
Extending Coverage Criteria by Evaluating their

Robustness to Code Structure Changes

Angelo Gargantini, Marco Guarnieri, and Eros Magri

Dip. di Ing. dell'Informazione e Metodi Matematici, Università di Bergamo, Italy
{angelo.gargantini,marco.guarnieri,eros.magri}@unibg.it

Abstract. Code coverage is usually used as a measurement of testing
quality and as adequacy criterion. Unfortunately, code coverage is very
sensitive to modi�cations of the code structure, and, therefore, the same
test suite can achieve di�erent degrees of coverage on the same program
written in two syntactically di�erent ways. For this reason, code coverage
can provide the tester with misleading information.
In order to understand how a testing criterion is a�ected by code struc-
ture modi�cations, we introduce a way to measure the sensitivity of
coverage to code changes. We formalize the modi�cations of the code
structure using semantic preserving code-to-code transformations and
we propose a framework to evaluate coverage robustness to these trans-
formations, extending actual existing coverage criteria.
This allows us to de�ne which programs and which test suites can be
considered robust with respect to a certain set of transformations. We
can identify when the obtained coverage is fragile and we extend the
concept of coverage criterion by introducing an index that measures the
fragility of the coverage of a given test suite. We show how to compute
the fragility index and we evidence that also well-written industrial code
and realistic test suites can be fragile. Moreover, we suggest how to deal
with this kind of testing fragility.

1 Introduction

The notion of code coverage and testing criteria dates back to the early six-
ties [14,19]. Although, as Dijkstra claimed in 1972 [6], �program testing can be
used to show the presence of bugs, but never their absence�, the initial research
focused on �nding ideal testing criteria, i.e. those capable, under certain assump-
tions, of demonstrating the absence of errors in programs by testing them [10].
Researchers soon realized that �nding such ideal testing criteria was impractical
if not impossible [23] and the community started to introduce, compare, and
study testing criteria, which are not ideal but they have proved to be useful to
measure the quality of testing and to �nd faults in programs. However, there
still exists some skepticism around the actual signi�cance of coverage criteria. It
is well known that some faults may be completely missed by test suites adequate
to some coverage criteria (for instance statement coverage cannot discover omis-
sion faults) and that testing criteria are very sensitive to the structure and to
the syntax of the code, regardless its actual behavior. Rajan et al. [17] show that

the MCDC, required by FAA for software on commercial airplanes, and often
considered a very tough criterion to achieve, can be easily cheated by simple
folding/unfolding of conditions inside guards.

Despite their weakness, coverage criteria give an immediate and easy to com-
pute (at least for simple criteria) feedback about the quality of the testing ac-
tivity. Once a test suite has been developed or built, one wants to know which
parts of the code are exercised and which are not, and this information can be
simply obtained by running the code with the tests. Coverage is often used as
acceptance threshold: if a test suite achieves a given coverage, it is considered
adequate, and the tested software accepted as good. For this reason, reaching a
given level of coverage becomes a critical factor during the testing activity.

We can state that the coverage data are easily obtained and are widely used as
acceptance measure, but have a questionable signi�cance. In this paper we try to
augment the information one can retrieve from the coverage data by considering
also the structure of the code and its possible transformations.

There are two main scenarios in which it is important knowing how the
coverage o�ered by a test suite behaves with respect to the changes in the code
structure.

A. The code has been transformed in the past before being tested and the cov-
erage may depend on the transformations applied. In this way, testing crite-
ria can easily be cheated, and hence an additional measure of the coverage
fragility helps in identifying well-tested classes from poorly tested ones.

B. The code structure will change in the future without changing the seman-
tics of the program by applying some refactoring rules, by some automatic
transformations, or by introducing particular patterns. This may in�uence
the coverage after the application of these transformations. In this context,
the tester would like to know if the level of coverage provided by the test
suite will be preserved, i.e., if the coverage is robust w.r.t. future changes.

In this paper we make use of code transformations that preserve code func-
tional behavior to model code changes. We formally de�ne when a test suite
achieves a fragile vs robust coverage. Roughly speaking, a fragile coverage de-
pends on the structure and syntax of the code, and the test suite would not
achieve the same level of coverage on the transformed code. A robust coverage
and a robust test suite do not su�er from modi�cations of the code structure.
We introduce a measure of fragility by extending the usual coverage criteria.

In Section 2 we present some related work on testing, coverage, and code
transformations. Section 3 presents the theoretical framework in which our work
will be integrated and contains some examples of useful code transformations.
In Section 4 we show the limitations of actual coverage criteria in terms of their
fragility with respect to code changes by giving several examples in which the
obtained coverage is fragile. We introduce and formally de�ne the concept of
coverage robustness and several measure of coverage fragility. Section 5 reports
some experiments. In Section 7 we present our conclusions.

2 Related Work

The concept of code coverage was �rst clearly introduced by Miller and Maloney
from the US Chemical Corps in 1963 [14], although some similar concepts were
already introduced by Senko from IBM [19]. Miller and Maloney observed that
it is not su�cient to know that a program passes all the tests, since each test
case checks a portion of the program and some portions may be not tested at all.
They developed a model of programs based on �ow charts and logical trees and
required that every case is tested at least once. Following their approach, various
notions of code coverage have been proposed as a measure for test suite quality,
including statement coverage, branch coverage, method coverage, MCDC, and
others [15]. These criteria consider the code structure, give a measure of the
adequacy of the testing activity, and they can be used to drive the testing activity
itself, for instance, requiring that certain tests must be generated. These criteria
do not guarantee that the program is correct if it passes adequate testing, i.e.
they are not ideal [10]. However, they have practical utility and they are generally
required for commercial software. For instance, the Modi�ed Condition Decision
Coverage (MCDC) [5], is required for safety critical aviation software by the
RCTA/DO-178B standard. The basic assumption is that a test suite is likely to
be e�ective at revealing faults if it exercises the code where the fault is located.
Therefore, increased code coverage is expected to correlate with more revealed
faults, although other factors may in�uence the actual outcome [16]. Staats et al.
[20] show that test suites generated speci�cally to satisfy coverage criteria achieve
poor results in terms of e�ectiveness, whereas the use of coverage criteria as a
supplement to random testing provides an improvement in the e�ectiveness of
the generated test suites.

It is well known that coverage criteria can be very sensitive to code structure
both if they are used for measuring test adequacy and if they are used for test
generation. Regarding the adequacy, there are several works arguing that code
coverage is not robust to code structure transformations. In [13], the authors
show how very simple transformations (like adding a new empty line) can con-
fuse code coverage tools. More severe issues are presented in [17]. In that paper,
the authors prove that the MCDC metrics is highly sensitive to the structure of
the implementation and can therefore be misleading as a test adequacy criterion.
They present six programs in two versions each: with and without expression
folding (i.e., inlining). They �nd that the same test suites performed very di-
versely on the two versions. Their suggestion is either (1) to introduce a new
coverage metrics that takes the use of inlined condition into consideration, or
(2) a canonical way of structuring code so that such conditions do not occur
in the �rst place. Their approach di�er from ours, since we propose a frame-
work able to evaluate existing coverage criteria with respect to their robustness
to code structure and syntax changes and to extend them by computing some
information about their robustness/fragility. No change of the existing code is
required in our approach either.

So far, the main solution in the literature to overcome coverage criteria weak-
nesses has been trying to introduce more powerful and tough testing criteria. For

instance, testing criteria that consider also the information �ow can be intro-
duced. In [18], the authors de�ne a family of program test data selection criteria
derived from data �ow analysis techniques similar to those used in compiler opti-
mization. We believe that introducing complex coverage criteria may be avoided
if code transformations are taken into account as proposed in our approach.

Testing criteria are very sensitive to code structure also when used for test
generation. Often the structure of the code makes hard the generation of tests,
i.e. it reduces its testability, especially when test generation is performed auto-
matically. The automated generation of adequate test data can be impeded by
properties of the code itself (for example, �ags, side e�ects, and unstructured
control �ow). For this reason testability transformations are introduced [11]. A
testability transformation is a code-to-code transformation that aims to improve
the ability of a given test generation method to generate test data for the original
program. A �rst di�erence between our approach and the work of Harman et al.
is that we do not tackle the problem of test suite generation but we only want
to measure the robustness of a given test suite in order to obtain a measurement
of how much the coverage is a�ected by modi�cations in the code structure. An-
other di�erence is that testability transformations are not semantic preserving
while the transformations de�ned in our work do not modify the semantics of
the program. We will also show that the use of testability transformations should
be carefully considered because the test suite generated from a transformed pro-
gram P ′ that achieves a certain coverage C ′ may not achieve the same level of
coverage C on the original program P .

Transformations and code coverage is studied by Weissleder [22]. In this case
the transformation is used to obtain information of the coverage over the original
code from the information about the coverage over the transformed code. The
goal is to �nd a transformation such that if a test suite achieves the coverage
C1 over the transformed code, than the same test suite achieves the coverage C2

over the original code. In this case C1 simulates the coverage C2.
The fact that transformations can disrupt coverage is also tackled by Kirner.

In [12], he addresses the challenge of ensuring that the structural code cover-
age achieved for a program P is preserved when P is transformed. If the code
transformation ful�lls some formal properties, than it preserves also the cover-
age. The considered code transformations allow to obtain machine level code
from higher level programs. He also identi�es three classes of transformations:
1. the ones that change the reachability of program elements, 2. the ones that
add new paths to the program and 3. the ones that preserve the coverage. His
work is more focused on preserving structural code coverage into compilers and
code generators, whereas our work is more focused on measuring the impact of
transformations of the code structure on the coverage.

3 Theoretical background

Testing criteria, often called coverage criteria, have the main goal of measuring
the test quality. They are used as a metrics to quantify the coverage of the
control �ow of a program achieved by a test suite. Usually they are also used
as a stopping rule to decide when the testing process can stop and the software

can be accepted. Studying coverage criteria, de�ning new ones, and providing
empirical evidence of their fault detection capability have been a major research
focus for the last three decades. First of all, we introduce a framework de�ning
them formally, mainly taken from [24], where the reader can �nd an exhaustive
treatment of the subject. For the purpose of our paper we do not consider directly
the use of testing criteria for test suite generation, and we focus on program based
structural testing, that does not consider the speci�cation and de�nes testing
requirements only in terms of program elements (statements, conditions, and so
on). Given the set of programs P and the set of all the test suites TS, we de�ne
a testing criterion in the following way.

De�nition 1. Testing Criteria. A testing criterion is a function C, C : P ×
TS → [0, 1]. C(p, ts) = r means that the adequacy of testing the program p by
the test set ts is of degree r according to the criterion C. The greater the real
number r, the more adequate the test suite ts is.

Given a �xed value r′, such that 0 ≤ r′ ≤ 1, which represents the lower expected
coverage for the criterion C applied to the program p ∈ P , we can consider the
test suite ts ∈ TS as adequate for testing program p i� C(p, ts) ≥ r′.

In program based structural testing, coverage requirements are expressed in
terms of the coverage achieved over a particular set of elements in the structure of
the program under test (e.g. the set of all the statements for statement coverage
or the set of all the conditions for condition coverage). We will focus on classical
coverage criteria [3,15], including the statement and branch coverage and the
Modi�ed Condition Decision Coverage (MCDC) [5].

3.1 Code transformations

There exist several, theoretically in�nite, programs which have the same be-
haviour but have di�erent code structure and thus can achieve di�erent results
in terms of coverage for a particular criterion. So how, given a program p ∈ P ,
can we obtain new programs with the same behaviour of p? We can do this by
means of code-to-code transformations, which are functions that take as input
a program p and return another program p′. Formally, a transformation t is a
function P −→ P , where P is the set of all the programs.

However not all the transformations produce a transformed program with
the same behaviour of the original program. This kind of transformations are
called Semantic Preserving Transformations (SPT). A SPT [2] is a code-to-code
transformation that modi�es the syntax of the program to which it is applied,
without changing its semantics. Thus given a SPT t ∈ T , where T is the set of
all the SPTs, and a program p ∈ P , p and t(p) must have the same behaviour.
In the following of the paper we will consider only SPTs and, thus, we will call
them just transformations.

In the following we present �ve SPTs which we will use in the paper as a
case study. Each transformation is identi�ed by using a transformation schema,
composed by two snippets of code. The �rst one, called input pattern, de�nes
on which snippets of code the transformation can be applied. The second one,
called output pattern, de�nes how the transformed piece of code will look like.

Several new transformations can be obtained by combining already de�ned
transformations. Given a sequence of transformations T , we de�ne the trans-
formation tseqT as the application of the transformations in T in sequence, i.e.
tseqT = t1 ◦ . . . ◦ tn where tseqT , t1, . . . , tn ∈ T . Given a transformation t, we de-
�ne the transformation t̃ as the iterative application of t until the program is no
longer modi�ed by t. Given a certain transformation t, we can de�ne the inverse
transformation t−1 by exchanging the input pattern and the output pattern.

In this paper, we consider the following transformations.

Externalized Complex Flag. This transformation was already identi�ed by
Rajan et al. [17], which showed its e�ects on MCDC criterion, and by Harman et
al. [11], which showed how it can be used in order to enhance the test generation
phase. It has the following schema:
boo lean x ;
. . .
x = complexBoolExpr ; //A
. . .
i f (. . . x . . .) {//B

. . .
}

tecf⇒

boo lean x ;
. . .
x = complexBoolExpr ;
. . .
i f (. . . complexBoolExpr . . .) {

. . .
}

In the schema, complexBoolExpr is a Boolean expression that contains at least
one Boolean operator, and the statements between the point A and B do not
change the value of x, and of the variables referenced in complexBoolExpr. We
brie�y call this transformation tecf . By applying ˜tecf to a program p we obtain
a new program ˜tecf(p) in which all the �ags in if statements are expanded to
their de�nition. Several refactoring patterns [8] can be partially mapped on this
transformation or its inverse, i.e. Inline Temp Variable (in case the variable is
boolean and it is inlined in an if statement), Remove Control Flag, Introduce
Explaining Variable.

Boundary extraction This transformation tb acts on an if statement and splits
it into several if statements if it contains a condition in the form of a Q x Q b,
where a, b, and x are numerical constants or variables. It has the following
schema:

. . . t0 . . .
i f (a<=x && x<=b) {

. . . t1 . . .
} e l s e {

. . . t2 . . .
}

tb⇒

. . . t0 . . .
i f (x==a) {

. . . t1 . . .
} e l s e i f (x==b) {

. . . t1 . . .
} e l s e i f (x>a && x<b) {

. . . t1 . . .
} e l s e {

. . . t2 . . .
}

Reverse Conditional The transformation trc is associated with the Reverse
Conditional refactoring pattern [1]. It simply inverts the condition of the if
statement and exchange the then block and the else block between them, and
cond is a boolean expression. It has the following schema:

i f (cond) {
. . . t1 . . .

} e l s e {
. . . t2 . . .

}

trc⇒
i f (! cond) {

. . . t2 . . .
} e l s e {

. . . t1 . . .
}

Flattening Conditional Expression The transformation tfbc splits all the
expressions used as guards in conditional statements until every if statement
has only an atomic Boolean expression as a guard. It can be de�ned using two
schema. The �rst schema represents how the transformation splits a conjunctive
condition:

i f (cond1 && cond2) {
. . . t1 . . .

} e l s e {
. . . t2 . . .

}

tfbc⇒

i f (cond1) {
i f (cond2) {

. . . t1 . . .
} e l s e {

. . . t2 . . .
}

} e l s e {
. . . t2 . . .

}

The second schema represents how the transformation splits a disjunctive
condition:

i f (cond1 | | cond2) {
. . . t1 . . .

} e l s e {
. . . t2 . . .

}

tfbc⇒

i f (cond1) {
. . . t1 . . .

} e l s e i f (cond2) {
. . . t1 . . .

} e l s e {
. . . t2 . . .

}

In both schema cond1 and cond2 are boolean expressions. It is a generaliza-
tion of the Consolidate Conditional Expression refactoring pattern [8]. Note that
a similar transformation may be performed during compilation (e.g. in the byte
code) and therefore, a test suite that achieves the decision coverage of the origi-
nal program, may not achieve the same coverage of the compiled program. This
problem is also studied in [12] and it is a common transformation done when the
source code is transformed into assembly code (for conjunctive expressions).

Remove Consolidate Conditional Fragment The transformation tcdcf is the
inverse transformation of the one associated with the Consolidate Conditional
Fragment refactoring pattern [8]. It simply moves into the then block and the
else block the �rst statement after the if statement. It has the following schema:

i f (cond) {
. . . t1 . . .

} e l s e {
. . . t2 . . .

}
s ta tement ;

tcdcf⇒

i f (cond) {
. . . t1 . . .
s t a t ement ;

} e l s e {
. . . t2 . . .
s t a t ement ;

}

Meaning of transformations The meaning of code transformations regarding
the testing activity depends on which of two scenarios explained in the introduc-
tion we assume. If we suspect that the code was transformed in the past, code
transformations bring the code to its original structure, while, if we assume that
the code will be changed in the future, code transformations model the changes
the code will be subject to. For instance, ˜tecf would undo the insertion of �ags
for conditions in if statements done in the past.

4 Coverage robustness

4.1 Code transformations and coverage

Code coverage is very sensitive to the code structure and it can therefore be mis-
leading as test adequacy criterion. This fact is well explained in [17] for MCDC
in case of inlining and outlining of Boolean variables (addressed by our tecf and
tecf
−1 transformations). Even though examples in literature are focused only on

the extrapolation of a complex �ag, the sensitivity of coverage criteria to code
structure can be generalized for any code transformation and any code coverage
criterion. Indeed we show several code fragments with the same semantics that
achieve di�erent coverage degrees with the same coverage criteria and the same
test sets.

Example 1. For instance consider the following code fragment, in which in_1

and in_2 are two inputs and the guard of the conditional statement has been
outlined, i.e. the guard is simply a Boolean variable de�ned in terms of other
Boolean variables or expressions.
boo lean expr_1 = in_1 | | in_2 ;
i f (expr_1) {

. . .
}

tecf⇒
i f (in_1 | | in_2) {

. . .
}

A test suite containing only two tests (in_1=true, in_2=false) and (in_1=false,
in_2=false) covers the MCDC for the if statement, which has a simple variable
as guard, so two tests are enough. However, if we apply tecf , the transformed
code were written with the condition inlined and thus the same test suite would
not achieve the MCDC of the same code.

These simple patterns recur quite often in software and in models [17]. However,
it would be not acceptable to force the developer to choose only the inlined
version, in order to avoid that a full MCDC coverage is achieved with less test
cases. The outlined version is more readable and maintainable since a complex
expression is re-factored in an auxiliary variable. This situation can be also the
result of an explicit extract local variable refactoring operation [8]. It could also
perform better, since the Boolean �ag is computed only once.

Example 2. Consider the following code, where x is an integer variable and a
simpli�ed form of boundary extraction is applied:

. . .
i f (x>=2) x=x+1;
e l s e x=x+2;

tb⇒
. . .
i f (x==2) x=x+1;
e l s e i f (x>2) x=x+1;
e l s e x=x+2;

A test suite containing only two tests (x=0) and (x=5) achieves 100% of
branch coverage. However the same test suite achieves only 75% of branch cov-
erage on the transformed code.

Example 3. Consider the following code fragment, in which a and b are Boolean
variables. To achieve a full decision coverage a test suite containing only two
tests (a = true, b = true) and (a = false, b = true), is enough.

i f (a && b) {
. . . . // body

}

tfbc⇒
i f (a) {
i f (b) {

. . . . // body
}

}

The transformation does not change the behaviour of the program, but the
original test suite would cover only the �rst decision on the transformed program.

Example 4. Consider the following code fragment in which a is a Boolean vari-
able and i an Integer variable:

i f (a)
i = i +1;

e l s e

i = i +2;
System . out . p r i n t l n (i) ;

tcdcf⇒

i f (a) {
i = i +1;
System . out . p r i n t l n (i) ;

} e l s e {
i = i +2;
System . out . p r i n t l n (i) ;

}

The test suite containing only one test (a = true) achieves 60% of statement
coverage. However on the code transformed by using the tcdcf transformation,
the same test suite achieves only 50% of coverage.

All the examples show that several programs with the same behaviour can
achieve the same value of coverage with di�erent e�ort from a testing point of
view, i.e. the number of test cases in the test suite, only because they have a
di�erent structure. This is valid for all the structural coverage criteria.

4.2 Coverage fragility and robustness

First of all, we want to formalize the sensitivity of the coverage obtained by
testing a program P with a test suite, with respect to a set of possible transfor-
mations of P .

De�nition 2. Fragility. Given a program p ∈ P , a coverage criterion C and
a set of transformations T , we say that a test suite ts fragilely covers p, if there
exists a transformation t ∈ T such that C(p, ts) > C(t(p), ts).

Fragilely covered programs can be modi�ed by some transformation t ∈ T in
a way that, also if the behaviour of the program remains the same, the coverage
provided by ts on the transformed program t(p) diminishes with respect to the
coverage on the original program p.

If a test suite fragilely covers the program under test, the con�dence in the
measurement of the coverage is reduced because the possible high level of cover-
age may be due to the structure of the code. It may happen that the developer
has used in the past a particular pattern that has increased the coverage but if
the code were written in another way then the test suite would be not as good
in terms of achieved coverage. Fragile coverage is not robust to transformations
of the code that may be performed in the future either, such as refactoring tech-
niques or compiler optimizations. This is a problem because, usually, after a
SPT is applied, the test suite is not updated by the developer because he/she
does not feel the need of new tests, and thus the old test suite can achieve lower
coverage on the resulting code. For this reason, fragilely covered programs may
need more testing, regardless the level of coverage achieved so far.

In order to reduce the fragility of a test suite, new tests must be added.
Generally, the new tests are built looking at the transformed program and then
added to the original test suite. However, using the transformed program to
derive a completely new test suite to be applied also to the original program can
cause an unexpected loss of coverage, as proved by the following theorem.

Theorem 1. Let C be a coverage criterion, ts and ts′ be two test suites, gen-
erated respectively for p and for t(p), such that ts * ts′, ts′ * ts, and t ∈ T be
a transformation, C(t(p), ts′) > C(t(p), ts) does not imply C(p, ts′) > C(p, ts).

Proof. We prove the theorem by showing a case in which the converse � C(t(p), ts′) >
C(t(p), ts) implies C(p, ts′) > C(p, ts) � is false. Consider the transformation tecf
and the following program p and its transformed version tecf(p):

x = a && b && c ;
i f (x) {

. . .
}

tecf⇒
x = a && b && c ;
i f (a && b && c) {

. . .
}

Given the test suite ts, which has two test cases (a = true, b = true, c =
false) and (a = true, b = true, c = true), and considering the condition cover-
age criterion, the coverage is C(p, ts) = 1.0 while C(tecf(p), ts) = 4/6 = 0.66. If
we consider then a test suite ts′ that has two test cases (a = false, b = true, c =
true) and (a = true, b = false, c = true), the coverage that ts′ achieves on
tecf(p) is 5/6 = 0.83 and thus it improves the coverage of ts over tecf(p), i.e.
C(tecf(p), ts

′) > C(tecf(p), ts). Moreover, ts * ts′, ts′ * ts is true. However, the
coverage of ts′ over p dimishes, since C(p, ts′) = 0.5 whereas C(p, ts) = 1.0.

Theorem 1 states that, given a program p fragilely covered by a test suite
ts and a transformation t, if we want to achieve a better coverage than the one
obtained using the test suite ts on the program p we cannot simply generate a
new test suite ts′ on the program t(p), because ts′, also if increases the coverage
on t(p) with respect to ts, maybe does not increase the coverage achieved on p.

Note that transformations allowing testers to obtain programs from which
tests can be generated more easily are also called testability transformations [11].
Theorem 1 states that the use of testability transformations should be carefully
considered since they may not increase the coverage obtained on the original
program, even though the coverage is increased on the transformed program.

Sometimes we want to refer to the coverage as either fragile or robust. In
accordance with Def. 2, we can introduce the following de�nition.

De�nition 3. Fragile [Robust] Coverage. Given a coverage criterion C, a
program p, a test suite ts for p, and T a set of code transformations, we say
that the coverage of p provided by ts with respect to the coverage criterion C and
the code transformations T is fragile [robust], if and only if the program p is [is
not] fragilely covered by ts with respect to C and T .

The fact that a coverage is fragile or robust strongly depends on the set of
transformations T one considers. With a small set T any coverage is likely to
be robust, but with a large T only the best test suites will provide the robust

required coverage. For this reason, the client who requires certain levels of cov-
erage and robustness has to provide the tester with adequate transformations
in order to ensure the desired con�dence in the code coverage. The given set of
transformations T should depend on the expected set of SPTs that will be ap-
plied on the program or on the set of transformations applied in the past on the
program. It is important to de�ne such programs whose coverage is not a�ected
by the application of transformations, we call them robust programs.

De�nition 4. Robust program Given a coverage criterion C and a set of code
transformations T , we say that a program p has robust structure if any test suite
that provides the coverage C for p, C is robust.

Code with robust structure is of great interest for testers, since its coverage
during testing cannot be diminished by code transformations, i.e. the coverage
achieved by any test suite on a robust program will not diminish regardless
the sequence of SPTs t1, . . . , tn ∈ T applied to it. Given a program p and a
test suite ts, which achieves a certain level of coverage C(p, ts) for a coverage
criterion C, there are two ways to increase the achieved coverage. If the program
p is robust, we can generate a new test suite ts′ also transforming the program,
because generating a test suite ts′ that achieves a coverage higher than C(p, ts)
assure also that C(p, ts′) ≥ C(p, ts). If the program is not robust the only way
to increase the coverage is extending the test suite ts, because the Theorem 1
proves that generating a new test suite ts′ that achieve higher coverage on a
transformed version of p does not assure to obtain a better coverage on p.

4.3 Fragility and robustness measures

We de�ne a measure to express how much the coverage achieved by the test suite
ts on the program p with respect to the criterion C is robust to the changes in
the code structure introduced by a set of SPTs T . Our metrics works with any
existing coverage criterion C, without the need to introduce new and possible
more complex testing criteria. This allows the tester to re-use existing criteria
(and associated tools) which he/she is already familiar with.

The metrics is called extended coverage (because extends the usual coverage
measurement with an information on how much the coverage o�ered by the test
suite is sensitive to transformations), and it consists of a couple of values (a, b)
where a = C(p, ts) represent the usual coverage obtained by applying ts to the
program p, whereas b is a fragility index such that b ∈ [0, 1], and it measures the
sensitivity of the coverage to modi�cations in the code structure. For a coverage
measure in the form (a, b), b = 0 means that a is the robust coverage, while as
b→ 1 the coverage a is increasingly sensitive to the transformations of the code
structure. If b = 1 the coverage a is completely fragile.

Let p be a program, ts a test suite, and C a coverage, we de�ne ∆(t) =
C(p, ts) − C(t(p), ts) where t is a transformation. Let pos(x) be a function de-
�ned as max(0, x). We de�ne three fragility indexes. The �rst one is simply the
averaged fragility :

baf = pos

(∑
t∈T ∆(t)

|T |

)

The second one is called weighted fragility and it is de�ned as

bwf =
∑
t∈T

ρ(t) ∗ pos(∆(t))

where ρ(t) is a function that de�nes the weight of each transformation t ∈ T ,
such that

∑
t∈T ρ(t) = 1. The weighted fragility is a useful metrics in case we

want to assign a di�erent weight to some transformations for a particular reason,
e.g. the weight can represent the likelihood that a certain transformation will be
applied to the code. The third fragility index is called worst case loss of coverage.
It is an indicator of what is the maximum loss of coverage between the original
program and any transformed one, and it is expressed as

bwc = pos(maxt∈T (∆(t)))

In this case if the index bwc = 0 it means that a is the robust coverage, otherwise
bwc indicates the maximum loss of coverage and thus the real coverage in the
worst case is C(p, ts)− bwc.

The extended coverage is a very useful metrics, especially if it is measured
during the development phase. For instance with respect to unit testing, once
the developer has measured the extended coverage, if it is not a robust coverage
he/she can act in two ways to increase the robustness of the coverage: (a) he/she
could extend the test suite with new test cases, maybe generated from a trans-
formed version of the program, (b) he/she could change the structure of the
code in order to remove all the points that introduces fragility issues. However,
removing fragility points may be not straightforward nor possible every time
(this fact highly depends on the transformations in T). Moreover transforming
the code would increase the robustness at the expenses of the coverage, which
would diminish. To maintain the same level of coverage, the tester should add
new tests in any case.

5 Experiments

In order to evaluate how much the transformation of a program in�uences the
robustness of the coverage o�ered by a test suite we have analyzed several Java
programs. The selected programs vary from toy examples to complex Java li-
braries. The programs are the following:

LEAP: It contains one method checking whether the passed year is leap or not.
TRI: It contains a triangle classi�cation method, which takes as input the

length of the three sides and computes the type of the triangle [3].
WBS: The Wheel Brake System (WBS) is a Java implementation of the WBS

case example found in ARP 4761 [4,17]. The WBS determines what pressure
to apply to braking based on the environment.

TCAS: It is the Java implementation of a Tra�c Collision Avoidance System
(TCAS) II, required on all commercial aircraft �ying in US airspace.

ASW: The Altitude Switch (ASW) is a synchronous reactive component from
the avionics domain that controls the power of some devices according to
the airplane altitude.

Program p LEAP TRI TCAS

LOC 10 35 155
Coverage Stmt Branch MCDC Stmt Branch MCDC Stmt Branch MCDC

Test suite ts a bwc a bwc a bwc a bwc a bwc a bwc a bwc a bwc a bwc

Random1 100 0 100 0 100 50 93 0 94 0 95 5 65 15 23 13 18 8

Random2 100 0 100 0 100 50 93 0 94 0 95 5 - - - - - -

Evosuite 100 0 100 0 100 13 100 0 100 0 100 0 94 22 87 43 74 30

Handmade 100 0 100 0 100 63 100 0 100 0 100 20 26 7 3 2 3 1
Table 1. Results in percentage of the robustness analysis for LEAP, TRI, and TCAS
and their test suites, where a = C(p, ts). Random1 test suite contains 100 tests, and Random2

contains 1000 tests for all projects. Evosuite has 4 tests for LEAP, 13 for TRI, and 16 for JTCAS.

Handmade has 1 test for all the projects.

JTOPAS: It is a simple, easy-to-use Java library for the common problem of
parsing arbitrary text data.

ANT: Apache Ant is a Java library and command-line tool widely used to
compile and build Java applications.

NXML: NanoXML is a small XML parser for Java.

Code for TACAS, JTOPAS, ANT, NXML and their unit tests can be found in
the SIR repository [7]. The Java implementation of ASW is included in the Java
Path Finder distribution [21].

In our study we have considered statement, branch and MCDC coverage cri-
teria. We have studied all the transformations presented in Section 3.1, and thus
T = { ˜tecf , t̃rc, t̃b, ˜tfbc, ˜tcdcf}. For each example we have considered an handmade
test suite (for TACAS, JTOPAS, ANT and NXML the considered test suite is
the one presented in the SIR repository). For the smallest case studies (LEAP,
TRI, WBS, and TCAS), we have also considered a test suite automatically gen-
erated by means of Evosuite [9] and random test suites with a �xed dimension
of 100 and 1000 test cases. Experiments with random test suites are repeated 10
times, with di�erent seeds, and only the averaged results are presented in this
paper. For each test suite ts, for each coverage criterion C and for each program
under test p, we have computed the coverage1 achieved by ts for the criterion C
on the program p and for any transformed program t(p), for each t ∈ T .

Table 1 presents the results of the robustness analysis for the smallest case
studies (LEAP, TRI, and TCAS). For each program and test suite, the table
shows the results in terms of coverage a and the worst case loss of coverage bwc

fragility index.
Table 2 shows the results of our study on the biggest case studies (ASW,

TOPAS, NXML, and ANT). For each program, the table shows the results in
terms of coverage achieved by the provided test suite and the two fragility in-
dexes, the worst case loss of coverage bwc and averaged fragility baf .

Table 3 shows the detailed results of the robustness analysis for the WBS
program. For each test case and coverage criterion, the table shows the results

1 We use the CodeCover tool http://codecover.org/

http://codecover.org/

ASW TOPAS NXML ANT

LOC/Classes 1497/47 10115/91 3696/34 104304/1266
Test suite size (LOC) 965 4725 4231 24384

Coverage a bwc baf a bwc baf a bwc baf a bwc baf
Statement 32.5 0.6 0.1 78.5 30.4 10.2 10.6 3.2 0.7 10.9 8.4 1.8

Branch 27.8 1.0 0.2 69.8 28.3 7.5 4.1 2.1 0.5 7.6 5.7 1.2

MCDC 31.1 1.1 0.2 69.4 30.6 7.6 4.8 2.6 0.5 7.6 5.9 1.3
Table 2. Results in percentage of the robustness analysis for ASW, TOPAS, NXML,
and ANT

Statement Coverage Branch Coverage MCDC

Test suite size C
∆

C
∆

C
∆

˜tcdcf ˜tecf ˜tfbc ˜tcdcf ˜tecf ˜tfbc ˜tcdcf ˜tecf ˜tfbc
Random1 100 58.1 34.9 0 17.7 51.4 33.7 0 19.1 50.0 31.8 4.5 17.7

Random2 1000 74.2 56.1 0 22.5 74.3 59.7 0 28.3 71.2 56.4 10.3 25.2

Evosuite 6 74.2 56.1 0 22.5 74.3 59.7 0 28.3 71.2 56.4 10.3 25.2

Handmade 1 58.1 42.4 0 17.7 50.0 39.5 0 20.2 46.3 35.8 8.1 16.5

Table 3. Results in percentage of the robustness analysis for WBS (194 lines of code)

in terms of coverage achieved by the test suite and the losses in terms of coverage
on the transformed versions of the program. The table shows only the results
for the tfbc, tecf and tcdcf transformations, because the WBS program is not
in�uenced by the trc and tb transformations.

All the programs and test suites considered in our study su�er from fragility
problems: semantically equivalent programs achieve di�erent results in terms
of coverage, and thus SPTs can in�uence greatly the coverage achieved by test
suites. Our results highlight the fact that some transformations in�uence only
certain coverage criteria, e.g. tecf in�uences only MCDC in our study, whereas
other transformations, such as trc, seems to not in�uence the coverage at all.
For this reason, the choice of the transformations considered in the robustness
analysis can signi�cantly in�uence the results of the analysis itself.

No apparent correlation can be identi�ed between the size of the test suite
and their fragility: indeed, signi�cant losses in terms of coverage exist also for
big test suites, e.g. Table 3 shows that also the random test suite with 1000
test cases has high losses. Note that even if the losses in terms of coverage may
be small in some cases, this is usually due to the low coverage achieved by the
test suites. For instance, in the ANT case the maximum loss is 8.4%, but the
coverage achieved on the original program is only 10.9%.

Test suite with high coverage, can be fragile as well: from the results, it seems
that test suites generated by hand explicitly to achieve good coverage, are those
with higher losses in terms of coverage. This is due both to the fact that these
test suites have small sizes and also to the fact that they are created ad-hoc
to obtain full coverage of the program with a particular structure and thus the
coverage is more fragile than the one of a not ad-hoc test suite.

6 Threats to Validity

There are three main aspects that can pose a threat to the validity of our work.

Transformations: Although the set of selected transformations is small, in
our opinion it can demonstrate the e�ectiveness of our approach. By extending
the given set of transformations, test suites become likely less robust. The se-
lected transformations are meaningful examples. Indeed tecf is already used in
several works [11,17], whereas tcdcf , trc, tecf and tfbc are extracted from common
refactoring techniques [8,1].

Coverage Criteria: We have considered three common structural coverage
criteria, i.e. statement coverage, branch coverage and MCDC. Rajan et al. [17]
show that MCDC is highly sensitive to the structure of the implementation
and our experiments con�rm that. Test suites adequate to other non structural
coverage criteria may be less fragile.

Experiments: Our work has focused only on a limited set of Java programs.
However we think that chosen programs are representative of several classes of
systems, i.e. toy examples (LEAP, TRI), critical systems (WBS, ASW, TCAS),
and complex Java libraries (JTOPAS, NXML, ANT). Our experiments involved
1442 classes and more than 120kLOC, and therefore the selected programs are,
in our opinion, a representative sample of real Java programs. We have also used
di�erent test suites which range from manually built test suites, to test suites
generated by using well-known tools.

7 Conclusions and Future Work

In this paper we have proposed a framework to evaluate the robustness of a
test suite with respect to semantic preserving transformations applied to the
program under test. We have introduced the concept of fragile and robust cov-
erage and we have identi�ed the conditions for a code to have a robust structure
with respect to a certain set of transformations. Moreover, we have de�ned a
new extended coverage metrics that takes into account the fragility of the cov-
erage. The extended coverage does not require either a modi�cation of the code
or the introduction of new original testing criteria. It uses a fragility index to
quantitatively measure the quality of test suite in terms of its robustness. In
presence of fragile code, we suggest either to (1) �nd and remove fragility points
by modifying the code or (2) increase the test suite until its robustness reaches
a desired level. We have evaluated the fragility of several Java programs (from
toy examples to Java library code) together with their test suites and we have
found that the fragility problem occurs in all the considered programs.

In the future we plan to study the correlation between the fragility of the
test suite and its fault detection capability. We also plan to de�ne a language for
the formalization and de�nition of semantic preserving transformations. In this
way, we can easily model other transformations and also extend the theoretical
framework.

Acknowledgments The authors would like to thank Matt Staats for sharing
some code examples.

References

1. Refactoring catalog - website. http://www.refactoring.com/catalog/.
2. A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: principles, techniques, and

tools. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1986.
3. P. Ammann and J. O�utt. Introduction to Software Testing. Cambridge University

Press, New York, NY, USA, 1 edition, 2008.
4. ARP 4761,Guidelines and Methods for Conducting the Safety Assessment Process

on Civil Airborne Systems and Equipment. Aerospace Recommended Practice,
Society of Automotive Engineers, Detroit, USA, 1996.

5. J. J. Chilenski and S. P. Miller. Applicability of modi�ed condition/decision cov-
erage to software testing. Software Engineering Journal, 9(5):193�200, 1994.

6. E. W. Dijkstra. Notes on structured programming. In O. J. Dahl, E. W. Dijkstra,
and C. A. R. Hoare, editors, Structured Programming. Academic Press, 1972.

7. H. Do, S. G. Elbaum, and G. Rothermel. Supporting controlled experimentation
with testing techniques: An infrastructure and its potential impact. Empirical
Software Engineering, 10(4):405�435, 2005.

8. M. Fowler. Refactoring: Improving the Design of Existing Code. Addison-Wesley,
Aug. 1999.

9. G. Fraser and A. Arcuri. Evosuite: Automatic test suite generation for object-
oriented software. In Proc. of ACM SIGSOFT ESEC/FSE, pages 416�419, 2011.

10. J. B. Goodenough and S. L. Gerhart. Toward a theory of test data selection. IEEE
Trans. Softw. Eng., 1(2):156�173, June 1975.

11. M. Harman, L. Hu, R. Hierons, J. Wegener, H. Sthamer, A. Baresel, and M. Roper.
Testability transformation. IEEE Trans. Softw. Eng., 30:3�16, January 2004.

12. R. Kirner. Towards preserving model coverage and structural code coverage.
EURASIP J. Emb. Sys, 2009:1�16, 2009.

13. B. Marick, J. Smith, and M. Jones. How to misuse code coverage. In Proc. of
ICTCS'99, June 1999.

14. J. C. Miller and C. J. Maloney. Systematic mistake analysis of digital computer
programs. Commun. ACM, 6:58�63, February 1963.

15. G. J. Myers. The art of software testing (2. ed.). Wiley, 2004.
16. A. S. Namin and J. H. Andrews. The in�uence of size and coverage on test suite

e�ectiveness. In Proc. of ISSTA 2009, pages 57�68. ACM, 2009.
17. A. Rajan, M. W. Whalen, and M. P. Heimdahl. The e�ect of program and model

structure on mc/dc test adequacy coverage. In Proc. of ICSE, pages 161�170, 2008.
18. S. Rapps and E. Weyuker. Selecting software test data using data �ow information.

IEEE Trans. Soft. Eng., SE-11(4):367 � 375, april 1985.
19. M. E. Senko. A control system for logical block diagnosis with data loading.

Commun. ACM, 3:236�240, Apr. 1960.
20. M. Staats, G. Gay, M. W. Whalen, and M. Heimdahl. On the danger of coverage

directed test case generation. In Proc. of Fundamental Approaches to Soft. Eng.
(FASE), 2012.

21. M. Staats and C. P�as�areanu. Parallel symbolic execution for structural test gen-
eration. In Proc. of ISSTA, pages 183�194, New York, NY, USA, 2010. ACM.

22. S. Weiÿleder. Simulated satisfaction of coverage criteria on uml state machines. In
Proc. of ICST 2010, pages 117�126. IEEE Computer Society, 2010.

23. E. J. Weyuker. Translatability and decidability questions for restricted classes of
program schemas. SIAM J. Comput., 8(4):587�598, 1979.

24. H. Zhu, P. Hall, and J. May. Software unit test coverage and adequacy. ACM
Computing Surveys, 29(4):366�427, 1997.

http://www.refactoring.com/catalog/

	Extending Coverage Criteria by Evaluating their Robustness to Code Structure Changes

