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Abstract. This paper is concerned with model-based testing of hybrid
systems. The first result is an algorithm for test generation which en-
hances the coverage of critical trajectories by using a random walk. The
second result is a framework for practical testing that includes a state
estimator. When the state of a system under test cannot be directly ob-
served, it is necessary to reconstruct the trajectory of the real system in
order to produce a verdict whether the system violates a property. To
do so, we integrate in our tester a hybrid observer, the goal of which is
to provide an estimate for the current location and the continuous state
of the system under test based on the information on the input and the
output of the system.

1 Introduction

We describe some recent progress in model-based testing of hybrid systems,
systems combining continuous and discrete dynamics. Such systems have been
widely accepted as a mathematical model for many applications in embedded
systems and cyber-physical systems. In our previous work [7], we introduced
a test coverage measure, based on the notion of star discrepancy of a set of
points, which indicates how well the states visited by a test suite represent the
whole reachable space. We then designed a test generation algorithm, called
gRRT [7] which can be seen as a coverage guided version of the RRT (Rapidly-
exploring Random Tree) algorithm for robotic planning [12]. Our algorithm has
been successfully applied to a number of analog circuits and control applications.
In this paper, we propose a new version of the test generation algorithm that
is not only guided by the coverage but also by the property to verify. We focus
on covering the trajectories that violate a property of interest and exploiting
the discrete structure of the hybrid system. More concretely, we are interested
in finding a search strategy that allows achieving a high probability of reaching
some set of states. In the current version of the gRRT algorithm, we sample a
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goal hybrid state according to some distribution reflecting the current coverage
information. The probability that a state is sampled to be a goal state depends
on the current state coverage, which tends to a ’'uniform’ coverage over the
global hybrid state space. In this work, we propose a new sampling method
in order to biase the exploration towards some critical paths. To do so, we
specify some desired stationary probability distribution over the regions (which
reflect the objective of our biased exploration) and use the Metropolis-Hastings
algorithms to compute a transition probability matrix of a random walk on a
discrete abstraction of the hybrid system under study. An advantage of this
random exploration is that one can use the bound on the expected number of
transitions necessary to reach a given region as a criterion to determine the
desired stationary probability distribution and guide the exploration towards
critical behaviors more efficiently.

In addition, we address the partial observability problem to extend our frame-
work to more practical testing settings. When not all discrete transitions and
not all components of the continuous states are observable, to produce a verdict
it is necessary to reconstruct the trajectory of the system under test. To do so,
we integrate in our tester a hybrid observer, the goal of which is to provide an
estimate for the current location and the continuous state of the system under
test, based on the information on the input and the output of the system.

Hybrid systems testing has recently attracted the attention of researchers,
which is attested by a number of publications on the topics (see for exam-
ple [9,4,17,10] and references therein). However, to our knowledge, partial ob-
servability is not yet considered. Our work on testing under partial observability
is inspired by a number of existing results in testing for discrete and timed
systems (see for example [11,8,1]). In some of these works (such as [8]), game
theoretic approaches are used. Applying this idea to hybrid systems is however
difficult since this often requires complex and expensive set computations. Our
approach is rather based on the idea of estimating the state of the system us-
ing the well-established results on observer design for continuous systems [14,5].
Concerning the use of random walks in test generation, this idea has recently
been intensively applied for software testing, in particular, one could mention
the tool MaTeLo developped by the company Alldtec!. In this work, we make
use of Metropolis-Hastings algorithms which have been successful for network
protocol design (see for example [16]).

The paper is organized as follows. We first recall the testing framework and ba-
sic definitions. We then show how to combine a random walk with the coverage-
guided test generation algorithm. The next section is devoted to the problem
of designing an algorithm for test execution under partial observability. Finally
we present some experimental results obtained for two well-known analog and
mixed-signal circuit benchmarks.

! http://www.alldtec.net/



2 Model-based testing of hybrid systems

2.1 Model

We use a conformance testing framework based on the hybrid automaton model [2].
Intuitively, a hybrid automaton is an automaton where each location is associ-
ated with a distinct continuous mode and the switching between the continuous
modes is described by discrete transitions. In this work we focus on discrete-time
hybrid automata.

Definition 1. A discrete-time hybrid automaton is a tuple A = (X,Q, E, F,Z,G)
where

— X is the continuous state space and is a bounded subset of R";

Q is a (finite) set of locations;

— F C @ xQ is a set of discrete transitions;

F ={F, | q € Q} such that for each q € Q, F, = (f4,U,) defines a difference
equation

[k + 1] = fo(2[k], ulk])

for each location q; x € X is the continuous state, u(-) € Uy is the input of
the form uw: N* — U, C R™. The set U, is the set of admissible inputs.

- I={Z,C X | qeQ} is a set of staying conditions;

— G ={G. | e € E} is a set of guards such that for each discrete transition
€= (Qa ql) € E; ge - Iq,'

A hybrid state is a pair (g, z) where ¢ € @ and x € X. The initial state of the
automaton is denoted by (qo, zo). A state (¢, z) of A can change in two ways as
follows: by a continuous evolution (that is, the continuous state x evolves accord-
ing to the dynamics f, while the location ¢ remains constant) and by a discrete
evolution (that is, x satisfies the guard condition of an outgoing transition, the
system changes the location by taking this transition).

Unlike continuous evolutions, discrete evolutions are instantaneous, which means
that they do not take time. This model allows capturing non-determinism in
both continuous and discrete dynamics. This non-determinism is useful for de-
scribing disturbances from the environment and imprecision in modelling and
implementation.

2.2 Testing problem

Specification and System Under Test. Our testing goal is to study the
conformance relation between the behaviors of a system under test (SUT) and
a specification. The specification is modeled by a hybrid automaton A and the
system under test by another hybrid automaton A4; (we may not know the
hybrid automaton A,). The tester applies the control inputs to the SUT and



observes the outputs to produce one of the following verdicts: ‘pass’ (the observed
behavior is allowed by the specification), ‘fail’ (the observed behavior is not
allowed by the specification). In this work, we use the trace inclusion to define
conformance relation. Intuitively, the system under test A, conforms to the
specification A if under every admissible control action sequence, the set of
observation sequences of A, is included in that of A (see [7] for more detail).

Inputs. An input of the system which is controllable by the tester is called a
control input; otherwise, it is called a disturbance input. All the continuous inputs
are assumed to be controllable by the tester. The discrete transitions could be
controllable or uncontrollable.

We use the following assumption about the inputs: disturbance actions are of
higher priority than control actions. This means that when a control action and
a disturbance action are simultaneously enabled, the disturbance action takes
place first.

Observations. In our previous work, the locations and the continuous states
of the hybrid automata 4 and A, are observable. In this work, we use a less
restrictive assumption: the location and the continuous state are not directly
observable, and the tester needs to deduce this information from some continuous
observations. We define an observation function as follows: h : X — R%. In the
following we consider only scalar observation functions, that is d = 1. Intuitively,
the tester cannot directly observe the continuous state, and the outputs of its
sensors can be modeled by: y[k] = h(x[k]).

Test cases and test executions. In our framework, a test case is represented
by a tree where each node is associated with a hybrid state and each edge of
the tree is associated with a control action. A physical test execution can be
described as follows: the tester applies a control input sequence to the system
and measures the observations. This procedure leads to a set of observation
sequences since multiple runs are possible due to non-determinism. In practical
systems, due to actuator and sensor imprecision, control inputs and observations
are subject to errors. The issues related to error in measurements and actuators
are treated in [7] and we do not discuss them here.

Coverage-guided test generation We proposed in [7] a notion of state cover-
age that describes how ‘well’ the visited states represent the reachable set. This
measure is defined using the star discrepancy notion in statistics, which char-
acterises the uniformity of the distribution of a point set within a region. Note
that the reachable sets of hybrid systems are often non-convex with complex
geometric form, therefore considering only corner cases does not always cover
the behaviors that are important for reachabilily properties, especially in high



dimensions. Our current method for test generation is based on a randomized
exploration of the reachable state space of the system. It is an extension of the
Rapidly-exploring Random Tree (RRT) algorithm, a successful motion planning
technique for finding robotic trajectories in an environment with obstacles [12].
Furthermore, we combine it with a guiding tool in order to achieve a good cover-
age of the system’s behaviors we want to test. The new results presented in this
paper are twofold. First, we provide a new test generation algorithm guided by
the coverage measure and additionally by the property to test via a random walk.
Furthermore, we address a testing problem under partial observability where the
hybrid state should be deduced from a sequence of observations.

3 Combining the coverage-guided exploration and
random walks

The main steps of the coverage-guided test generation algorithm [7] are the
following: (1) a goal state is sampled, and this sampling is guided so that the
goal state lies in the regions where the local coverage of the visited states is
still low; (2) a neighbor state of the goal state is determined, from which an
appropriate control input is applied to steer the system towards the goal state.

When using the state coverage measure to guide the test generation process,
the whole reachable space is ’equally’ important for the exploration and the test
generation tries not to leave a large part of the reachable space unvisited. The
resulting test suite is appropriate when different qualitative behaviors of the
system need to be explored. However, when some regions in the state space or
some traces are of particular interest, we want to bias the execution towards
those regions and traces. To this end, during the test generation we combine the
coverage-guided sampling with a guiding method based on a random walk.

To define a random walk, we first partition the continuous state space into a
set of regions and from there we construct a directed graph G which roughly
overapproximates the specification automaton A. Then, the sampling process
consists of two steps:

1. Perform a random walk on the resulting graph G to determine a goal region.
2. Within the goal region we use the coverage-guided test generation algorithm
[7] to sample the goal state.

In the following we explain the first step of the sampling process. Let G =
(Vi, Ec) be the underlying graph obtained by partioning the continuous state
space; Vi is the set of nodes and Eg is the set of directed edges between the
nodes. The partition must capture the discrete transitions of A and separate
critical regions from the rest. In this work, we use axis-aligned hyperplanes to
define a partition. As future work, more general polyhedral partitions will be
considered and this requires adapting the coverage definition which is currently
based on a box partition of the continuous state space.



Given a node w € Vi, an adjacent node of w is a node v € Vg such that
there exists an edge in FE¢ that connects w to v. Let Ag(w) be the set of
all the adjacent nodes of w. A random walk? on G specifies a run where the
node to be visited next is selected from the adjacent vertices at random with
a transition probability P(G) = (Pwv)wweve € [0,1]V6¢*Vé such that for all
w € Vg ZUeAG(w) Pwe = 1 and for any v € Vg pywy =0 if v € Ag(w).

A random walk on G starting at a vertex w € Vg under the transition matrix
P(G) is an infinite sequence of random variables 7; € Vi such that ny = w with
the probability 1, and for all 4 > 0 the probability that 7;,1 = w’, provided that
the probability that 7; = v is p(v,w’). The hitting time from w to v under the
transition matrix P(G) is defined as Hp(w,v) = Elinfi | n; = v], which is the
expectation of the smallest numbers of steps needed to reach v from w.

In order to bias the exploration towards the critical regions, we define a target
probability distribution

m={m | veVg}

The regions we want to explore are given a higher target probability. To achieve
this target probability distribution, we use the Metropolis-Hastings method since
it guarantees that the stationary distribution of such a random walk on the
graph G is the target distribution 7 [16]. Given two nodes w and v, we assign a
probability to the edge from w to v:

o deg(w)my L .
= min , 1} if v is adjacent node of w
Pov = Geg(w) {deg(v)m ! !
puwzl_zpww’ ifv=w
w' #w
Puv =0 otherwise

where deg(w) is the degree of the vertex w. The additional reason we choose to
use the Metropolis-Hastings method in this work is that it has good hitting times,

i
which are of O(r N2) where N, is the number of vertices and r = max{— | w,v €
77

v
Vi '} As mentioned earlier, this algorithm has been successfully applied to many
applications, in particulat in network protocols.

4 Hybrid state estimation

We now proceed with our second result. As mentioned earlier, the tester needs to
deduce the current location and the current continuous state from the continuous
observations.

2 For a detailed introduction to random walks on a graph, the reader is referred to
[15].



4.1 Continuous state estimation

We first describe a method for estimating the state of a continuous system,
which is used in the next section to handle hybrid systems. Thus, for simplicity
of presentation, we drop the location index ¢ from the equations of the dynamics,
that is

zlk +1] = f(z[k], u[k])
ylk] = h(=z[k])

This method is based on the Newton observer method for non-linear systems [14].
During the test execution, to estimate x[k] at each time point k, the tester needs
a sufficient long sequence of observations. This is indeed related to observability
of the system f and is explained in the following.

Let Uy x+n—1 be a vector of N consecutive inputs that is to be applied to the
system at time k:
ulk]
ulk +1
Uk yN—1 = [ )
ulk+ N —1]

Under this continuous input sequence U r1n—1 and starting from the state
x[k] (that we need to estimate), the system under test produces a vector of
observations

y[k]
Yik4N-1 = ylk +1]
Y[k + N - 1]
We define the following vector of functions:
h(z)
ho fuo(x)

H(z,Uyn-1) =
ho fuUN=1(z)o.. o fulol(zx)

where o denotes the following composition operator: given two functions « :
X =Y and B :Y — Z, the function resulting from composing o with 3 is
Boa: X — Z such that for a given y € Y, S o a(y) = B(a(z)). In the above
since the inputs are fixed in the functions f, we write them as superscripts of f.

From the results on observativility of continuous systems, we know that if the
system is N-observable (with N > 1) at state Z if there any sequence U of N
control inputs such that Z is the unique solution of the following equation:

H(z,U)=H(U)

In the above, £ is the unknown variable. Here N is the minimum number of
observations required to reconstruct the state.



We assume now that the system is N-observable [14], and thus to estimate the
state at time k > 0 it suffices to solve the following equation:

Yiktn—1—H(E Uppyn-1) =0 (1)

Intuitively, to estimate the state at time point k, we need to apply a sequence
Ui k+n~N—1 of N next input values to obtain a sequence Y}, 4 n—1 of observations.
Then, we solve the above equation with £ € R™ as the unknown variables. We
let N = n, so that the Jacobian matrix of the vector H of functions is square.
Then, to determine &, we can use Newton’s algorithm as follows®:

) . 9H _
gl =¢+ [%(51’ Uk ot N—1)]" Y1 — H(E" Up ppn—1)

A detailed discussion on the standard convergence theorem for this algorithm
can be found in [13]. The convergence of Newton’s algorithm depends on the
initial estimate and the second derivatives ||%2{j || which measures the nonlin-
earity degree of the equation (1). For linear systems, the initial estimate can be
arbitrarily far from the exact solution; however, when H%z;;[ || is large (that is,
the system is very nonlinear), the initial estimate needs to be more accurate.

4.2 Testing execution with hybrid state estimation

Let T be the tree generated from the specification A, starting from the initial
continuous state xg. Now we use this tree to test the system against the specifi-
cation A,. From the above discussion on observablity of continuous systems, to
extend to the hybrid systems we need to assume that the discrete transitions can
occur at times of multiples of NV steps. The test execution procedure described
in Algorithm 1 uses the following assumption. At any time step of the algorithm,
the tester can apply many input sequences and observe the corresponding ob-
servation sequences (which may require restarting the execution of the system
from the initial state to restore the current state). Initially, the system could be
in any location; thus S;n;; covers all the locations.

At each iteration ¢ (which corresponds to a time segment of length N), the
tester keeps a set S; of possible states visited before time iN. Since the dis-
crete transitions are instantaneous, we also need to include all possible discrete
successors (represented by the operator Succy).

For each of possible states (¢,z) in S;, the tester chooses from the tree a
possibly feasible sequence of NV inputs. It is important to note that, according to
our assumption during the next N steps no discrete transition can occur. The
tester then applies the chosen sequence to the system under test and observes the
corresponding sequence Y of outputs. Using Newton’s algorithm, we compute
an estimator € of the state at time i/N. There are two cases:

3 In the case that there are more equations than states, the inverse should be replaced
by a pseudo-inverse [13].



Algorithm 1 Test execution
/* Input: Test tree T */

1 =0
Sinit = {(g,w0) | ¢ € Q}
Sn = Sinit U Succd(Smit)
repeat
Si = Sn U Succq(Sn)
Sn=10
for all (¢,z) € S; do
U = InputSeq(T, (¢, x)) /* Choose an input sequence U of length N and
feasible at (q,x) */
Y = Observation(U) /* Apply the input sequence U to the system and observe
the corresponding outputs */
& = Newton(q,U,Y) /* Using Newton’s algorithm to estimate the state at the
current time iN */

if (]| —z|| <€) then
Sp = Sn U{Succc((q,z),U)} /* Adding all the continuous successors to the
set Sy, they will be explored in the next iteration */
end if
end for
if (S, =0) then
RETURN ’fail’ verdict
end if
1+ +
until ¢ = iz V.S =0




1. If the estimator £ is e-close to the corresponding state x in the tree, we add
it to the set S,, of new possible states which will be treated in the next
iteration. The threshold ¢ is used to account for numerical error in Newton’s
algorithm and possible measurement error.

2. Otherwise, we continue with another possible current state in .S;.

After applying the above treatment to all the possible states in S;, if the set .S;, of
new possible states is empty, the algorithm declares the verdict ’fail’; otherwise
it continues. Note that to initialize the estimates in Newton’s algorithm we use
the last estimates of the previous iteration, in order to obtain a good convergence
of the estimation algorithm.

Theorem 1. If the algorithm returns the ’fail’ verdict, the system under test
does not conform to the specification.

Proof. We first prove the following proposition by induction. Let us suppose that
the set S;y1 at the beginning of the loop 'REPEAT... UNTIL’ contains all the
visited state during the interval [iN, (i + 1)N] (this is true for ¢ = 0), we prove
that the set S; 42 contains all the visited states up to time (¢ + 2)N.

Indeed, for any state (g, z) € S;11, all the states which can be reached from
(g, z) by a discrete transition are already included in S;41. Hence, in order to in-
clude all the state reachable in N next step from S, 1, it suffices to consider only
the continuous dynamics. Since by applying Newton’s algorithm to each state
(g,z) € Siy+1 as above we can estimate the continuous states, if the estimates
do not match the expected states stored in the tree T', the successors of (g,x)
are not the states visited so far. It then follows that in the iteration ¢ + 2, the
algorithm discards only the states which cannot be visited up to time (i + 2) N,
and at the same time the algorithm includes all the states which are possibly
visited up to time (¢ + 2) N. Thus, the proposition is proved.

From this proposition, it is easy to see that when the algorithm returns ’fail’,
that is the set of possible states is empty, the system under test is not conform
to the specification. ]

5 Experimental results

We implemented the above algorithms and incorporated their implementations
in the tool HTG [6]. The enhancement of the test generation algorithm allowed
us to increase the efficiency of the tool. In addition, the tool can now be used
for test execution in practical settings with partial observability. In this section,
to show the improvement in the test generation, we present the results obtained
for a well-known benchmark of ring oscillator circuit. The second case study is
a Delta-Sigma circuit, which is used to illustrate the state estimation feature.



Fig. 1. Ring oscillator circuit.

5.1 Ring oscillator

The ring oscillator circuit is described in Figure 1, given in SPICE netlist for-
malism®. This circuit has one input variable, which is the source voltage of the
circuit. Its values is between 1.6V and 2.4V. There are 9 state variables, which
are the output voltages of each inverter. We want to test whether the output
voltages could reach a value lower that —2.15V.
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Fig. 2. The output voltage of the last inverter, obtained without using random walk.

In the result of the test generation without using random walk (shown in
Figure 2), the maximum value of the output voltage of the last inverter is 0, and
its minimum value is —2.1458V. The computation time for generating 10000
points is 60s.

In the next experiment, we partitioned the continuous state space into two
regions corresponding to two ’binary’ states of the outputs of the inverters:

vy = (low, high, low, high, low, high, low, high, low)

4 The tool HTG can accept SPICE netlists as input. For more detail on the tool,
see [6].



vy = (high, low, high, low, high, low, high, low, high)

We used a random walk with the target probability distribution for these two
regions: m; = 0.8 and m = 0.2. The Metropolis-Hastings algorithm produced

the following transition probability matrix:

from — to] 0 1
0 0.875|0.125

1 0.5 ] 0.5

-05

-
%
&

=25
1]

Fig. 3. The output voltage of the last inverter, obtained with a random walk.

In the result of the test generation using random walk (shown in Figure 3), the
maximum value of the output voltage of the last inverter is 0, and its minimum
value is —2.1725V . The computation time for generating 10000 points is 55s. We
can see that by favoring the region corresponding the low level of the voltage,
a lower value of the voltage was discovered, and a violation of the property was

detected.

5.2 Delta-Sigma circuit

The second case study is a third-order Delta-Sigma modulator [3], which is a
mixed-signal circuit shown in Figure 4. When the input is positive and its value
is less than 1, the output takes the +1 value more often and the quantization
error is fed back with negative gain and accumulated in the integrator z—il Then,



when the accumulated error reaches a certain threshold, the quantizer switches
the value of the output to —1 to reduce the mean of the quantization error.

The specification of a third-order Delta-Sigma modulator is modeled as a hy-
brid automaton, shown in Figure 4. The discrete-time dynamics of the system
is as follows: z[k + 1] = Ax[k] + bu[k] — sign(y[k])a, y([k] = cszs[k] + byu[k]
where z[k] € R? is the integrator states, u[k] € R is the input, y[k] € R is the
input of the quantizer. Thus, its output is v[k] = sign(y[k]), and one can see
that whenever v remains constant, the system’s dynamics is affine continuous.

%llnput
u(K)

v

b1

1_

ol

¥(K) Quantizer|  Output

csxslk] + ulk] >=0

vlk] = -1 vlk] = +1
zlk + 1] = Azlk]+ x[k—l—l}):Aw[k:]
bulk] + a +bulk] —a
\/

csxs[k] + u[k] <0

Fig. 4. Model of a third-order modulator: Saturation blocks model saturation of the
integrators.

In this study we first generated the test tree for the above hybrid automaton
used as the specification automaton (see Figures 5 and 6). Our system under
test is an implementation of the Delta-Sigma in SPICE netlists. The observation
function h(x) = 0.1z1 + 0.2z2 + 0.523. The initial state is in [-0.01,0.01]% and
the input values u € [—0.5,0.5].

Figure 7 shows the result of the test execution using the hybrid state estima-
tion, which state that for a bounded time the implementation is conform to the
specification automaton. In this figure, the horizontal axis is time. The points
drawn with * sign are the estimates of x5 obtained from the observations on the
implementation. The circle points correspond to the possible states in the first lo-
cation and the + points correspond to the possible states in the second location.
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Fig. 5. Test generation result for the first location. The points drawn with the + sign
correspond to the states from which a discrete transition to the second location takes
place.
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Fig. 6. Test generation result for the second location. The points drawn with the circle
sign correspond to the states from which a discrete transition to the first location takes
place.



With € = 1le — 2, no violation of the conformance between the implementation
and the specification automaton was detected.
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Fig. 7. Test execution result (over time) for the Delta-Sigma circuit.

6 Conclusion

In this work, we contributed two new results for hybrid systems testing: one is
a method for test generation guided by the properties to test, and the other
is a procedure for test execution with partial observability. The results were
implemented and successfully applied to two case studies in circuit validation.
One direction for future work is the development of a coverage measure which
can capture interesting qualitative behaviors. We also plan to use this procedure




for test execution to tackle the problem of checking equivalence between different
models with different abstraction levels and to model identification.
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