
Managing Execution Environment Variability
during Software Testing: an industrial experience

Aymeric Hervieu1,2, Benoit Baudry2, Arnaud Gotlieb3

1 KEREVAL, Thorigné Fouillard, France
2 INRIA Rennes Bretagne Atlantique, Rennes, France

{Aymeric.Hervieu, Benoit.Baudry}@inria.fr
3 Certus Software V&V Center, SIMULA RESEARCH LAB., Lysaker, Norway

{arnaud}@simula.no

Abstract. Nowadays, telecom software applications are expected to run
on a tremendous variety of execution environments. For example, net-
work connection software must deliver the same functionalities on dis-
tinct physical platforms, which themselves run several distinct operating
systems, with various applications and physical devices. Testing those
applications is challenging as it is simply impossible to consider every
possible environment configuration. This paper reports on an industrial
case study called BIEW (Business and Internet EveryWhere) where the
combinatorial explosion of environment configurations has been tackled
with a dedicated and original methodology devised by KEREVAL, a
french SME focusing on software testing services. The proposed solution
samples a subset of configurations to be tested, based on environment
modelling, requirement analysis and systematic traceability. From the ex-
perience on this case study, we outline the challenges to develop means
to select relevant environment configurations from variability modelling
and requirement analysis in the testing processes of telecom software.

1 Introduction

Business and Internet EveryWhere TM (BIEW) is an Internet connection soft-
ware developed by Orange, a worldwide Telecom Company. BIEW has been
designed to fulfil professional needs in mobility. It aims to provide user the abil-
ity to connect to the internet through different means, from everywhere. BIEW
is able provide an internet connection using 3G, Wifi or Ethernet protocols.
Today the application is used by more than 1.5 millions users from all around
the world. For the end user the application overrides the connection manager
of the operating system, and gathers in the same application different ways to
connect to Internet. Fig. 1 presents a screenshot of the application where the
grey panel represents state of the connection: mean, time, connexion quality, and
amount of data transferred. At the bottom, a set of icons permits users to access
to the various functionalities of the application. As it has to provide users the
ability to connect to Internet through different protocols, the application has to
handle a large number of physical devices. The application has been specified



to behave correctly on more than 2, 000, 000 different environments, composed
of operating systems, 3G, Wifi dongles, browsers and mail clients. A the end
of the project, specifications of the application contained 1493 requirements. As
Internet connection is business critical for a company like Orange, the accep-
tance testing phase of the BIEW software is a major step in the life cycle of the
software. A major dysfunction of the application would have serious financial
and reputation consequences for the company. In the previous testing rounds
of the application most of the testing activities were based on the craft and
experience of software testers. There was no formalized acceptance test process
and test teams had no vision of the general efficiency of their test activities.

Fig. 1. Screenshot of the application

As the project grew, the number
of requirements increased and tests
activities only based on manual
craft and experience appeared to
be insufficient. The testers did not
have the necessary expertise in re-
quirements management and sys-
tematic environment modelling to
handle the growing number of dif-
ferent conditions under which the
test cases had to be executed. As
this process was highly challeng-
ing, KEREVAL, a french SME fo-
cusing on software testing services,
has been solicited to develop a ded-
icated testing methodology based
on variability modelling, requirement analysis and systematic traceability be-
tween requirements and test cases. To validate this application, we faced to 3
challenges.

1. The first challenge is the explosion of environment configurations, due to the
heterogeneity of devices available to the end-user. We were asked to find a
systematic selection strategy to reduce the number of configurations under
which the system has to be tested ;

2. The second challenge is the reduction of the effort to deploy a configura-
tion to run a set of test cases. To deploy an environment configuration, the
testers have to install an Operating System (OS), to set up drivers and
plug in devices, and finally to configure the application. These tasks are
time-consuming and we were asked to find ways to reuse environment con-
figurations as much as possible ;

3. The last challenge is to keep track of the relations between requirements,
environment configurations and test cases. Any change in the requirements
or the environment configurations may affect the testing strategy and then
needs to facilitated by means of a better traceability.

Unfortunately, the literature contains few industrial reports explaining how these
challenges can be efficiently handled. Olsen et al. recently presented in [1] an ap-



proach for testing professional printers, that has been deployed by a Big Com-
pany. The authors considered a controller having a large number of input param-
eters and chose to model the environment of the controller (i.e., logical relations
between parameters) with propositional logic formula. Based on these formula,
they generated test cases covering the pairwise combinatorial testing criterion,
and executed them on the system. In the BIEW project, a model of the envi-
ronment is insufficient to generate test cases and test cases need to be generated
from test requirements. More over, the owner of BIEW (i.e., Orange) considered
worth reaching the coverage of test requirements rather than any other testing
criterion.

This paper reports on the methodology we designed and deployed at KEREVAL,
to validate the 1493 BIEW test requirements over the different configuration en-
vironments. The overall project was intended to last for 5 years. The testing
effort for validating each new version of BIEW was estimated in between 100
and 400 Person-Days, with a mean of 300 Person-Days, meaning that it rep-
resents an important part of the overall cost of the development. This paper
details our methodology to select and run tests cases, to manage the variability
associated to the various configuration environments, to deal with the traceabil-
ity issue between requirement, test cases and environments. The contributions
of the paper are two-fold: it introduces an original methodology to manage the
complexity of the combinatorial explosion of configuration environments and it
describes the benefits and limitations of our implementation of this methodogy ;
it identifies the challenges that still have to be handled to improve the testing
of the BIEW software and more generally telecom software applications.

The rest of this article contains three sections. Sec.2 describes the testing
methodology through its main components, i.e., inputs processing, environment
variability modelling, test requirements management, test case generation and
traceability management. Sec.3 reports on the implementation of this method-
ology, its industrial adoption and discusses of its benefits and limitations. This
section also introduces new research perspectives by identifying several key sci-
entific challenges. Finally, Sec.4 concludes the paper.

2 A methodology to manage test requirements and test
cases on a large number of configuration environments

The French SME Kereval, specialized in testing services, designed a method-
ology to manage test requirements and test cases on a large number of con-
figuration environments. The complete methodology is depicted in Fig.2. It
takes both environment specifications and requirements as inputs, and pro-
duces concrete test cases and several variability matrix that capture test case
execution verdicts. These variability matrix specify the test cases that are ex-
ecuted in selected configuration environments. The process includes 5 steps
showed with diamonds shapes in Fig.2, namely environment analysis, require-
ment analysis, test case selection, variability matrix design and test case execu-
tion:



Fig. 2. Test design process

1. In the environment analysis step, the val-
idation engineer converts the specifica-
tion document into a set of environmental
features (e.g., OS, browser, etc.) ;

2. In the requirement analysis step, the
validation engineer splits the set of
customer-oriented test requirements into
environment-dependent requirements and
environment-independent requirements.
The former ones are tagged with the set
of environmental features on which they
depend ;

3. In the test cases selection step, the vali-
dation engineer extracts test cases from
the requirement analysis phase ;

4. The variability matrix design step pro-
duces the variability matrix that asso-
ciate the set of environmental configura-
tions to each test case. The matrix also
store the test verdict for each test case
with its associated set of configurations,
when it becomes available ;

5. Finally, the test case execution is a pro-
cess where the validation engineer dis-
tributes individual tasks to the engineer
in charge of the settings of a test envi-
ronment and the execution of the tests
cases ;

The rest of the section is devoted to the de-
tailed presentation of these steps, which com-
poses the methodology introduced in this pa-
per.

2.1 Environment Analysis

Provided by Orange, a document specification describes an unstructured list of
environment items (e.g., OS, browsers, ...). A very first step of our process is
to analyse this document and to extract a structured view of the environment
under the form of possible configurations. By gathering items corresponding to
physical devices or software artefacts, called environmental features our process
leads to identify possible distinct configurations under the form of environment
configurations. For the BIEW software, we identified 8 distinct environmental
features:



– OS (5): Win. 2000, Win. XP 32 bits, Win. XP 64 bits, Win. Vista 32 bits,
Win. Vista 64 bits

– Mobile (25): Novatel Xu870, GTMax GX0301, Lucent Merlin U530, Huawei
E870...

– Wifi internal (5): intel centrino 2100, 2200, 2915, 3945,
– Wifi external(8): Sagem 706 A, Sagem 703...
– Modem (8):Sagem F@st 800 USB, Thomson ST330, Siemens A100, ZTE

ZXDSL 852...
– VPN (4): Safenet, Cisco, Avasy
– Mail Client (4): Outlook, Outlook Express, Windows Live Mail, empty
– Browser (4): Firefox 2.0, Firefox 1.5, Internet Explorer 5.5, empty

Each environmental feature, except OS, is optional, that’s why each has a com-
mon value : empty. We distinguished Wifi Internal and Wifi External features
into to 2 environmental features, for 2 reasons. Wifi External devices can be
plug freely on any configuration while internal devices cannot. Wifi Internal de-
vices are already recognized by the Operating System, drivers are embedded in
the OS, on the contrary, Wifi External may sometime require external driver
provided by BIEW software.

We also specify an additional environmental feature, which is not associated
to physical devices or software artefacts. This environmental feature contains the
kind of telecommunication channel:

– Bearer (4): Mobile, Modem, Wifi, Undef

It permits validation engineer to identify certain telecommunication channel in-
dependently of any physical devices. Section 2.2 illustrates how this modelling
choice will assist the validation engineer .

A configuration, called an environment configuration, is a tuple of 9 values:
(OS, Mobile device, Internal wifi device, Wifi USB device, Mail client, VPN,
Browser,Bearer). Note that environment configurations do not necessarily rep-
resent actual configuration as, for example, nothing forbids 2 web browsers to
be installed within the same machine. Note also that some configurations are
not necessarily a valid environment configurations because some combinations
are forbidden. For example, Firefox 1.5 cannot be installed on Windows Vista
64 bits. According to our definitions, the number of possible environment con-
figurations (valid and invalid) is exactly 2560000 4.

The environmental feature Bearer will be set up at Undef (undefined) value
if a tester selects an environment configuration containing more than 1 mean of
connection. i.e. in the case of an environment configuration containing a mobile
device Novatel Xu870 and Wifi External device Sagem 706. The main weak-
ness of this step of the process is that invalid configurations are not exclude.
Informal knowledge of the tester is not captured.

4 ]OS∗]Mobile∗]WiF iInternal∗]WiF iExternal∗]Modem∗]V PN∗]Mail∗]Browser



2.2 Requirements Analysis

Requirements have been produced by Orange, and used by developers to write
the specification of the BIEW application. The requirements are gathered by
functional domains, which correspond to the major functionalities of BIEW : e.g.
Power Management , POP Locator, Startup Preferences ... In this project,
43 functional domains corresponding to 1493 requirements, are identified. Fig.3
shows a requirement extracted from the functional domain Wifi Management.
Requirements are composed of a header, including a unique ID, a version num-
ber a small summary of the requirement goal, and a detailed explanation of
the expected application behaviour on a given situation. Based on the iden-
tified environmental features, validation engineers decide whether a functional
domain is dependent on the environment or not. Classification of a functional do-
main as dependent or independent of the environment is made after discussions
with project managers, software engineers and software testers. For the BIEW
application, 33 functional domains (including 841 requirements) are classified
as environment-dependent while 10 of them (including the remaining 652 re-
quirements) are environment-independent. Environment-independent functional
domains contain requirements that are not dependent of the environment. Each
requirement of an environment-dependent functional domain can be tagged with
up to 2 tags. Tags values correspond to environmental features. When a tag is
assigned to a requirement, it means that the requirement should be tested in
every possible values of the tag. For example, if a requirement r is tagged with
OS, then r should be tested over Windows XP 32 bits, Windows XP 64 bits, ...
The requirement shown in Fig.3 belongs to an environment-dependent functional
domain. As this requirement describes a situation where BIEW depends on the
devices wired to the machine, it includes a tag [WIFI]. Thus, for this require-
ment, BIEW should be tested with all the possible Wifi settings. A requirement
tagged [BEARER] means that the requirement does not directly depend of phys-
ical device, but depends on the nature of the telecommunication channel. The

[RQ 02000 _V8.0.1_ Select Wifi device in Settings][WIFI]
The user can also select the Wifi device in the settings. He can choose
in a listof all devices authorized by the customisation and detected by the
Client Software Suite on the PC.

Fig. 3. Environment-dependent requirement

identification of environment dependency is a complex task as it requires a deep
understanding of the application domain, thus requiring extensive discussions
among the project members: software developers and testers. We estimated that
the time spent to identify requirements dependencies was about 15 Person-days.



2.3 Test Cases Selection

During this step, test cases are selected for each requirement. An example of
such a test case is given in Fig.4. Each test case is composed of:

– A unique identification number, which links the test case with the require-
ment it originates, for traceability;

– A tag (optional), which allows validation engineers to identify the environ-
ment dependency;

– Pre-requisites that describe the necessary conditions for the test case to be
executable;

– A test objective, that is the goal of the test case;
– A test procedure, that gives the detailed plan for executing the test case.

Test case is written in Quality Center (QC), and associated to its requirement.
QC permits to maintain the traceability between requirements and test cases.
When a requirement evolves, is modified, added, or suppress,the impacted test
cases are distinguished. During a test campaign, validation engineer executes the
test case, and reports verdict in Quality Center. For BIEW, 3102 test cases are se-
lected from the requirements, among which 1231 are associated to environment-
dependent functional domain.

[353-RQ01980][WIFI]
Objective: Check the prompt display for one descriptor and one security
key WPA2.
Pre Requise:
Business EveryWhere Kit installed.
Acces Point AP1 selected
Wireless lan seted up with WPA 2 security
Test Procedure:
- Launch the BIEW application
- Click on the button connect, on the main screen
- Select the access Point AP1

Fig. 4. An example of a Test case

2.4 Variability matrix design

The tag is used to reduce the number of test execution to perform for a given
test case. This is basically the approach we adopted to reduce the combinatorial
explosion:

– if a test case has no tag, then only a single environment configuration is
selected for test case execution ;



– if a test case has a single dependency, all the environment configurations
related to the environmental feature are used for test case execution. For
example, if the feature is WIFI, then all the WIFI-environment configurations
are selected;

– if the test case has two tags, then all the combinations of environment con-
figurations will be selected for test case execution.

A Variability matrix is designed for each of 43 functional domain. When the
domain is environment-independent, then the test cases have to be executed on
a single environment configuration. On the contrary, test cases originating from
environment-dependent functional domain have to be executed on several envi-
ronment configurations. A variability matrix (as the one shown in Fig.4), cap-
tures the dependency in this latter case. In this matrix, each row corresponds to
a test case, while columns represent environment configuration and environment
configurations combination. As the environment dependency has been limited to
2 environmental features, only two levels of combination are possible. In the ma-
trix of Fig.5, the first columns include informations such as the test case name,
its priority, its environmental features and its status. Of course, status are only
available once test execution has been started. A status can be either Passed,
Failed or Not completed, corresponding to the state of the test execution pro-
cess. A color is associated to each element of the matrix: grey means that the
test case, within the considered configuration, is not required to be executed,
white means that the test case has to be executed, green means Passed, red
means Failed, while N/A means Not applicable. This latter case holds for
test case that cannot be executed on a given environment configuration. When
a test cases has been run on all the environment configurations then its statuts
is turned Passed or Failed, depending on the results over all the environment
configurations. If the test case fail for at least one environment configuration
then, its status is turned Failed. Variability matrix are then associated to their

Fig. 5. Variability matrix

functional domain in QC. Thanks to these rules, only 10603 test case execu-
tions were run instead of 33685 + 1871, while the overall environment diversity
of the test cases was preserved. The quality of the test suite was evaluated by



2 distinct entities. Developers of the application where executed test cases dur-
ing development steps put in excerpt a several defects. This test step permits
developers to fix quickly the application. The second is an independent entity
the Orange development team.This entity is a branch of Orange group which
valid the release of a major version. The second entity identified few defects.
Now, a part the validation process of the branch, for BIEW 9, relies on our test
platform. We were not able to extract relevant metrics to illustrate the quality
of the test suite. We obtained those information thought discussions other the
different stakeholder.

2.5 Test Case Management and Execution

In the BIEW project, we gathered 1493 requirements and classified them in terms
of functional domains. For each functional domain, identified as environment
dependent, we associated a specific variability matrix. As a result, test cases
were formally associated to the requirements for faciliting traceability.

In order to monitor test activities, we associated a status to each require-
ment in our methodology. The status of a requirement depends on the state of
execution of its associated test cases. There are five possible values for the status
of a req:

– Not Covered: if there is no test case associated to the req. ;
– Failed: if at least one of the test cases failed ;
– Passed: if all the test cases successfully passed, in all the environments

specified by the variability matrix ;
– Not Completed: at least one of the test cases associated to the req. has

not yet been executed ;
– Not Runned: none of the test cases associated to the req. has been exe-

cuted ;

Of course, the main relevant metric used during the acceptance testing phase
is the number of covered requirements (and their status). Using this metric, the
validation engineer can follow quite easily the evolution of the project and can
provide informations related to the state and quality of the deliverables to the
development team. Fig. 6 shows a screenshot of the Quality Center (QC) tool
that has been used in the BIEW project. QC centralizes and reports on all
the test activities of the project. On the left, all the requirements classified by
functional domain are shown. For each functional domain, the validation engineer
follows test activities through the diagrams shown on the right.

During test execution, the validation engineer assigns to each tester a subset
of existing variability matrix. The testers are then responsible of the execution
of test cases, as they are specified in the distinct matrix. A test case assembles
3 elements: an environment configuration, a test input and a test verdict. Note
however, that a matrix does not specify the order on which the test cases have
to be executed. Testers have to select a environment configuration according to
the availability of material (e.g., USB sticks, SIM card) and to prioritize the



Fig. 6. Screenshot of the test project in Quality Center

execution of test cases based on their knowledge of the fault-proness of the con-
figuration. When environment configurations contain items tagged as [Bearer],
it means that the test case execution does not require a particular physical de-
vice to be set up. Then, the tester can select an environment configuration with
any item to perform test case execution.

3 Benefits, limitations and possible innovations

Kereval has developed a cost-effective systematic methodology that relies on
two key-components: the formalization of execution environment as a set of
environmental features and the analysis of customer-oriented requirements to
clarify their dependency on functional domains. Since the methodology keeps
track of the link between requirements and test cases, much testing effort is
saved by limiting the number of test cases executed on each environment. The
testing effort is also reduced during test cases design, as their dependency to
environment has been explicited. Still, the methodology is perfectible. Let us
review the limitations we considered, the identification of which could serve as
a basis to improve the methodology.

– In the methodology, environmental features are totally independent from
each other, while in fact, there are many dependencies among them ;

– Several configuration environments, having distinct sets of environmental
features, are in fact redundant, meaning that test efforts could be saved if
we could capture redundant environments ;

– In the methodology, we considered that a maximum of 2 tags could be asso-
ciated to each requirement for facilitating the representation of dependencies
of requirement to the environment configurations ;



– Requirements and environments often change from one version to another
of the BIEW software. In our methodology, we did not consider the benefice
that could be brought by an impact analysis of these changes ;

In this section, we review each of these limitations by identifying their roots,
and, by studying existing research results, we propose and discuss potential
improvements of the methodology.

3.1 Explicit representation of the variability within environment
configurations

For BIEW, Orange provided us an informal description of the environment con-
figurations, from which, we extracted a list of environmental features. However,
in this process, we ignored that some environment configurations may be invalids
and some others may appear in the near future. For example, nothing prevented
us to consider an environment configuration running Firefox 1.5 on a 64-bits
OS platform, even if Firefox 1.5 cannot run on 64-bits computer architecture.
This kind of informations is never explicited in the specification documents, and
typically belongs to the background knowledge of the validation engineers. In
the case of BIEW, invalid configurations are not selected because their number
is still limited. However, on other projects where the number of discrepancies
between environment artefacts is larger, such an informal approach is no more
acceptable. Another related limitation of our methodology is the limited notion
of environment configuration which disallows the validation engineer to consider
environments with several distinct browsers or client mails. For us, the root of
these limitations is the absence of a formal model able to capture the variability
within environment configurations.

In the literature, feature modelling, introduced by Kang in [2], enables com-
plex and inter-dependant environment variability representation. Feature mod-
elling introduces a tree-based graphical representation of the variability within a
set of components of a system, or a set of options within a product line, or a set
of features of an environment representation . Looking at the so-called Feature
Model, which basically captures a set of propositional logic formula represent-
ing distinct environments, we modelled the dependencies within environment
configurations of BIEW. Fig. 7 is an excerpt of this Feature Model, where the
discrepancy between Firefox 1.5 and 64-bits architecture can be explicited using
a special operator, called Mutex (i.e., exclusive disjunction). In this model, an
operator OR can be used to represent configurations with several browsers, en-
abling the selection of environments with multiple features. The overall Feature
Model we built for BIEW is composed of 66 features and implicitly represents
8, 243, 200 distinct configurations. Using a Feature Model, a number of man-
ual activities for the testing of BIEW could be automated. Benavides et al. [3]
surveyed the automated analysis of Feature Models and identified key analyses,
such as the so-called valid product and valid partial product operations that could
be useful in our case:



Fig. 7. Excerpt of the feature model representing the execution environment of the
BIEW application

– Valid product verifies that a given environment configuration respects all
the constraints of a Feature Model. For example, a configuration with both
Firefox 1.5 and any 64-bits architecture will be automatically rejected. Imple-
mentations of this operation relies on the usage of SAT-solving or Constraint
Programming techniques.

– Valid partial product is a similar operation over only a subset of features,
and enables in addition the automatic completion of a partial environment
configuration.

To sum up, we think that capturing the distinct environment configurations with
a formal model of the variability will be useful to improve the test management
and execution of the BIEW software.

3.2 Elimination of redundant configuration environments

In our methodology, the validation engineer identifies the dependency among
environmental features, through a careful analysis of the specification documents
and the customer-oriented test requirements. These dependencies are captured
within variability matrix. However, a detailed analysis of the variability matrix
shows that several test environments are redundants. In fact, requirements from
distinct functional domains can be tagged with the same features, leading to
the creation of distinct matrix, although they represent similar environment
configurations. We identified 149 such duplicated environment configurations
over the 390 configurations used during the overall test project.



3.3 Improving the internal representation

Our methodology involves the tagging of requirements with environmental fea-
tures, to identify their environmental dependencies. Each requirement is tagged
with 1 or 2 environmental features because we used a simple two-dimensional
representation (i.e., variability matrix) for specifying the link between the en-
vironment configurations and the requirements.Then tagged requirements are
tested under all the combinations of the items of the values.

The current modelling does not permit the validation engineer to define pre-
cisely test environments. For example, validation engineer cannot specify that a
requirement has to be tested over 1 operating system 32 bits, and 1 operating
system 64 bits, under a WLAN and a mobile connexion, with Internet Explorer,
and Firefox. To design a test environment according to the depicted process val-
idation engineer needs to 3 new environmental features ({ 1 OS 32 Bits, 1 OS
64 Bits }, { WLAN, Mobile }, { IE,FireFox }), and remove the tag limitation.
Creating new environmental features for each specific needs is not a satisfying
solution.

The best way to handle this limitation is certainly to increase the declara-
tivity of our approach by allowing the validation engineer to specify at a finest
coarse the test environments. Domain specific languages would permit the vali-
dation engineer to define precisely its test environments.

3.4 Impact analysis for requirements evolution

In case of evolution of requirements or environmental features, our methodology
does not provide tools to help us quickly identify elements to modify and adapt
to properly manage these changes. Even if our test management tool, Quality
Center, can rapidly detect impacted test cases, nothing is proposed to adapt
requirements and tags, that are store in variability matrix. In practice, when
a new value for an environmental feature is introduced, test engineers have to
re-examine all the variability matrix and identify the impacted requirements.

The literature contains many propositions to handle efficiently these evolu-
tions. For example, Hartman et al. in [4] proposes to use Feature modelling with
dependencies to manage context evolutions. Metzeger et al. [5] introduced xlink
to link two distinct variability models, while Than Tun et al [6] used xlinks to
formally establish the relation between a set of requirements to a set of fea-
tures. Then, using these xlinks, their approach permits the validation engineers
to select configurations that cover a selected subset of requirements. We think
that this approach is valuable and could be implemented in our specific case for
handling the evolution of requirements or environmental features.

3.5 Test criteria over the environment dependency

As exhaustive testing of every requirement on every possible environment con-
figuration is impossible, test criteria have to be introduced in any methodology



aiming at testing telecom software applications. In the case of BIEW, we im-
plicitely considered every pair of values for environmental features, meaning that
we tested the dependency to the environment with pairwise testing, a Combina-
torial Interaction Testing (CIT) criterion [7].

A limitation of original approaches of CIT is however that it did not consider
constraints among the variables [7, 8]. In the case of BIEW there are constraints
among the environment features that capture the restrictions in configuration
environments (see Sec.3.1). Recently, several authors proposed means to generate
test configurations from feature models with constraints [9–12]. The authors of
this article also contributed to this domain with a similar approach based on
Constraint Programming [13]. Generating pairwise-covering configurations has
also been studied for other representations of variability and constraints, e.g.,
[14]. Another intersting extension of CIT approaches is their ability to handle
other testing criteria than pairwise. For example, it is possible to consider 3-wise
or even N-wise combinations between the variables. We think that qualifying
our test methodology with respect to these criteria will be helpful to improve
our understanding of the achieved level of quality. This would be helpful in
the discussions with our customer to adjust precisely the methodology with the
expected level of quality.

4 Conclusion and perspectives

This paper presents a methodology we designed at Kereval to validate a tele-
com software application on a large number of distinct environment configura-
tions. The main challenge we dealt with consisted to handle the potential com-
binatorial explosion of the number of possible configurations. In the proposed
methodology, we adopted an approach that links the requirements to the envi-
ronment through the usage of environmental features, and dedicated variability
matrix. We performed a systematic identification of the dependencies between
requirements and environmental features and thus were able to construct. We
also kept the traceability between test cases, environments and requirements by
using these elements. Thanks to this testing methodology, we showed that 70%
of the test definition/execution effort could be saved over an exhaustive testing
approach. However, we also identified several limitations in our methodology
and the paper shows that is a large room for improvements. Among them, the
absence of a formal representation of the variability (e.g., Feature Model) is the
main limitation to address the problem of the combinatorial explosion of the
number of environments to consider. We can also mention the need for impact
analysis of requirements and environment change.

Our future plan includes a better formalization of the methodology, through
the usage of variability models. Recent works on feature modelling enable auto-
mated analysis and then could be highly beneficial in the context of BIEW [6,
5, 4, 3]. We also plan to reason over variability models in order to generate test
configurations that respect Combinatorial Interaction Testing criteria [13]. Fol-
lowing an approach inspired by xlink introduced by Hartmann and Than Tun



[6, 4], we will also exploit these variability models to facilitate impact analy-
sis of change in requirements and environmental features. On another side, we
would like to evaluate the potential of our methodology on other projects. In
some sense, BIEW was a first industrial application that allowed us to identify
the limitations of the approach. Kereval is involved in several distinct telecom
application testing projects (e.g., the testing of mobile phone applications on
15 distinct platforms) and BIEW was the only project on which such a vari-
ability management approach was deployed. We are convinced that a fine-tuned
methodology for managing distinct environment configurations is essential to
save effort and cost in these kind of projects.

5 Acknowledgements

We thank Ludovic Rocher and Mokrane Kessaci for their precise answers to our
multiple questions related to the BIEW project. We also thank Orange company
which allowed us to use the result of the BIEW testing project in this paper.

References

1. P. Olsen, J. Foederer, and J. Tretmans, “Model-based testing of industrial trans-
formational systems,” in ICTSS, 2011, pp. 131–145.

2. K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson, “Feature-Oriented Domain
Analysis (FODA) Feasibility Study,” Software Engineering Institute, Tech. Rep.
CMU/SEI-90-TR-21, Nov. 1990.

3. D. Benavides, S. Segura, and A. Ruiz-Cortés, “Automated analysis of feature mod-
els: A detailed literature review,” Information Systems, no. 35, pp. 615–636, 2010.

4. H. Hartmann and T. Trew, “Using feature diagrams with context variability to
model multiple product lines for software supply chains,” in Proceedings of the
2008 12th International Software Product Line Conference, 2008.

5. Disambiguating the Documentation of Variability in Software Product Lines: A
Separation of Concerns, Formalization and Automated Analysis, 2007.

6. T. Than Tun, Q. Boucher, A. Classen, A. Hubaux, and P. Heymans, “Relating
requirements and feature configurations: a systematic approach,” in Proceedings of
the 13th International Software Product Line ConferenceTha, 2009.

7. D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton, “The aetg system:
An approach to testing based on combinatorial design,” IEEE Transactions on
Software Engineering, vol. 23, no. 7, pp. 437 – 444, 1997.

8. Y. Lei and K.-C. Tai, “In-parameter-order: A test generation strategy for pairwise
testing,” in HASE’98, 1998, pp. 254–261.

9. S. Oster, F. Markert, and P. Ritter, “Automated incremental pairwise testing of
software product lines,” in Proceedings of SPLC’10, 2010.

10. G. Perrouin, S. Sen, J. Klein, B. Baudry, and Y. Le Traon, “Automated and scalable
t-wise test case generation strategies for software product lines,” in ICST’10, Paris,
France, 2010.

11. B. P. Lamancha and M. P. Usaola, “Testing product generation in software product
lines using pairwise for features coverage,” in ICTSS, 2010, pp. 111–125.



12. M. F. Johansen, Ø. Haugen, and F. Fleurey, “Properties of realistic feature models
make combinatorial testing of product lines feasible,” in Model Driven Engineer-
ing Languages and Systems, ser. Lecture Notes in Computer Science, J. Whittle,
T. Clark, and T. Kühne, Eds., vol. 6981. Springer, 2011, pp. 638–652.

13. A. Hervieu, B. Baudry, and A. Gotlieb, “Pacogen: Automatic generation of pairwise
test configurations from feature models,” in Proc. of the 22nd IEEE Int. Symp. on
Softw. Reliability Engineering (ISSRE’11), Hiroshima, Japan, Nov. 2011.

14. B. J. Garvin, M. B. Cohen, and M. B. Dwyer, “An improved meta-heuristic
search for constrained interaction testing,” in Proceedings of the 2009 1st
International Symposium on Search Based Software Engineering, ser. SSBSE
’09. Washington, DC, USA: IEEE Computer Society, 2009, pp. 13–22. [Online].
Available: http://dx.doi.org/10.1109/SSBSE.2009.25


