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Abstract. This work focuses on testing the consistency of distributed
and adaptable systems. In this context, Runtime Testing which is carried
out on the final execution environment is emerging as a new solution for
quality assurance and validation of these systems. This activity can be
costly and resource consuming especially when execution environment is
shared between the software system and the test system. To overcome
this challenging problem, we propose a new approach to design a resource
aware test architecture. We consider the best usage of available resources
(such as CPU load, memory, battery level, etc.) in the execution nodes
while assigning the test components to them. Hence, this work describes
basically a method for test component placement in the execution en-
vironment based on an existing model called Multiple Multidimensional
Knapsack Problem. A tool based on the constraint programming Choco
library has been also implemented.

1 Introduction

Adaptable and distributed systems are characterized by the possibility of dy-
namically changing their behaviors or structures at runtime in order to preserve
their usefulness and achieve new requirements. They evolve continuously by in-
tegrating new components, deleting faulty or unneeded ones and substituting
old components by new versions without service interruption.

In order to preserve the system safety and consistency and to check functional
as well as non-functional requirements during and after dynamic adaptation, a
validation technique, such as Runtime Testing, has to be applied. It is defined
in [1] as any testing method that has to be carried out in the final execution
environment of a system while it is performing its normal work.

In a previous work [2], we have proposed a flexible and evolvable distributed
test architecture made of two kinds of test components. These test components
execute unit tests (respectively integration tests) on the affected components
(respectively component compositions) with the aim of detecting reconfiguration
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faults. To do this, they send stimuli to the System Under Test (SUT) in order
to verify that it responds as expected. The main challenging problem here is
that the test execution is done while the SUT is running. Also, test components
are usually deployed and executed in the same execution environment with the
SUT. Consequently, SUT performance can be highly influenced especially when
execution nodes have scarce resources or testing processes are very resource
consuming.

Therefore, placing efficiently test components can be a useful solution to
reduce runtime testing cost. This activity has to be resource aware by respecting
all resource constraints in order not to disturb the SUT performance and not
burden the execution nodes.

Various research efforts have addressed the resource aware testing activity
such as [3, 4]. They focus mainly on optimizing the generation of test cases with
the best usage of available resources. To our best knowledge, there is only two
visible research works [5, 6] being carried out the issue of test component place-
ment with respecting only some resource constraints and some user preferences.
Connectivity constraints which are stated with the aim of reducing communi-
cations cost over the network between components under test and testers are
ignored in these approaches.

In this paper, we propose a resource aware test architecture design phase be-
fore executing runtime tests while the system evolves dynamically. Essentially,
we have studied the issue of test component placement in a shared execution
environment with the SUT. Two main kinds of constraints are considered : re-
source and connectivity constraints. Hence, the most important question to be
tackled in this paper is: How to place test components in the adequate nodes in
order to fit these constraints? To solve this problem, we have modeled it using
an existing model in the combinatorial optimization area, called Multiple Multi-
dimensional Knapsack Problem. In addition, an implementation of a tool based
on the Choco solver has been presented. Also, some experiments have been done
to evaluate the proposed approach.

The remainder of this paper is organized as follows. We begin by a motivating
example in Section 2. A brief description of related work is addressed in section
3. Section 4 overviews the resource aware test architecture design phase and
outlines particularly the test component placement over the execution nodes
fitting resource and connectivity constraints. In Section 5, we present our test
component placement method based on the Knapsack Problem (KP) model.
First, we introduce concisely the background of the standard KP and its diverse
forms. Next, we illustrate the mathematical modeling of the placement problem
using a new KP variant called Multiple Multidimensional Knapsack Problem.
The realization of this approach is provided in Section 6. Some experiments for
execution time measuring of the placement method are conducted in section 7.
Finally, Section 8 concludes the paper and draws some future work.
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2 Motivating Example

Consider an execution environment made of four nodes (N1,N2,N3 and N4)
which are offering some free resources as illustrated in table 1. Some software
components (C1,C2,C3,C4 and C5) are running and distributed among these
nodes. We assume that a dynamic reconfiguration occurs and all these compo-
nents are affected by this modification. Thus, they have to be tested in order to
ensure that they still behave as intended.

Table 1. Execution node characteristics.

Nodes Free RAM CPU Load Components

N1 50 % 20 % C1, C2

N2 40 % 30 % C3

N3 35 % 50% C4

N4 60 % 60 % C5

Table 2. Test component characteristics.

Testers Required RAM CPU usage CUTs

T1 10 % 10 % C1

T2 10 % 5 % C2

T3 15 % 10 % C4

T4 20 % 15 % C5

For this reason, some test components have to be deployed in this shared
execution environment. These test components require some computational re-
sources as depicted in table 2. With the aim of not disturbing the running SUT
and reducing test burdens, they have to be assigned to the execution nodes effi-
ciently while fitting some resource constraints. In this example, we consider just
two kinds of computational resources: RAM and CPU. It is worthy to note that
others resources like battery level and hard disk space can be included. Further-
more, we assume for simplicity that memories and processors in execution nodes
have approximately the same capacities.

N1 N2

N3 N4

N1 N2

N3 N4

N1 N2

N3 N4

(a) (b) (c)

Fig. 1. Execution environment modeling using graphs.

Besides resource constraints, connectivity issue in the execution environment
has to be also tackled. If all nodes are connected together as a strongly connex
graph or even a connex graph (see Figure 1 (a), (b)), test components can be
assigned to any node in the environment in order to perform runtime tests.
Nevertheless, we are faced sometimes with some connectivity problems1 that
can be arisen due to Firewalls, non-routing networks [7], node mobility, etc. In

1 For instance, wireless communication networks are characterized by frequent and
unpredictable changes in connectivity.
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this case, connectivity constraints have to be considered while assigning test
components to nodes. For example, while non routing is performed between
the node N4 and the rest of the execution environment as depicted in Figure
1 (c) the test component T4, which is responsible of testing the component
under test (CUT) C5, can be hosted only in the node N4. It is not allowed to
place T4 in N1, N2 or even N3 because no route is available to communicate
with the component under test C5. In the same way, the other test components
can be assigned to any node except N4. This illustrative example is detailed
progressively in the following sections of the paper. Placement solutions are also
given in section 5.

3 Related Work

Since runtime testing is performed while the system is operational, the business
process execution may be affected by testing activities and the system perfor-
mance may be negatively influenced. Therefore, test isolation techniques (such
as SUT duplication, tagging, SUT blocking, etc.) are required to separate testing
processes from business processes [8–10]. In addition, testing activities have to
be resource aware with the aim of minimizing execution nodes burdens while
runtime tests are executed. The first issue is out of the scope of this paper. We
mainly concentrate on studying the resource aware testing activity [3, 4].

Fitting resource and connectivity constraints while testing distributed and
adaptable systems at runtime is included in a larger class called context aware
testing [11, 12]. The latter has recently emerged to validate especially new class
of software systems which are context aware and adaptive, also known as Ubiqui-
tous or Pervasive systems [4]. This kind of systems can sense their surrounding
environment and adapt their behavior accordingly. In [13], the author generally
defines the context as any information that can be used to characterize the sit-
uation of an entity (which can be a person, a machine or any object including
a service, a software component, or data). He divides context into two main
categories: external context (which contains information about the users, their
location, time, etc.) and resource context (which describes the available resources
on nodes and communication links like memory, CPU load, battery level, band-
width between two nodes, etc.). Various research efforts have addressed testing
activity with considering resource context such as [3, 4]. They focus mainly on
optimizing the generation of test cases with the best usage of available resources
but without studying the placement and the deployment cost of test components.

To our best knowledge, there is only two visible research works related to
test component placement under resource constraints and user preferences. In
the first work [5], the authors propose a function for distributing a set of test
components, which are belonging to a test configuration implemented in TTCN-
3 standard2[14], on different test nodes (computers that are dedicated for test

2 Testing and Test Control Notation version 3 (TTCN-3) standard offers a standard-
ized test notation and an execution platform facilitating the deployment and the
execution of test components, http://www.ttcn-3.org/



Resource Aware Test Architecture Design 5

execution). The proposed mathematical function is applied at deployment time
separately for each test component in order to assign it to a node where it will
be deployed and also executed. It considers two types of parameters when dis-
tributing test components in the adequate test nodes: external parameters such
as CPU load, memory consumption and internal parameters like the number of
components that can be hosted in a specific test node. The second work pre-
sented in [6] mainly focuses on the dynamic deployment of test components also
implemented in TTCN-3 standard. It proposes an approach for designing load
tests and distributing test components efficiently with considering the available
workstation resources. The major problem here is that these approaches do not
define explicitly the proposed distributed function used for test components as-
signment to test nodes. Moreover, they focus mainly on computational resources
and they ignore connectivity constraints.

Unlike these approaches, our work aims at defining a novel method for as-
signing test components to execution nodes in a way fitting both resource and
connectivity constraints. This challenging issue has been widely addressed in
other research areas. First, an interesting work is presented in [15] that aims to
optimize resource allocation and the placement of Java components by using a
graph mapping approach. The latter consists in modeling the application by a
software graph and the execution environment by a hardware graph. The main
purpose here is to map as best as possible the software graph on the hardware
graph. Other approaches have studied the placement issue based on constraint
programming, which aims to model and solve combinatory problems, such as
[16, 17]. By extending the Multiple Knapsack Problem model, [16] proposes a
method for assigning sensors in virtual environments. Hermenier [17] presents a
flexible architecture that adapts the placement of virtual machines in grids with
response to requirements analysis, resources states and some placement con-
straints defined by the user. The problem here is similar to Two-Dimensional
Bin Packing problem. The classical problem consists in packing objects with
different volumes into a finite number of bins having a predefined capacity in
a way that minimizes the number of bins used. Following the same principle,
Hermenier’s work aims to minimize the number of nodes in the grid involved in
the placement of virtual machines while satisfying resource constraints such as
CPU load and memory consumption. Both introduced approaches use the Choco
solver [18] in order to solve the placement problem. In the rest of this paper,
our proposal that is inspired from the constraint programming based approaches
will be highlighted.

4 Resource Aware Test Architecture Design

After a dynamic evolution of the system, runtime testing process is started to
validate these changes. Only the affected parts of the system are considered
in the testing activity. In Figure 2, two fundamental steps are outlined: Test
Architecture Design and Test Component Placement. They will be detailed in
the following subsections.
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Fig. 2. Resource Aware Test Architecture Design.

4.1 Test Architecture Design

This activity consists in defining for each affected component or composition the
kind of test component to deploy and the test cases to execute. As illustrated
in Figure 3, the elements involved in a distributed test architecture (DTA),
their kind and their number depend on the affected parts of the system by a
reconfiguration action. In our previous work [2], we defined a Single Component
Tester (SCT) which is in charge of executing unit tests once a single component
has been changed or newly added at runtime. Moreover, Component Composition
Tester (CCT) is introduced to validate the affected component compositions.
These two kinds of testers communicate with a Test System Coordinator (TSC)
which is charged with generating a global verdict depending on local verdicts of
SCTs and CCTs.

In this work, we suppose that for each adaptation process a test manager
which is responsible for controlling and managing all the runtime testing pro-
cesses is introduced. It defines the adequate test architecture and assigns test
cases. We also assume that during deployment phase, test cases are available
and stored in a repository for further use. They can be also updated or new ones
can be added if behavioral adaptations occur.

4.2 Test Component Placement

Once the distributed test architecture is elaborated, we have to assign its con-
stituents to the execution nodes. It is worth noting that in this work we focus on
assigning mainly single components testers to the execution nodes. The place-
ment issue of component composition testers is out the scope of this paper.

Test component placement is more challenging when tests are executed at
runtime. In fact, test components may share the same execution environment
with the running SUT. This may burden some execution nodes of the SUT and
may have a bad impact on the SUT performance. Also, it may sometimes cause
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Fig. 3. Overview of a detailed Distributed Test Architecture.

malfunctions. To resolve this problem, we concentrate in this work on proposing
a new method for adapting the test components deployment at runtime to the
resource situation of the execution nodes and also to connectivity constraints.

– Consideration of resource allocation issue

We first introduce the considered resources for nodes as well as for test compo-
nents. For each node in the execution environment, three resources are monitored
during SUT execution: the available memory, the provided CPU and the battery
level. The value of each resource can be directly captured on each node through
the use of internal monitors. These values are measured after the runtime recon-
figuration and before starting the testing activity.

For each test component, we introduce the memory size (the memory occu-
pation needed by a test component in execution), CPU load and battery con-
sumption properties. We suppose that these properties values are provided by
the test manager. It is also worth noting that some techniques are available in
the literature for obtaining the required resources by testers. For example in [5],
the authors propose a preliminary test to learn about some required resources
such as the amount of memory allocated by a test component, the time needed
to execute the test behavior, etc.

– Consideration of connectivity issue

Regarding the connectivity constraints, we consider that each test component
has to find at least one route to communicate with the component under test.
As mentioned before, this constraint can be ignored when all nodes are com-
municating together. In this case, the execution environment is modeled as a
connected graph. Recall that in the graph theory, a graph is connected if for
every pair of vertices, there is a path in the graph between those vertices. Hence,
each test component can be assigned to any node and it can communicate with
the node under test either locally or remotely.
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In the worst case, whereas some connectivity problems occur [7], the exe-
cution environment is considered not connected. In this situation, the graph is
obviously decomposed in several connected components as we have seen in the
illustrative example (see Figure 1 (c)). Therefore, for each test component we
have to pinpoint a set of forbidden nodes to avoid when the placement proce-
dure is done. For instance, the set of forbidden nodes for the test component T1
contains N4. From a technical perspective, either depth-first3 or breadth-first4

algorithm can be used to firstly identify the connected components and secondly
to compute the forbidden nodes for each test component involved in the test
architecture.

We can also associate for each node a profit. While the tester is placed in
the same node with the component under test, the profit is maximal because
the communications cost over the network will be reduced. It decreases once the
tester is placed far from the component under test.

In the rest of this paper, we suppose that the execution environment has been
modeled as a connex graph. Even when the obtained graph is disconnected,
we have to compute the connected components and apply the same adopted
method for placement to these sub-graphs. In the next section, we formalize the
placement problem using a variant of the Knapsack Problem under assumptions
like: provided resources for each node are accessible and required resources for
each test component are available too.

5 Mathematical Modeling of The Test Component
Placement

5.1 Background

The Knapsack Problem (KP) is a well-studied, NP-hard combinatorial opti-
mization problem. It has been used to model different applications for instance
in computer science and financial management. It considers a set of n objects
O = o1, . . . , on and a knapsack of capacity W . Each object oj has an associated
profit pj and weight wj . The objective is to find a subset S ⊆ O in such a way
that the weight sum over the objects in S does not exceed the knapsack capacity
and yields a maximum profit [19–21].

The most basic form of Knapsack Problem (KP) is formulated as follows:

KP =


maximize z =

n∑
j=1

pjxj

subject to
n∑

j=1

wjxj ≤W

xj ∈ {0, 1} ∀j ∈ {1, · · · , n}
In the literature, we found many variants of this problem. Due to space

limitations, we describe in details only the two models used in our context:

3 http://en.wikipedia.org/wiki/Depth-first search
4 http://en.wikipedia.org/wiki/Breadth-first search



Resource Aware Test Architecture Design 9

The Multidimensional Knapsack Problem (MDKP). is also called
Multiply constrained Knapsack Problem or m-dimensional knapsack problem.
It can be viewed as a resource allocation model and can be modeled as follows:

MDKP =


maximize z =

n∑
j=1

pjxj

subject to
n∑

j=1

wijxj ≤ ci ∀i ∈ {1, · · · ,m}

xj ∈ {0, 1} ∀j ∈ {1, · · · , n}

Where a set of n items with profits pj > 0 and m resources with capac-
ities ci > 0 are given. Each item j consumes an amount wij ≥ 0 from each
resource i. The 0-1 decision variables xj indicate which items are selected. The
main purpose is to choose a subset of items with maximum total profit. Selected
items must not exceed resource capacities. This is expressed by the knapsack
constraints [21]. Obviously, the KP is a special case of the multidimensional
knapsack problem with m = 1.

The 0-1 Multiple Knapsack Problem (0-1 MKP). is the problem of
assigning a subset of n items to m distinct knapsacks having different capacities
[22, 23]. It is also referenced as the 0-1 integer programming problem or the 0-1
linear programming problem. More formally, a MKP is stated as follows:

MKP =



maximize z =
m∑
i=1

n∑
j=1

pjxij

subject to
n∑

j=1

wjxij ≤Wi ∀i ∈ {1, · · · ,m}
m∑
i=1

xij ≤ 1 ∀j ∈ {1, · · · , n}

xij ∈ {0, 1} ∀j ∈ {1, · · · , n} and ∀i ∈ {1, · · · ,m}

5.2 Our Mathematical Modeling

Mathematically, our placement problem can be modeled by merging the two
introduced knapsack variants: multidimensional and multiple knapsack prob-
lems. The obtained model is called Multiple Multidimensional Knapsack Prob-
lem (MMKP). It is worthy to note that this new variant of the standard KP
has been rarely addressed in the literature except in [24]. We assume that the
execution environment consists of m nodes and we have n test components that
may be assigned to them. We attempt to find an optimal solution of test com-
ponent placement not violating resource and connectivity constraints and also
maximizing their placement profit. We can formulate this problem using the
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MMKP variant as follows:

MMKP =



maximize Z =
n∑

i=1

m∑
j=1

pijxij (1)

subject to
n∑

i=1

xijdci ≤ cj ∀j ∈ {1, · · · ,m} (2)

n∑
i=1

xijdri ≤ rj ∀j ∈ {1, · · · ,m} (3)

n∑
i=1

xijdbi ≤ bj ∀j ∈ {1, · · · ,m} (4)

m∑
j=1

xij = 1 ∀i ∈ {1, · · · , n} (5)

xij ∈ {0, 1} ∀i ∈ {1, · · · , n} and ∀j ∈ {1, · · · ,m}

The provided resources by the m nodes are given through three vectors: C
that contains the provided CPU, R that provides the available RAM and B that
contains the battery level of each node.

C =


c1
c2
...
cm

 R =


r1
r2
...
rm

 B =


b1
b2
...
bm


In addition, the required resources for each test component are illustrated over
three vectors: Dc that carries the required CPU, Dr that contains the required
RAM and Db that contains the required Battery by each tester.

Dc =


dc1
dc2
...
dcn

 Dr =


dr1
dr2
...
drn

 Db =


db1
db2
...
dbn


Similarly, we define the two dimensional variable, xij as follows:

xij =

{
1 if tester i is assigned to node j
0 otherwise

We may find a feasible solution of test component placement if the objec-
tive function (1) is omitted. Otherwise, an optimal solution is computed that
maximizes the placement profit. For doing this, a matrix P has been introduced
which is filled with a profit value of each test component in response to exe-
cution nodes. This matrix depends on the length path between the node under
test5 and the node hosting the test component. The profit pij can be equal to
a predefined value maxP if the test component i is assigned to a node j which
corresponds to the node under test. It can be equal to maxP − l if the test
component i is assigned to a node j reachable from the node under test via a

5 the node hosting the component under test
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path having the length l. The constraints (2),(3) and (4) ensure that the overall
required resources by the testers can not exceed the available resources in each
node. They are called knapsack constraints similar to the standard knapsack
problem. The equality (5) indicates that all testers have to be assigned to the
execution nodes and each of them has to be placed in at most one node.

It is worthy to note that in this work we have chosen the distance between
nodes as criteria for filling the matrix P. However, other placement criteria can
be used such as bandwidth utilization. Furthermore, this solution is dedicated
for a connected network. Even if some connectivity problems occur, we apply the
proposed model for each connected component in the network. Thus, we obtain
in this case partial placement solution.

5.3 Illustration

We use the previously studied example in section 2 to illustrate the feasibility
of our proposal. In case of connectivity problem as shown in Figure 1 (c), the
node N4 is forbidden to host testers T1, T2 and T3. In this case, the place-
ment problem is divided into two sub-problems. In the first one, we consider
the connected nodes (N1, N2 and N3) while searching placement solution for
test components T1, T2 and T3. In the second one, we study the possibility of
assigning the test component T4 to N4. In the following, we detail the first sub-
problem as illustrated in Figure 4. First, we introduce for instance the RAM and
CPU constraints for the node N1 when all nodes in the network are connected:

10x11 + 10x21 + 15x31 ≤ 50. (1)

10x11 + 5x21 + 10x31 ≤ 20. (2)

Next, the objective function is formed as follows with considering that the maxP
value is equal to α and maxP − 1 is equal to β in this example.

Z = αx11 + βx21 + βx31 + αx12 + βx22 + βx32 + βx13 + βx23 + αx33. (3)

C1

P
11 

= maxP

T1 N4
N1

Forbidden 

Node for T1

T1

P
12 

= maxP-1 P
13 

= maxP-1

T1N2 N3

Fig. 4. Illustration Example.

The formed MMKP seeks to maximize the equation (3) subject to the con-
straints such as defined in equations (1) and (2). In the following, we illustrate
the derivation of an exact solution of such problem using a well known constraint
programming solver called Choco.
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6 Realization

To solve our test component placement problem which is modeled as MMKP, we
propose a tool illustrated in Figure 5. As inputs, it takes three XML6 files: nodes
provided resources, testers required resources and tester profits. As output, it
generates an XML based resource aware test plan which contains for each tester
the adequate host to be deployed on. The core of this tool is based on the open
source Choco Java library. In the following subsections, we first introduce the
Choco library. Next, we demonstrate the mapping between the mathematical
formalism to the Choco Java code.

ChOCO library 

based code

Nodes provided resources
+

Testers required resources
+ 

Testers profits

XML files XML file

GUI

Resource Aware Test Plan

Fig. 5. Architecture of Choco based tool.

6.1 Choco Library

Choco is introduced in [18] as a Java library for constraint satisfaction problems
(CSP) and constraint programming (CP). It is an open source software which
offers a problem modeler and a constraint programming solver. The first one
is able to manipulate a large variety of variable types and supports over 70
constraints. The second one can be used in satisfaction mode by computing one
solution, all solutions or iterating them. Also, it can be used in an optimization
mode (maximization and minimization). We selected this solver because it seems
to be one of the most popular within the research community and because it is
reliable and stable open source Java solver. In the following, we show how to
make use of these two fundamental characteristics of Choco to model and solve
our placement problem.

6.2 Modeling and resolving our placement problem with Choco

To solve the test component placement in execution nodes formulated as MMKP,
we use Choco library by defining the variables set of the problem and stating
constraints (conditions, properties) which must be satisfied by the solution.

6 eXtensible Markup Language
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1 //Model declaration
2 CPModel model = new CPModel();
3 // Variables declaration
4 IntegerVariable[][] X = new IntegerVariable[n][m];
5 for (int i = 0; i < n; i++) {
6 for (int j = 0; j < m; j++) {
7 X[i][j] = Choco.makeIntVar("X" + i+j, 0, 1);}}
8 //objective variable declaration
9 IntegerVariable Z = Choco.makeIntVar("gain", 1, 1000000,Options.V_OBJECTIVE);

10 //Constraints definition
11 // ...
12 Constraint[] rows = new Constraint[n];
13 for (int i = 0; i < n; i++) {
14 rows[i] = Choco.eq(Choco.sum(X[i]), 1);}
15 model.addConstraints(rows);
16 //Objective function
17 IntegerExpressionVariable []exp1=new IntegerExpressionVariable [n];
18 for (int i = 0; i < n; i++)
19 exp1[i]=Choco.scalar(g[i], X[i]);
20 model.addConstraint(Choco.eq(Choco.sum(exp1),Z));
21 //Solve the problem
22 Solver s = new CPSolver();
23 s.read(model);
24 s.maximize(s.getVar(Z), false);

Listing 1. Choco code example.

The above Listing 1 presents a brief overview of the model translation from
the mathematical representation of our problem to Choco code. In line 7, it
shows the declaration of the xij variable and its domain. Moreover, we display
in line 9 the declaration of the objective function that maximize the gain of test
component placement. Stating the constraint (5) using the Choco syntax has
been illustrated in line 14. To solve the placement problem, two cases exist : ob-
taining a satisfying solution or an optimal solution. The latter case is illustrated
in the line 24.

7 Experimentation

In this section, we present some experiments that are conducted to evaluate
the execution time (order of milliseconds) needed for the placement phase. Two
cases have been studied in the following subsections. First, we measure the time
needed by calculating a satisfying solution. Next, we compute the execution time
while optimal solution is required.

All of the experiments were conducted on a PC with Intel Core 2 Duo CPU
and 2 GB of main memory having as operating system Microsoft vista. The
number of nodes is equal to the number of testers in all the experiments that we
have done. Also, we have to note that each experiment is carried out five times
to derive the precise average execution time of the placement phase.

7.1 Computation of a feasible solution

The graph of Figure 6 shows the average execution time required by the Choco
solver to compute a satisfying solution. Analysis of the results indicates that
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the average time required for assigning test components to execution nodes in-
creases with the increase in number of test components and nodes. The proposed
solver may resolve this NP-hard problem in a reasonable amount of time while
the number of test components and nodes does not exceed some dozens. Such
solution can be sufficient especially when the affected parts of the system to val-
idate after dynamic reconfiguration are not important also when the execution
environment is not large.
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ing a feasible solution.
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ing an optimal solution.

7.2 Computation of an optimal solution

Recall that in this case we search for an exact solution that maximizes the
placement profits by assigning test components to the adequate execution nodes.
By computing such solution, we aim to reduce the communication cost over
the network between the test components and the components under test. As
illustrated in Figure 7, the calculation of the optimal solution takes a significant
time especially when the number of test components and nodes increases. We
have to note that this computation technique can be opted when the dynamic
changes are not frequently done. Thus, we have enough time to validate them.
Otherwise, it can be enhanced by the use of some predefined heuristics in Choco
library.

8 Conclusion

In this paper, we have studied the runtime testing of adaptable and distributed
systems after the occurrence of dynamic changes. This resource intense testing
method is often performed in a resource constrained execution environment.
For this reason, defining efficiently the distributed test architecture and the
assignment of its components to the execution nodes can be a useful solution for
either respecting resource constraints or reducing the cost of testing activity.

To do this, we have proposed a new approach for resource aware test ar-
chitecture design of adaptable and distributed systems. Our main contribution
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in this work consists in proposing a method for test component placement in
the execution nodes while respecting resource and connectivity constraints. This
NP-hard problem has been formulated as a multiple multidimensional knap-
sack problem. We have also implemented a tool facilitating the resolution of our
problem using the Choco Java library.

As future work, we will enhance the proposed solution by adding other re-
source constraints such as network bandwidth or by associating different weights
with the considered resources. Moreover, it is obvious that for large scale sys-
tems or systems having hard realtime timing constraints, the proposed method
is not suitable. In this case, it might take a lot of time to find the exact solu-
tion. Therefore, we investigate effort in enhancing the proposed technique using
heuristics.
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