
Lightweight Automatic Error Detection by
Monitoring Collar Variables

João Santos and Rui Abreu

Department of Informatics Engineering
Faculty of Engineering

University of Porto
Portugal

joao.filipe.santos@fe.up.pt, rui@computer.org

Abstract. Although proven to be an effective way for detecting errors,
generic program invariants (also known as fault screeners) entail a con-
siderable runtime overhead, rendering them not useful in practice. This
paper studies the impact of using simple variable patterns to detect the
so-called system’s collar variables to reduce the number of variables to
be monitored (instrumented). Two different patterns were investigated
to determine which variables to monitor. The first pattern finds variables
whose value increase or decrease at regular intervals and deems them not
important to monitor. The other pattern verifies the range of a variable
per (successful) execution. If the range is constant across executions, then
the variable is not monitored. Experiments were conducted on three dif-
ferent real-world applications to evaluate the reduction achieved on the
number of variables monitored and determine the quality of the error
detection. Results show a reduction of 52.04% on average in the number
of monitored variables, while still maintaining a good detection rate with
only 3.21% of executions detecting non-existing errors (false positives)
and 5.26% not detecting an existing error (false negatives).

Keywords. Error detection, program invariants, automatic oracles, dy-
namic execution

1 Introduction

An application’s development phase is usually restricted by the budget allowed
for development and/or time-to-market. These restrictions provide a trade-off
with the reliability of the system, which leads to an increase in defects that can
lead to catastrophic results. In these cases proper error detection is vital in order
to ensure the recognition and recovery from faults during the deployment phase
as soon as possible [1]. One possible way of implementing error detection on a
system is with the use of generic invariants, also known as fault screeners. They
may present a higher rate of false positives (faults detected when none exist)
and false negatives (the non detection of an error) when compared to hard coded
error detection methods (such as asserts), due to the latter detecting anticipated

faults. Despite this, generic invariants have the great benefict of being generated
and intrumented automatically into the code. This along with the fact that (1)
the invariants can be trained automatically during the testing phase and (2)
hard coded solutions are cumbersome and time consuming to implement, might
give an edge to generic invariants. Having generated automatically the invariants
and trained them during the testing phase, they are ready for being used during
the deployment phase, where the invariant detects deviations from the learned
behaviour [2]. Generic invariants have been subject of study for many years,
spawning various types like range screeners, bitmask screeners, and screeners
that leverage Bloom filters [2, 3]. They are mostly used for fault localization [4]
and error detection [3].

Despite the benefits of generic invariants, their use on real-world, large soft-
ware applications is currently impeded by the overhead that monitoring all the
system’s variables requires. However, monitoring every variable may not be re-
quired, as only a subset of variables, known as collar variables, truly affect the
outcome of a system in a meaningful way [5]. Applications like TAR3 and TAR4.1
have some algorithms that already experiment on the detection of collar vari-
ables [6], but the use of these collar variables has not been applied on the re-
duction the number of generic invariants needed to monitor a system effectively.

To tackle this, two algorithms were devised to detect exectution patterns of
variables both during executions and between them. These algorithms, called
variable evolution pattern detectors in this paper, are executed during the train-
ing phase of the invariants and collect information from successful executions.
During the operational phase, when the impact of the instrumentation overhead
needs to be minimized, the data collected from the pattern detectors allows
variables deemed unimportant to be ignored.

This paper makes the following contributions:

– Proposes two methods to detect variables that do not require monitoring (in
other words, methods to detect the collar variables of the program under
analysis).

– Investigates the reduction achieved on the number of used invariants on real
world applications.

– Evaluates the quality of the error detection when comparing with the results
obtained using the test suite of the applications.

– Reports the increase in execution time with the use of the invariants.

The paper is organized as follows. Section 2 gives a quick overwiew of how a
fault screener works, along with a more detailed explanation of the used screener
for the study, the dynamic range screener. In Sect. 3 explains the functioning of
the two variable evolution pattern detectors. The experimental setup and results
are shown in Sect. 4. Section 5 presents work related to this paper. Finally Sect. 6
gives some final thoughts and some insight on future work.

2 Fault Screeners

First used by Ernst et al. [7], fault screeners, also known as program invariants,
are fault tolerance mechanisms that use historical data recovered from previous
executions to determine the expected behaviour from a system’s variables, is-
suing a warning when the expected behaviour is not met [2]. Hence, the use of
fault sceeners is a possible way to achieve automatic error detecting by monitor-
ing the system’s variables. However, for the detection to be effective, a training
phase is required. During this phase the spectrum of valid variable values is
determined. This constitutes the expected behaviour for a variable that should
raise a warning in case a value that does not fit the spectrum is detected [8].
Formally, screeners are not effective at detecting errors that involve the use of
random values, or variables that store things like current timestamp.

There are various types of invariants, each with its own algorithms for train-
ing and error detecting. In this paper it is focused on the dynamic range in-
variants [2], due to its simplistic nature, reduced overhead, and known to work
in practice [4]. The dynamic range invariant stores the bounds of valid variable
values. During the training phase, when a new value is found, the range of values
allowed by the screener is extended according to the following equations:

l := min(l, v) (1)

u := max(u, v) (2)

If the new value is lower than the lower bound l, the lower bound is updated.
Likewise, if the value is greater than the upper bound u, that bound is updated.
Table 1 shows an example of how the training works for the dynamic range
screener. At first the invariant does not consider any value valid since no ob-
servation was made yet. After the first observation, in this case 5, both bounds
need to be updated leading to a valid range of [5, 5]. The second observation
is a 72. This value is greater then the upper bound of the range and not lower
then the lower bound, so the upper bound is updated. With an updated range
of [5, 72], the new observed value 6 is compared to both bounds. It is between
the upper bound and lower bound so no change is made. Lastly, the value 5004
is observed, again greater then the upper bound. This bound is updated leading
to a final valid range of [5, 5004].

Table 1. Dynamic Range Screener training

New Result Value Range Point

5 ∅
72 [5, 5]

6 [5, 72]

5004 [5, 72]

[5, 5004]

When on error detection phase, every observed value is checked against the
range of values allowed by the invariant. If the value goes outside the range of
permitted values, a violation to the expected behaviour is detected:

violation = ¬(l < v < u) (3)

The dynamic range invariant can use a larger number of ranges in order
to restrict the allowed spectrum [2]. While the concept is the same, additional
ranges require more memory and more execution time. When using more then
one range, the objective during the training phase is: when a new value is ob-
served, the updated range is the one that increases the valid spectrum by the
least amount of values. Table 2 shows an example of a dynamic range invariant
with two ranges. The invariant begins with two empty ranges. Once it observes
the value 5, one of the ranges becomes [5, 5]. On the second observed value, 72,
since there is still one range that is empty, that range becomes, [72, 72]. Now
that both ranges, when new values are observed, the invariant tries to make the
ranges as short as possible to learn the least amount of unseen values. When 6
appears, there would be two range choices, [5, 6] and [72, 72] or [5, 5] and [6, 72].
Since the first has the smaller ranges, this is the selected option. The last value
5004 provides an interesting twist. At first glance it would seem that this update
would lead to [5, 6] and [72, 5004], however that is not the case. The ranges are
actually updated to [5, 72] and [5004, 5004]. This happens because the amount
of values that is learnt is a lot smaller (from 6 to 72 compared to from 72 to
5004) and it still guarantees both the acceptance of the values from the values
before the update and the new value observed. In this paper, the only version of
the dynamic range invariant used is the single range one.

Table 2. Dynamic Range Screener training with two segments

New Result Value Range Point 1 Range Point 2

5 ∅ ∅
72 [5, 5] ∅
6 [5, 5] [72, 72]

5004 [5, 6] [72, 72]

[5, 72] [5004, 5004]

One of the challenges for using generic invariants is the accuracy of the error
detection, as the more training the invariants suffer, the number of false posi-
tives, errors detected that do not exist, tends to decrease, while the number of
false negatives, the non detection of existing errors, increases [9]. This happens
because of the increase of accepted values by the invariant.

Figure 1 displays a possible setup for a dynamic range invariant. During the
training phase the invariant learnt that the values between −2 and 2 were the
valid set of possible values. However the real case is that the values should be

valid between −3 and −1, as 1 and 2, as well as between 3 and 4. This leads to
some false positives and false negatives. Values observed that withing the ranges
[−3,−2[or]3, 4] issue a detected error warning, hence they are false positives.
Likewise, observations between −1 and 1 do not issue any warnings when they
should.

-4 -3 -2 -1 0 1 2 3 4

Valid Values

Accepted Values by Invariant

False Positives

False Negatives

Fig. 1. False positive and false negative example

In the same scenario, if the invariant had been subject to more training,
then more values would be added into the accepted range. On Fig. 2 the number
4 was such a value (even though 4 should not appear during executions if).
This led to the values ranging from 3 to 4 to become valid, eliminating those
false positives, but the ones from 2 to 3 also became valid, becoming new false
negatives. In other words, there was an increase of false negatives and decrease
of false positives. With more training the false positive rate tends to lead to 0
because the entire possibility of values become valid.

On the other side, the number of false negatives increases because since it
accepts a lot more values then it should, it does not detect any values outside
the huge accepted range.

-4 -3 -2 -1 0 1 2 3 4

Valid Values

Accepted Values by Invariant

False Positives

False Negatives

Fig. 2. False positive and false negative example with increased training

Note that there are other types of invariants, each with their own behaviour
regarding accuracy of error detection and performance [4]. Among them are
bitmask invariants, which use a bitmask with the bits that were changed during
the training when compared with the first observed value. Another one is the
Bloom filter, an invariant that saves the entire history of values observed during
the training phase. In this paper, the results were obtained by only using the
dynamic range invariant. However the approach proposed is easily extensible to
other invariant types.

3 Variable Evolution Pattern Detectors

In this section, the two methods created to detect patterns on the variable values
are presented. These patterns were designed to be as simple as possible, while
still detecting constants and other variables, like counters. It is important to
note that a variable is never classified as not important to monitor if it was only
used on one execution of the system.

3.1 Delta Oriented Pattern Detector

The Delta Oriented Pattern Detector is the first of two algorithms created to
detect collar variables. With this detector, the main objective is to discover vari-
ables that throughout its life cycle evolve in a constant fashion. These variables
are then deemed not essencial since during every execution its value increases
or decreases in the same manner, no matter what the input is, in other words
variables with such detected pattern do not need to be monitored. This is ac-
complished by using a delta value (∆), that is the difference between the last
value observed and the current one:

∆ := current value− last value if last value 6= ∅ (4)

∆ := 0 if last value = ∅ (5)

Algorithm 1 demonstrates how this detector can determine which variables
are important to monitor. Every variable in the system has a ∆ associated to it.
During the training phase, when the first value is observed, ∆ is given the value
0 and the last value is updated to the observed one. On the next observation, ∆
will be updated accordingly, using the current value and the last value, as seen
in Line 8. After this, the pattern detection begins. With each observation, an
updated ∆ is generated (∆2) and is compared to the current ∆. If the new ∆ is
equal to the current one, the pattern detection continues as the evolution of the
variable remains the same. In case the ∆ is different, since the pattern is broken,
a flag is stored indicating that this pattern does not exist for the variable being
evaluated. There is, however, an exception to this. When the new ∆ is 0, then
it is not compared to the previous ∆ (Line 12). This is done because variables
can be accessed without their values being changed.

Algorithm 1 Delta Oriented Pattern Detector
1: pattern := true
2: for all Execution

∧
pattern do

3: for all Observation
∧

pattern do
4: if first observation then
5: ∆ := 0
6: LastV alue := ObservedV alue
7: else if second observation

∧
nRuns = 0 then

8: ∆ := ObservedV alue− LastV alue
9: else

10: ∆2 := ObservedV alue− LastV alue
11: LastV alue := ObservedV alue
12: if ∆ 6= ∆2

∧
∆2 6= 0 then

13: pattern := false
14: end if
15: end if
16: end for
17: nRuns+ +
18: end for

After each execution, the value of ∆ is saved along with a flag indicating
whether the pattern was broken or not. Subsequent executions use the ∆ from
the first execution and starts the pattern detection after the first two values,
instead of after the third like the first run.

With this detector it is possible to detect constant values (∆ = 0), as well
as counters and loop variables that always increment/decrement with the same
pace. A good example of this is the Java code presented on Fig. 3. Of all the
variables from this small code sample, j is the one that has the least impact on
the outcome. It only serves as an auxiliary variable for the loop.

The delta oriented pattern detector can be used to mark this variable as
not essencial. It does not matter what the input of this function is, because j

will always increment in the same manner. ∆ will always be 1 (j always starts
with the value 0 and increments by one on every access), so the pattern is never
broken. Since this pattern is never broken, the variable will not be monitored
during the error detection phase.

3.2 Range Oriented Pattern Detector

One of the main differences between this pattern and the previous one is that
the range oriented pattern detector requires one full execution before it can
determine a broken pattern. The basis of this detector is that if the range of
values that a variable has between every run is the same, then it is not important
to monitor. This is the reason why one full execution is required. The detector
only has the range of the full execution at the end of it.

The functions of updating the bounds of the range are the same as the
dynamic range invariant:

public int funcExample (int i) {
int accumulator = i ;
for (int j = 0 ; j < 3 ; j++) {

i f (accumulator == 1)
break ;

accumulator ∗= accumulator ;
}
int r e s u l t = accumulator ∗ 3 ;
return r e s u l t ;

}

Fig. 3. Delta Detector code example

l := min(l, v) (6)

u := max(u, v) (7)

The main difference between the dynamic range invariant and the range
oriented pattern detector is that the bounds of the detector are only updated
on the first execution that a variable appears in. On the following executions,
every time a new value is observed, it is determined if it is within the range of
the first execution:

broken = ¬(l < v < u) (8)

Algorithm 2 shows how the detector works. During the first execution (Lines 4
and 5) the range is constantly updated with every observation of a given variable.
Once the first execution is over, the pattern detector is ready to discover a
pattern. Hence, on the following executions, each observed value is compared to
the pattern detector range, as seen in Line 7. If the new value is not within the
range determined by the first execution, then the pattern was broken. If this
never happens then it is determined that there is a pattern in the execution and
the variable will not be monitored during the error detection phase.

With this detector it is possible to detect variables that although do not
evolve in a linear way that can be detected by the delta oriented pattern detector,
are restricted in some way during the execution. This is the case of loop variables
that are affected within the cycle. This can be seen in the example shown on
the example shown on Fig. 4. In this case, variable j is not a very important
variable to be monitored. Taking into account the previous, detector, it is easy to
understand that it would not be marked as not essencial (as ∆ can be both 1 or
2). However the range oriented detector can find a pattern. On every execution,
despite what input is received, the range of values j takes is always [0, 5]. During
the first execution, this range would be given to the pattern detector and the
following runs would follow the pattern, so the variable would not be monitored.

Algorithm 2 Range Oriented Pattern Detector
1: pattern := true
2: for all Execution do
3: for all Observation do
4: if nRuns = 0 then
5: updatePatternRange(ObservedV alue)
6: else
7: if ObservedV alue /∈ PatternRange then
8: pattern := false
9: end if

10: end if
11: end for
12: nRuns+ +
13: end for

public int funcExample (int i) {
int accumulator = i ;
for (int j = 0 ; j < 5 ; j++) {

i f (accumulator == 1 && j < 3)
j=j +2;
accumulator ∗= accumulator ;

}
int r e s u l t = accumulator ∗ 3 ;
return r e s u l t ;

}

Fig. 4. Range Detector code example

4 Empirical Results

In this section the experimental setup is presented, along with the workflow of
the experiments themselves. After that the experimental results are discussed.

4.1 Experimental Setup

Application Set. During the experimentation, three real world applications
were used:

– NanoXML 1 - a XML parser.
– org.jacoco.report 2 - a report generator for the JaCoCo library.
– XML-Security - a XML signature and encryption library from the Apache

Santuario 3 project.

1 NanoXML – http://devkix.com/nanoxml.php
2 JaCoCo – http://www.eclemma.org/jacoco/index.html
3 Apache Santuario – http://santuario.apache.org/

In Table 3 some details of the applications used are shown. These details
include the number of lines of code and the number of test cases.

Table 3. Application details

Subject LOC Test Cases

NanoXML 5393 9

org.jacoco.report 5979 235

XML-Security 60946 462

NanoXML is a free, easy to use and non-GUI based and non-validating XML
parser for Java. It has three different components:

– NanoXML/Java, the main standard parser.
– NanoXML/SAX, an SAX adapter for the standard parser.
– NanoXML/Lite, an extremely small version of the parser with limited fun-

cionality.

NanoXML is available under the zlib/libpng license, which is Open Source
compliant.

JaCoCo is an open source code coverage library for Java, being developed
by EclEmma. The current goal of JaCoCo is to provide a code coverage library
that is able to provide coverage reports. To do this there is a bundle called
org.jacoco.report. This bundle is able to provide reports in three formats:

– HTML, for end users.
– XML, to be processed by external tools.
– CSV, suitable for graph creation.

XML-Security is one of the libraries available on the Apache Santuario
project, a project that aims at providing security standards for XML. It is dis-
tributed under the Apache Licence Version 2.0 which is compatible with other
open source licenses. The XMLSecurity data format provides encryption and
decryption XML payloads at different levels, namely Document, Element and
Element Content. XPath can be used for multi-node encryption/decryption.
There exist two versions of XML-Security: a Java one and a C++ one. The
Java version is used for the experiments.

Workflow of Experiments. In order to determine if the pattern detectors
were effective at reducing the number of instrumented points and if the error
detection maintained a good quality, the system’s variables is subject to training
first. Each application is instrumented in order to train the fault screeners. This
training is achieved by executing a random number of test case (roughly 50%
of the tests in the original suite) of the target program. We did not use the
complete suite in order not to influence the results positively.

Once the training of the fault screeners is complete, the error detection phase
begins. To evaluate the quality of the error detection, each application is exe-
cuted five times. On each execution a different bug is inserted into the code and
the number of false positives and false negatives are collected. An additional ex-
ecution is performed without any inserted bug to determine the execution time
in a regular scenario.

Each application’s test suite was executed without any instrumentation as
well to determine the increase of time the instrumentation brings.

Figure 5 shows the different phases of the experiments. First, during the
training phase, the test are executed with the instrumented code. Everytime a
variable is used, the update function of the screener is called in order to update
the accepted values. In addition, the screener uses the pattern detectors to detect
broken patterns. At the end of the execution, both the invariant and the data
collected from the detector are saved. On the operational phase the test cases
are executed with the instrumented code once again. However, this time instead
of monitoring every variable, only the variables that did not have a detected
pattern are observed. On each observation the value is then validated by the
screener using information gathered during the training.

Fig. 5. Workflow of experiments

Injected bugs are of different types to guarantee a more varied input. Some
examples of inserted bugs are:

– Change an operator when assigning values (i.e. change + to −).
– Change a random numeric value.
– Change comparation operator of a conditional clause (i.e. change a > to <

on an if clause).
– Change the value of an argument of a function call.

With this setup the expected results are:

– Value of the reduction obtained in the number of used invariants.
– Comparison of execution times between executions with and without instru-

mentation.
– Accuracy of the error detection with the use of pattern detectors.

4.2 Results

Table 4 shows the number of variables that were trained and the number of
variables that are considered collar variables by the pattern detectors. It is im-
portant to note that only numerical variables are subjected to training, in other
words, only variables of the types int, long, double and float.

Table 4. Variable reduction

Subject Variables trained Collar Variables Reduction

NanoXML 40 17 57.5%

org.jacoco.report 55 28 49.09%

XML-Security 325 164 49.54%

On average, a reduction of 52.04% is achieved with the use of the two pattern
detectors. However the execution time of the program with instrumentation is
also important to take into consideration. Table 5 presents the execution times
of the test suites both with and without instrumentation. This instrumentation
uses only collar variables.

Table 5. Execution time increase

Subject
Execution time with Execution time without

Increase
instrumentation (ms) instrumentation (ms)

NanoXML 270 827 206.3%

org.jacoco.report 3469 5162 48.8%

XML-Security 25005 63088 152.3%

The average increase in the execution time is 135.8%. Although this seems
like a high value, it is greatly impacted by the increase noticed on NanoXML that
is only a few miliseconds.

Having the data on the reduction of variables monitored and execution time
increase, the quality of the error detection is what remains. To test the quality
of the detection using these collar variabes, the number of false positives (Nfp)
and false negatives (Nfn) was determined. A false positive is considered when
the fault screener detects an error in the execution that does not exist. Likewise,
a false negative is counted when a faulty execution has no objections raised from
any fault screener.

The results shown on Table 6 were obtained by comparing the total number
of false positives (Nfp) and false negatives (Nfn) with the number of tests on
the test suite of the target program (Nt):

Table 6. False positive (fp) and false negative rate (fn)

Subject
Bug 1 Bug 2 Bug 3 Bug 4 Bug 5

fp % fn % fp % fn % fp % fn % fp % fn % fp % fn %

NanoXML 0 0 0 0 0 0 0 66.67 0 0

org.jacoco.report 0 0 3.4 2.13 3.4 0 3.83 2.13 5.96 0

XML-Security 2.81 0.21 13.64 7.14 1.95 0.22 12.99 0.22 0.22 0.22

fp :=
Nfp

Nt
(9)

fn :=
Nfn

Nt
(10)

With an average of 3.21% rate of false positives and 5.26% rate of false
negatives, the rate of these false results is considerably low, especially on the
smaller applications. On the largest application, XML-Security, although having
a higher rate of false results, the worst case scenario detected was a 13.64% fp
and 7.14% fn.

In conclusion, with only the use of two pattern detectors, the decrease of
used invariants is quite significant and the error detection quality remains very
high, appart from some special cases. In terms of execution time, it may still not
be enough to allow their use on real world markets, but perhaps the creation of
even more detectors could be a solution.

4.3 Threats to Validity

The main threat to the validity of these results is the fact that only three test
subjects were used during the experimentation. Despite these subjects being
real world applications being diverse in both the size of the application (lines of
code) and size of the test suite, the limited number of subjects implies that not
all types of system’s are tested. This means that a system with characteristics
that are completly different might present different results.

Another threat is that the number of injected bugs is not enough to lead to
accurate results, as these bugs might simply be “lucky bugs” that intercept a
collar variable.

Naturally, there are also threats that are based on the implementation of the
invariants, the instrumentation or the pattern detector algorithms themselves.
The reduce these threats, additional testing was made prior to the experimen-
tation to guarantee the quality of the experimental results in this regard.

5 Related Work

Since being introduced, generic invariants have been subject of study along the
years with very different goals in mind. These goals range from study of program

evolution [7, 10], fault detection [2] and fault localization [3, 11]. Invariants have
also been used as an alternative way of error detection on a fault localization
technique known as SFL [4, 9].

Daikon [10] is a tool that reports likely invariants. It runs a program and
then reports the properties observed during the executions. Besides storing pre-
defined invariants like constants, range or linear relationships, it can be extended
by the user with new invariant types. It is compatible with various programming
languages, including C, C++, Java and Pearl.

Carrot [11] is a tool created with the purpose of using generic invariants for
fault localization. It uses a smaller set of invariants than Daikon. The results ob-
tained were negative which lead to the belief that invariants alone are insuficient
as a means of debugging. However, in [9] the use of invariants for fault localiza-
tion was successful when used as the input for the fault localization technique
SFL.

DIDUCE [3] is yet another tool that uses dynamic bitmask invariants. Al-
though the results appear to be good on four real world applications, the error
that is detected is on a variable that is constant during the training phase and
changed when it was on error detection mode (an error that is easily detected by
a bitmask invariant, an invariant that detects differences on the allowed active
bits of a variable value).

IODINE [12] is a framework for extracting dynamic invariants for hardware
designs. It has been shown that accurate properties can be obtained from using
dynamic invariants.

Zoltar [13] is a tool that applies a fault screener on every occurrence of a
variable and tries to detect errors by finding perturbations on their behavior. In
addition to detecting errors, Zoltar uses the errors detected to help debugging
using SFL.

Another tool that works with fault screeners is PRECIS [14]. PRECIS intro-
duces a different type of invariant based on pre- and post-conditions. The results
obtained suggest the existance of some advantages over Daikon.

iSWAT [15] is a framework that uses invariants for error detection of a hard-
ware level. It uses LLVM to instrument the source code to monitor the store
values.

In [2] various invariants were subjected to performance evaluations. Among
the tested invariants were dynamic range, bitmask, Bloom filters and TBL. Al-
though the results show that bitmask outperforms Bloom filters and dynamic
range, the errors used on the experimentation consisted of random bit switching,
which is better suited for bitmask invariants and are not very common.

On the topic of collar variables, this term was used by Tim Menzies to de-
scribe the subset of variables that affect the output of an application in a mean-
inful way [5].

In [6] the algorithms of TAR3 and TAR4.1 are explained. These algorithms
allow to obtain a ranking of “usefulness” of the different components of an ap-
plication. TAR3 uses the concepts of lift, the change that a decision makes on a
set of examples, and support. TAR4.1 uses Naive Bayes classifiers for the scor-

ing heuristic in order to obtain an overall better performance in comparison to
TAR3.1.

KEYS [16] is yet another algorithm that tries to discover the collar variables,
called keys by the author. It is used to optimize requirement decisions and is
faster then the TAR3 algorithm. In [17], an improved KEYS algorithm is shown
called KEYS2. It outperforms the original version by four orders of magnitude in
terms of speed.

In [18], the concept of collar variable is once again used, this time by the
name of back doors. They were using these back doors to solve CSP/SAT search
problems and suggest by formal analisys the potencial improvement of some
hard problems from an exponential to polynomial time.

6 Conclusions & Future Work

In this paper two simple detectors were used to evaluate what were the collar
variables in each of the systems. Experimenting on real world applications led to
a more accurate take on the impact of the use of invariants for error detection.
By only using two detectors, the reduction of number of invariants used was
above 50% while still maintaining good quality detection. Still the increase in
execution time might still be too severe for use and the inability of the detectors
to view patterns on non numeric values is still an obstacle.

In this regard, for future work in order to reduce the overhead, a further
decrease in the number of invariants used is necessary. The study of additional
detectors that would filter even more variables would be a possibility to achieve
such a decrease. Another option is the use of an algorithm similar to the one
used on TAR4.1 [6] to make the decision of what variables to monitor. There
are also plans to combine this method with static analysis in orther to try to
achieve better results.

Futher work will also be invested in tackling one of the main issues of the
current approach, the ability to only evaluate numeric variables. Efforts will be
made to use invariants and create detectors that would evaluate patterns for
other variable types like String or char. These variables may prove invaluable
to increasing the effectiveness of this method.

7 Acknowledgements

This work is financed by the ERDF - European Regional Development Fund
through the COMPETE Programme (operational programme for competitive-
ness) and by National Funds through the FCT - Fundação para a Ciência e a
Tecnologia (Portuguese Foundation for Science and Technology) within project
PTDC/EIA-CCO/116796/2010.

References

1. Patterson, D., Brown, A., Broadwell, P., Candea, G., Chen, M., Cutler, J., En-
riquez, P., Fox, A., Kiciman, E., Merzbacher, M., Oppenheimer, D., Sastry, N.,

Tetzlaff, W., Traupman, J., Treuhaft, N.: Recovery-oriented computing (ROC):
Motivation, definition, techniques, and case studies. Computer Science Technical
Report UCB//CSD-02-1175 (2002) 1–16

2. Racunas, P., Constantinides, K., Manne, S., Mukherjee, S.S.: Perturbation-based
Fault Screening. In Proceedings of HPCA’07 169—-180

3. Hangal, S., Lam, M.S.: Tracking down software bugs using automatic anomaly
detection. In proceedings of ICSE’02 (2002) 291–301

4. Abreu, R., González, A., Zoeteweij, P., van Gemund, A.J.: Automatic software
fault localization using generic program invariants. In Proceedings of SAC’08
(2008) 712–717

5. Menzies, T., Owen, D., Richardson, J.: The strangest thing about software. Com-
puter 40(1) (2007) 54–60

6. Gay, G., Menzies, T., Davies, M., Gundy-Burlet, K.: Automatically finding the
control variables for complex system behavior. Automated Software Engineering
17(4) (May 2010) 439–468

7. Ernst, M.D., Cockrell, J., Griswoldt, W.G., Notkin, D.: Dynamically Discover-
ing Likely Program to Support Program Evolution Invariants. In Proceedings of
ICSE’99 (1999) 213–224

8. Dimitrov, M., Zhou, H.: Anomaly-Based Bug Prediction, Isolation, and Valida-
tion: An Automated Approach for Software Debugging. In: In Proceedings of
ASPLOS’09. Volume 44., ACM (2009) 61–72

9. Abreu, R., González, A., Zoeteweij, P., van Gemund, A.J.: On the performance
of fault screeners in software development and deployment. In Proceedings of
ENASE’08 (2008) 123–130

10. Ernst, M.D., Perkins, J.H., Guo, P.J., McCamant, S., Pacheco, C., Tschantz, M.S.,
Xiao, C.: The Daikon system for dynamic detection of likely invariants. Science of
Computer Programming 69(1-3) (December 2007) 35–45

11. Pytlik, B., Renieris, M., Krishnamurthi, S., Reiss, S.P.: Automated Fault Localiza-
tion Using Potential Invariants. In Proceedings of AADEBUG’03 (2003) 273–276

12. Hangal, S., Chandra, N., Narayanan, S., Chakravorty, S.: IODINE : A Tool to
Automatically Infer Dynamic Invariants for Hardware Designs. In Proceedings of
DAC’05 (2005) 775–778

13. Janssen, T., Abreu, R., van Gemund, A.J.: Zoltar: A Toolset for Automatic Fault
Localization. In Proceedings of ASE’09 (2009) 662–664

14. Sagdeo, P., Athavale, V., Kowshik, S., Vasudevan, S.: PRECIS: Inferring invariants
using program path guided clustering. In Proceedings of ASE’11 (2011) 532–535

15. Sahoo, S.K., Li, M.L., Ramachandran, P., Adve, S.V., Adve, V.S., Zhou, Y.: Using
likely program invariants to detect hardware errors. In Proceedings of DSN’08
(June) (2008) 70–79

16. Jalali, O., Menzies, T., Feather, M.: Optimizing Requirements Decisions with
KEYS. In proceedings of PROMISE’08 (ICSE) (2008) 1–8

17. Gay, G., Menzies, T., Jalali, O., Feather, M., Kiper, J.: Real-time Optimization of
Requirements Models. Jet Propulsion (2008) 1–33

18. Williams, R., Gomes, C.P., Selman, B.: Backdoors To Typical Case Complexity.
In Proceedings of IJCAI’03 (2003)

