φ[θ∗]]](Σ) ≤ 0. Since [[φ[θ]]](Σ) is non-decreasing
with respect to θ, then for all θ ∈ [θm, θ

∗], we also have [[φ[θ]]](Σ) ≤ 0.

Again, if [[φ[θ∗]]](µ∗) > 0, then we cannot infer that the system is correct for
all parameter values in Θ.

Example 5 Let us consider the specification φ[λ] = 2[λ,30](ω ≤ 4500) on our
running example. The specification robustness [[φ[θ]]](∆Σ(u)) as a function of θ
and the input u appears in Fig. 5 (left) for constant input signals. The creation
of the graph required 100 × 30 = 3, 000 tests. The contour under the surface
indicates the zero level set of the robustness surface, i.e., the θ and u values
for which we get [[φ[θ]]](∆Σ(u)) = 0. We remark that the contour is actually an
approximation of the zero level set computed by a linear interpolation using the
neighboring points on the grid. From the graph, we could infer that θ∗ ≈ 13.8 and
that for any θ ∈ [0, 13.8], we would have [[φ[θ]]](Σ) ≤ 0. Again, the approximate
value of θ∗ is a rough estimate based on the granularity of the grid.

Using Eq. (4) as a cost function, we can now compute the optimal parameter
for Example 3 using our toolbox S-TaLiRo [10]. S-TaLiRo returns θ∗ ≈ 12.59
as optimal parameter for constant input u(t) = 90.88 within 250 tests. The
temporal logic robustness for the specification 2[12.59,30](ω ≤ 4500) with respect
to the input u appears in Fig. 5 (right). Some observations: (i) The θ∗ ≈ 12.59
computed by S-TaLiRo is actually very close to the optimal value since for
θ∗ ≈ 12.79 the system does not falsify any more. (ii) The systematic testing that
was used in order to generate the graph was not able to accurately compute a good
approximation to the parameter unless even more tests (> 3000) are generated.

11



6 Experiments and a Case Study

The parametric MTL exploration of embedded systems was motivated by a chal-
lenge problem published by Ford in 2002 [11]. In particular, the report provided
a simple – but still realistic – model of a powertrain system (both the physical
system and the embedded control logic) and posed the question whether there
are constant operating conditions that can cause a transition from gear two to
gear one and then back to gear two. Such a sequence would imply that the
transition was not necessary in the first place.

The system is modeled in Checkmate [17]. It has 6 continuous state variables
and 2 Stateflow charts with 4 and 6 states, respectively. The Stateflow chart for
the shift scheduler appears in Fig. 6. The system dynamics and switching condi-
tions are linear. However, some switching conditions depend on the inputs to the
system. The latter makes the application of standard hybrid system verification
tools not a straightforward task.

In [15], we demonstrated that S-TaLiRo [10] can successfully solve the chal-
lenge problem (see Fig. 6) by formalizing the requirement as an MTL specifica-
tion φe1 = ¬3(g2 ∧3(g1 ∧3g2)) where gi is a proposition that is true when the
system is in gear i. Stochastic search methods can be applied to solve the result-
ing optimization problem where the cost function is the robustness of the specifi-
cation. Moreover, inspired by the success of S-TaLiRo on the challenge problem,
we tried to ask a more complex question. Namely, does a transition exists from
gear two to gear one and back to gear two in less than 2.5 sec? An MTL specifi-
cation that can capture this requirement is φe2 = 2((¬g1 ∧Xg1)→ 2[0,2.5]¬g2).

The natural question that arises is what would be the smallest time for which
such a transition can occur? We can formulate a parametric MTL formula to
query the model of the powertrain system: φe3[λ] = 2((¬g1∧Xg1)→ 2[0,λ]¬g2).
We have extended S-TaLiRo to be able to handle parametric MTL specifica-
tions. The total simulation time of the model was 60 sec and the search interval
was Θ = [0, 30]. S-TaLiRo returned θ∗ ≈ 0.4273 as the minimum parameter
found (See Fig. 6) using about 300 tests of the system.

In Table 6, we present some experimental results. Since no other technique
can solve the parameter estimation problem for MTL formulas over hybrid sys-
tems, we compare our method with the falsification methods that we have devel-
oped in the past [12, 7]. A detailed description of the benchmark problems can
be found in [12, 7] and the benchmarks can be downloaded with the S-TaLiRo
distribution2. In order to be able to compare the two methods, when performing
parameter estimation, we regard a parameter value less than the constant in the
MTL formula as falsification. Notably, for benchmark problems that are easier
to falsify, the parameter estimation method incurs additional cost in the sense of
reduced number of falsifications. On the other hand, on hard problem instances,
the parameter estimation method provides us with parameter ranges for which
the system fails the specification. Moreover, on the powertrain challenge prob-
lem, the parameter estimation method actually helps in falsifying the system.

2 https://sites.google.com/a/asu.edu/s-taliro/

12



Table 1. Experimental Comparison of Falsification (FA) vs. Parameter Estimation
(PE). Each instance was run for 100 times and each run was executed for a maximum
of 1000 tests. Legend: #Fals.: the number of runs falsified, Parameter Estimate:
〈min, average, max〉 of the parameter value computed, dnf : did not finish.

Benchmark Problem #Fals. Parameter Estimate

Specification Instance FA PE PE

φAT2 [λ] = ¬3(pAT1 ∧3[0,λ]p
AT
2 ) φAT2 [10] 96 84 〈7.7, 9.56, 16.84〉

φAT3 [λ] = ¬3(pAT1 ∧3[0,λ]p
AT
3 ) φAT3 [10] 51 0 〈10.00, 10.22, 14.66〉

φAT4 [λ] = ¬3(pAT1 ∧3[0,λ]p
AT
2 ) φAT4 [7.5] 0 0 〈7.57, 7.7, 8.56〉

φAT5 [λ] = ¬3(pAT1 ∧3[0,λ]p
AT
2 ) φAT5 [5] 0 0 〈7.56, 7.74, 9.06〉

φe3[2.5] dnf 93 〈1.28, 2.26, 6.82〉

We conjecture that the reason for this improved performance is that the timing
requirements on this problem are more important than the state constraints.

7 Related Work

The topic of testing embedded software and, in particular, embedded control
software is a well studied problem that involves many subtopics well beyond
the scope of this paper. We refer the reader to specialized book chapters and
textbooks for further information [18, 19]. Similarly, a lot of research has been
invested on testing methods for Model Based Development (MBD) of embedded
systems [3]. However, the temporal logic testing of embedded and hybrid systems
has not received much attention [20, 21, 4, 22].

Parametric temporal logics were first defined over traces of finite state ma-
chines [23]. In parametric temporal logics, some of the timing constraints of the
temporal operators are replaced by parameters. Then, the goal is to develop
algorithms that will compute the values of the parameters that make the specifi-
cation true under some optimality criteria. That line of work has been extended
to real-time systems and in particular to timed automata [24] and continuous-
time signals [9]. The authors in [25, 26] define a parametric temporal logic called
quantifier free LTL over real valued signals. However, they focus on the problem
of determining system parameters such that the system satisfies a given property
rather than on the problem of exploring the properties of a given system.

Another related research topic is the problem of Temporal Logic Queries [27,
28]. In detail, given a model of the system and a temporal logic formula φ, a
subformula in φ is replaced with a special symbol ?. Then, the problem is to
determine a set of Boolean formulas such that if these formulas are placed into
the placeholder ?, then φ holds on the model.

8 Conclusions

An important stage in Model Based Development (MBD) of embedded control
software is the formalization of system requirements. We advocate that Metric

13



Temporal Logic (MTL) is an excellent candidate for formalizing interesting de-
sign requirements. In this paper, we have presented a solution on how we can
explore system properties using Parametric MTL (PMTL) [9]. Based on the
notion of robustness of MTL [6], we have converted the parameter estimation
problem into an optimization problem which we solve using S-TaLiRo [10].
Even though this paper presents a method for estimating the range for a single
parameter, the results can be easily extended to multiple parameters as long
as the robustness function has the same monotonicity with respect to all the
parameters. Finally, we have demonstrated that the our method can provide
interesting insights to the powertrain challenge problem [11].

Acknowledgments This work was partially supported by a grant from the NSF
Industry/University Cooperative Research Center (I/UCRC) on Embedded Sys-
tems at Arizona State University and NSF awards CNS-1116136 and CNS-
1017074.

References

1. Lions, J.L., Lbeck, L., Fauquembergue, J.L., Kahn, G., Kubbat, W., Levedag, S.,
Mazzini, L., Merle, D., O’Halloran, C.: Ariane 5, flight 501 failure, report by the
inquiry board. Technical report, CNES (1996)

2. Hoffman, E.J., Ebert, W.L., Femiano, M.D., Freeman, H.R., Gay, C.J., Jones, C.P.,
Luers, P.J., Palmer, J.G.: The near rendezvous burn anomaly of december 1998.
Technical report, Applied Physics Laboratory, Johns Hopkins University (1999)

3. Tripakis, S., Dang, T.: Modeling, Verification and Testing using Timed and Hybrid
Automata. In: Model-Based Design for Embedded Systems. CRC Press (2009)
383–436

4. Nghiem, T., Sankaranarayanan, S., Fainekos, G.E., Ivancic, F., Gupta, A., Pappas,
G.J.: Monte-carlo techniques for falsification of temporal properties of non-linear
hybrid systems. In: Proceedings of the 13th ACM International Conference on
Hybrid Systems: Computation and Control, ACM Press (2010) 211–220

5. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-
Time Systems 2 (1990) 255–299

6. Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications for
continuous-time signals. Theoretical Computer Science 410 (2009) 4262–4291

7. Sankaranarayanan, S., Fainekos, G.: Falsification of temporal properties of hybrid
systems using the cross-entropy method. In: ACM International Conference on
Hybrid Systems: Computation and Control. (2012)

8. Annapureddy, Y.S.R., Fainekos, G.E.: Ant colonies for temporal logic falsifica-
tion of hybrid systems. In: Proceedings of the 36th Annual Conference of IEEE
Industrial Electronics. (2010) 91–96

9. Asarin, E., Donzé, A., Maler, O., Nickovic, D.: Parametric identification of tempo-
ral properties. In: Runtime Verification. Volume 7186 of LNCS., Springer (2012)
147–160

10. Annapureddy, Y.S.R., Liu, C., Fainekos, G.E., Sankaranarayanan, S.: S-taliro: A
tool for temporal logic falsification for hybrid systems. In: Tools and algorithms for
the construction and analysis of systems. Volume 6605 of LNCS., Springer (2011)
254–257

14



11. Chutinan, A., Butts, K.R.: Dynamic analysis of hybrid system models for design
validation. Technical report, Ford Motor Company (2002)

12. Abbas, H., Fainekos, G.E., Sankaranarayanan, S., Ivancic, F., Gupta, A.: Proba-
bilistic temporal logic falsification of cyber-physical systems. ACM Transactions
on Embedded Computing Systems (In Press) (2011)

13. Alur, R., Henzinger, T.A.: Real-Time Logics: Complexity and Expressiveness. In:
Fifth Annual IEEE Symposium on Logic in Computer Science, Washington, D.C.,
IEEE Computer Society Press (1990) 390–401

14. Zhao, Q., Krogh, B.H., Hubbard, P.: Generating test inputs for embedded control
systems. IEEE Control Systems Magazine August (2003) 49–57

15. Fainekos, G., Sankaranarayanan, S., Ueda, K., Yazarel, H.: Verification of automo-
tive control applications using s-taliro. In: Proceedings of the American Control
Conference. (2012)

16. Donze, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals.
In: Formal Modelling and Analysis of Timed Systems. Volume 6246 of LNCS.,
Springer (2010)

17. Silva, B.I., Krogh, B.H.: Formal verification of hybrid systems using CheckMate: a
case study. In: Proceedings of the American Control Conference. Volume 3. (2000)
1679 – 1683

18. Conrad, M., Fey, I.: Testing automotive control software. In: Automotive Embed-
ded Systems Handbook. CRC Press (2008)

19. Koopman, P.: Better Embedded System Software. Drumnadrochit Education LLC
(2010)

20. Plaku, E., Kavraki, L.E., Vardi, M.Y.: Falsification of ltl safety properties in hybrid
systems. In: Proc. of the Conf. on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS). Volume 5505 of LNCS., Springer (2009) 368 – 382

21. Tan, L., Kim, J., Sokolsky, O., Lee, I.: Model-based testing and monitoring for
hybrid embedded systems. In: Proceedings of the 2004 IEEE International Con-
ference on Information Reuse and Integration. (2004) 487–492

22. Zuliani, P., Platzer, A., Clarke, E.M.: Bayesian statistical model checking with
application to simulink/stateflow verification. In: Proceedings of the 13th ACM
International Conference on Hybrid Systems: Computation and Control. (2010)
243–252

23. Alur, R., Etessami, K., La Torre, S., Peled, D.: Parametric temporal logic for
model measuring. ACM Trans. Comput. Logic 2 (2001) 388–407

24. Di Giampaolo, B., La Torre, S., Napoli, M.: Parametric metric interval temporal
logic. In Dediu, A.H., Fernau, H., Martin-Vide, C., eds.: Language and Automata
Theory and Applications. Volume 6031 of LNCS. Springer (2010) 249–260

25. Fages, F., Rizk, A.: On temporal logic constraint solving for analyzing numerical
data time series. Theor. Comput. Sci. 408 (2008) 55–65

26. Rizk, A., Batt, G., Fages, F., Soliman, S.: On a continuous degree of satisfaction
of temporal logic formulae with applications to systems biology. In: International
Conference on Computational Methods in Systems Biology. Volume 5307 of LNCS.,
Springer (2008) 251–268

27. Chan, W.: Temporal-logic queries. In: Proceedings of the 12th International Con-
ference on Computer Aided Verification. Volume 1855 of LNCS., London, UK,
Springer (2000) 450–463

28. Chechik, M., Gurfinkel, A.: Tlqsolver: A temporal logic query checker. In: Proceed-
ings of the 15th International Conference on Computer Aided Verification. Volume
2725., Springer (2003) 210–214

15



0
10

20

30

0
20

40
60

80
100

−1000

0

1000

2000

3000

4000

θ
u

R
ob
us
te
ns
s

2.8 0
20

40
60

80
100

0

10

20

30

0

1000

2000

3000

4000

5000

t

u

ω
(t

)

Fig. 4. Example 3: Left: Specification robustness as a function of the parameter θ and
the constant input u. Right: Engine speed ω(t) as a function of the constant input u
and time t. The contours indicate the u-t combinations for which ω(t) = 4500.

0
10

20
30

0
20

40
60

80
100

−1000

0

1000

2000

3000

4000

θ
u

R
ob
us
te
ns
s

13.8 0 10 20 30 40 50 60 70 80 90 100
−500

0

500

1000

1500

2000

2500

3000

3500

4000

u

R
ob

us
te

ns
s

Fig. 5. Example 5. Left: Specification robustness as a function of the parameter θ and
the constant input u. Right: The robustness function [[2[12.59,30](ω ≤ 4500)]](∆Σ(u)).

first_gear
entry: schedule =1;
STaliro_StateVar = 1;

transition12_shifting
entry : schedule = 2;
STaliro_StateVar = 2;

transition21_shifting
entry:schedule = 4;
STaliro_StateVar = 4;

second_gear
entry: schedule =3;
STaliro_StateVar = 3;

to_first

1

shift_speed12

shift_speed21

2

shift_speed12

2

to_second

1

shift_speed21

0 10 20 30 40 50 60
1

2

3

4

0 10 20 30 40 50 60
1

2

3

4

Fig. 6. Left: The shift scheduler of the powertrain challenge problem. Right: Shift
schedules. The numbers on the y-axis correspond to the variables in the states of the
shift scheduler. Right Top: The shift schedule falsifying requirement φe1. Right Bottom:
The shift schedule falsifying requirement φe3[0.4273].

16


