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1 Background

Imagine that you are tasked to help a project improve their testing effort. In a
realistic scenario it will quickly become clear, that having an impact is difficult.
First of all, it will likely be a challenge to suggest an alternative approach which
is significantly more automated and/or more effective than current practice. The
reality is that an average software system has a complex input/output behavior.
An automated testing approach will have to auto-generate test cases, each being
a pair (i, o) consisting of a test input i and an oracle o. The test input i has to
be somewhat meaningful, and the oracle o can be very complicated to compute.
Second, even in the case where some testing technology has been developed that
might improve current practice, it is then likely difficult to completely change the
current behavior of the testing team unless the technique is obviously superior
and does everything already done by existing technology.

So is there an easier way to incorporate formal methods-based approaches
than the full fledged test revolution? Fortunately the answer is affirmative. A
relatively simple approach is to benefit from possibly already existing logging
infrastructure, which after all is part of most systems put in production. A log is
a sequence of events, generated by special log recording statements, most often
manually inserted in the code by the programmers. An event can be considered
as a data record: a mapping from field names to values. We can analyze such
a log using formal methods, for example checking it against a formal specifica-
tion. This separates running the system from analyzing its behavior. It is not
meant as an alternative to testing since it does not address the important in-
put generation problem. However, it offers a solution which testing teams might
accept since it has low impact on the existing process. A single person might
be assigned to perform such log analysis, compared to the entire testing team
changing behavior.

Note that although logging often is manually programmed, it can be per-
formed using automated code instrumentation, using for example aspect-oriented
programming. The point here, however, is that manual logging is often already

? Part of the work described in this publication was carried out at Jet Propulsion
Laboratory, California Institute of Technology, under a contract with the National
Aeronautics and Space Administration.



done by programmers, and we can try to benefit from this. Analyzing program
executions using formal methods is also referred to as runtime verification (RV).

2 LogScope and TraceContract

At Jet Propulsion Laboratory (JPL) some positive, although still limited, success
with this approach has been gained. Two different systems for analyzing logs
against formal specifications have been developed and applied: LogScope and
TraceContract. These systems in turn are inspired by previous work, most
specifically Ruler [6].

LogScope [3, 8] checks logs against specifications written in a so-called ex-
ternal DSL - a stand-alone small Domain Specific Language with its own parser.
It is based on a parameterized automaton formalism (conceptually a subset of
Ruler) with a second layer of temporal logic which is translated to the au-
tomaton level. The temporal logic formalism is very simple and intuitive to use.
LogScope was used for a short period by the testing team for the MSL (Mars
Science Laboratory) rover, also named Curiosity [12], which landed on Mars on
August 5, 2012. LogScope was usable due to its simplicity and ease of adoption.
The testing team was, however, shut down during a period due to an otherwise
unrelated 2 year delay in the mission, and LogScope was not used when a new
team was built later. The application of LogScope on MSL was reported in [3,
8].

TraceContract [4, 5] is a so-called internal DSL (an extension of an ex-
isting programming language), an API in the Scala programming language,
offering an interesting combination of data parameterized state machines and
temporal logic. It is currently being tried out by the testing team on the SMAP
project [13] at JPL (a future earth orbiting satellite measuring soil moisture),
and by the LADEE project [10] at NASA Ames Research Center (a future moon
orbiting satellite measuring dust in the lunar atmosphere). The attraction of
TraceContract is the expressiveness of the logic, in large part caused by
it being an extension of a high-level modern programming language. As such
TraceContract represents the use of an advanced programming language for
modeling, an interesting point in itself, as also pointed out in [9]. Furthermore,
TraceContract has a very small implementation and is exceptionally easy
to modify compared to LogScope. We shall discuss the two applications of
TraceContract to SMAP and LADEE and compare to the previous applica-
tion of LogScope to MSL.

3 Requirements Engineering and Logging

We shall furthermore discuss the possibility of relating requirements engineering
to logging, and thereby log analysis. A natural thought is to formulate require-
ments as statements, even informal, involving concrete events (data records), and
then enforce programmers to log such events. Requirements can consequently be



converted into monitors and tested on the running system. As an example, con-
sider the informal requirement:

Requirement If a resource is granted to a task, the resource cannot be
granted to some other task without being canceled first by the first task.

We could formulate this requirement in terms of two formalized event types:

– Grant(t,r) : task t is granted the resource r.
– Cancel(t,r) : task t cancels (hands back) resource r.

The now semi-formal requirement becomes:

Requirement If a resource is granted to a task with Grant(t,r), the
resource cannot be granted to some other task with Grant( ,r) without
being canceled first with Cancel(t,r) by the first task.

Of course, a proper formalization will be more desirable, but even this informal
statement in English over formal events can be useful for subsequent testing
purposes. A monitor can for example later be programmed in a system such as
TraceContract:

class GrantToOne extends Monitor[Event] {
always {
case Grant(t, r) =>
watch {
case Grant( , ‘r ‘) => error
case Cancel(‘t ‘, ‘ r ‘) => ok

}
}

}

A specific monitor, such as GrantToOne above, sub-classes the Monitor class,
parameterized with the type of events. The Monitor class in turn offers a col-
lection of methods for writing properties, such as always and watch, taking
partial functions as argument, specified using pattern matching with Scala’s
case statements. This monitor illustrates the mixture of Scala and added DSL
constructs.

4 Future Work

Beyond expressiveness and convenience of a logic, efficiency of monitoring is of
main importance. The key problem in evaluating a set of monitors given an in-
coming event is to perform efficient matching of the event (and possibly other
facts depending on the logic) against conditions in monitors. This becomes par-
ticularly challenging when events carry data parameters, as also heavily studied



in state of the art systems [1, 11]. We are investigating the combination of ex-
pressiveness and efficiency, with focus on expressiveness, as documented in [2].
The field of Artificial Intelligence (AI) has itself studied a problem very similar
to the runtime verification problem, namely rule-based production systems, used
for example to represent knowledge systems. We are specifically studying the
Rete algorithm [7] for its relevance for the RV problem. This includes imple-
menting it in the Scala programming language, and visualizing its operation
on data structures.
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