Passive Interoperability Testing for
Request-Response Protocols: Method, Tool and
Application on CoAP Protocol

Nanxing Chen and César Viho

IRISA/University of Rennes 1
Campus de Beaulieu, Avenue du Général Leclerc, 35042 Rennes Cedex, FRANCE

nanxing.chen@irisa.fr, cesar.viho@Qirisa.fr

Abstract. Passive testing is a technique that aims at testing a run-
ning system by only observing its behavior without introducing any test
input. The non-intrusive nature of passive testing makes it an appropri-
ate technique for interoperability testing, which is an important activity
to ensure the correct collaboration of different network components in
operational environment. In this paper we propose a passive interoper-
ability testing approach, especially for request-response protocols in the
context of client-server communications. According to the interaction
pattern of request-response protocols, the observed interactions (trace)
between the network components under test can be considered as a set
of conversations between client and server. Then, a procedure to map
each test case into these conversations is carried out, which intends to
verify the occurrence of the generated test cases as well as to determine
whether interoperability is achieved. The trace verification procedure has
been automated in a passive testing tool, which analyzes the collected
traces and deduces appropriate verdicts. The proposed method and the
testing tool were put into operation in the first interoperability testing
event of Constrained Application Protocol (CoAP) held in Paris, March
2012 in the scope of the Internet of Things. By using this approach, an
amount of CoAP applications from different vendors were successfully
and efficiently tested, revealing their interoperability degree.
Keywords: Interoperability Testing, Passive Testing, Request-Response
Protocol, CoAP

1 Introduction

With the development and increasing use of distributed systems, computer com-
munication mode has changed. There is increasing use of clusters of workstations
connected by a high-speed local area network to one or more network servers.
In this environment, resource access leads to communications that are strongly
request-response oriented. This tendency resulted in a large amount of proto-
cols such as Hypertext Transfer Protocol (HTTP)!, Session Initiation Protocol

! http://tools.ietf.org/html/rfc2616

(SIP)?, and very recently the Constrained Application Protocol (CoAP) [1], etc.
Due to the heterogeneous nature of distributed systems, the interoperability of
these protocol applications is becoming a crucial issue. In this context, inter-
operability testing is required before the commercialization to ensure correct
collaboration and guarantee the quality of services.

This paper proposes a methodology for the interoperability testing of request-
response protocols. Specifically, we apply the technique of passive testing, which
alms at testing a running system by only observing its external behavior with-
out disturbing its normal operation. The methodology consists of the following
main steps: (i) Interoperability test purposes extraction from the protocol spec-
ifications. Each test purpose specifies an important property to be verified. (i)
For each test purpose, an interoperability test case is generated, in which the
detailed events that need to be observed are specified. (i7i) Behavior analysis.
In order to verify whether the test purposes are reached, as well as to detect
non-interoperable behavior, traces produced by protocol implementations are
processed by keeping only the client-server conversations with respect to the in-
teraction model of request-response protocols. These conversations will further
be analyzed by a trace verification algorithm to identify the occurrence of the
generated test cases and to emit an appropriate verdict for each of them.

The proposed passive interoperability testing method has been implemented
in a test tool, which was successfully put into operation during ETSI CoAP
Plugtest - the first formal CoAP interoperability testing event held in Paris,
March 2012 in the context of the Internet of Things.

This paper is organized as follows: Section 2 introduces the background and
motivation. Section 3 proposes the methodology for passive interoperability test-
ing of request-response protocols. Section 4 describes the application of this
method on CoAP Plugtest as well as the experimental results. Finally, we con-
clude the paper and suggest further research directions in Section 5.

2 Background and Motivation

The request-response oriented communication is generally used in conjection
with the client-server paradigm to move the data and to distribute the compu-
tations in the system by requesting services from remote servers. The typical
sequence of events in requesting a service from a remote server is: a client en-
tity sends a request to a server entity on a remote host, then a computation is
performed by the server entity. And, finally a response is sent back to the client.

Request-response communications are now common in the fields of networks.
Request-response exchange is typical for database or directory queries and oper-
ations, as well as for many signaling protocols, remote procedure calls or middle-
ware infrastructures. A typical example is REST (Representational State Trans-
fer) [10], an architecture for creating Web service. In REST, clients initiate
request to servers to manipulate resources identified by standardized Uniform

2 http://www.ietf.org/rfc/rfc3261.txt

Resource Identifier (URI). E.g., the HTTP methods GET, POST, PUT and
DELETE are used to read, create, update and delete the resources. On the
other hand, servers process requests and return appropriate responses. REST
is nowadays popular, which is applied in almost all of the major Web services
on the Internet, and considered to be used in the Internet of Things, aiming
at extending the Web to even the most constrained nodes and networks. This
goes along the lines of recent developments, such as Constrained RESTful En-
vironments (CoRE)? and CoAP, where smart things are increasingly becoming
part of the Internet and the Web, confirming the importance of request-response
communication.

Promoted by the rapid development of computer technology, protocols using
the request-response transaction communications are increasing. Normally, pro-
tocol specifications are defined in a way that the clients and servers interoperate
correctly to provide services. To ensure that they collaborate properly and con-
sequently satisfy customer expectations, protocol testing is an important step to
validate protocol implementations before their commercialization. Among them,
conformance testing [7] verifies whether a protocol application conforms to its
specifications. It allows developers to focus on the fundamental problems of their
protocol implementations. However, it is a well-known fact that, even following
the same standard, clients and servers might not interoperate successfully due
to several reasons: poorly specified protocol options, incompleteness of confor-
mance testing, inconsistency of implementation, etc. These aspects may cause
the interoperable issues in realizing different services. However, the heteroge-
neous nature of computer systems requires interoperability issues to be solved
before the deployment of the product. Therefore, interoperability testing [11] is
required to ensure that different protocol applications communicate correctly
while providing the expected services.

To perform interoperability testing (iop for short in the sequel), the conven-
tional method is the active testing approach (e.g. [8,4]). It requires to deploy
a test system (TS) that stimulates the implementations under test (IUT) and
verify their reactions. Although widely used, active testing has limitations: test
can be difficult or even impossible to perform if the tester is not provided with a
direct interface to stimulate the IUTs, or in operational environment where the
normal operation of IUTs cannot be shutdown or interrupted for a long period
of time. On the contrary, passive testing represents an alternative, which aims at
testing a system by passively observing its inputs/outputs without interrupting
its normal behavior.

Until now, passive testing has been studied and applied to computing systems
to supervise distributed computations, communications networks for fault man-
agement [6], protocol testing [3, 5], runtime verification [12], etc. In this paper, we
will provide a passive interoperability testing methodology for request-response
protocols. We have chosen to use passive testing technique for the following ar-
guments: First, passive testing does not insert arbitrary test messages, thus is
suitable for interoperability testing in operational environment as is often con-

3 http://datatracker.ietf.org/wg/core/charter/

cerned by request-response services. Also, passive testing does not introduce
extra overhead into the networks, hence is appropriate for testing in the context
of Internet of Things, where devices are resource limited.

The work presented in this paper is original. It involves using the non-
intrusive passive testing technique to verify interoperability, where there exist
only few works in the literature. Moreover, the method does not only verify
whether the test purposes are reached, but also detects non-interoperable be-
havior. Last but not least, the procedure of trace verification is automated by
implementing a tool, which was successfully put into practice for the test of an
important machine-to-machine communication protocol CoAP. To our knowl-
edge, it was the first time that passive automated interoperability testing method
was applied in an interoperability testing event, which increased drastically the
efficiency, while keeping the capacity of non-interoperability detection.

3 Interoperability Testing for Request-Response
Protocols

3.1 Formal Model

Specification languages for reactive systems can often be given a semantics in
terms of labeled transition systems. In this paper, we use the IOLTS (Input-
Output Labeled Transition System) model [9], which allows differentiating input,
output and internal events while precisely indicating the interfaces specified for
each event.

Definition 1 An IOLTS is a tuple M = (Q, 2™ AM ¢}") where Q™ is the set of
states of the system M with ¢}? its initial state. £ is the set of observable events
at the interfaces of M. In IOLTS model, input and output actions are differentiated:
We note p?a (resp. pla) for an input (resp. output) a at interface p. I'(q) =aey {a €
IM13¢, (q,0,¢") € AM} is the set of all possible events at the state g. AM C QM x
(XM UT) x QM is the transition relation, where 7 ¢ Y™ stands for an internal action.
A transition in M is noted by (g, a,¢') € AM.

3.2 Testing Method Overview

The passive interoperability testing architecture (c.f. Fig.1) for request-response
protocols involves a test system and a system under test, composed of two im-
plementations under test, namely a client and a server. In passive iop testing,
the test system has two main roles: (i) Observe and collect the information
exchanged (trace) between the client and the server. (i7)Analyze the collected
trace to check interoperability. Generally, trace verification can be done online
to monitor the system and report abnormalities at any time. Elsewise it can be
done offline, i.e, the traces during the test execution are stored in a file and will
be analyzed in a posteriori manner. As passive testing does not apply any stim-
ulus, testing activity is only based on an accurate level of observation, relying

on the set up of sniffer at point(s) of observation (PO) to observe the messages
exchanged between the client and the server. In this paper we consider black-box
testing: the test system is not aware of the internal structure of IUTs. Only their
external behavior can be verified during their interactions.

‘ Test System ‘
PO

<__>

System under Test

Fig. 1. Passive interoperability testing architecture

The testing procedure is illustrated in Fig.2. It consists of the following main
steps:

Protocol
Specifications

Test Purposes
Test cases
Derivation

Packet
Sniffer

Caputured
packets

Test Purposes \, -~
Definition and [~ ~
Validation

Trace Verification

Verdict

A

Pass, Fail, Inconclusive

Fig. 2. Passive interoperability testing procedure

1. Interoperability test purposes (ITP) selection from protocol specifications. An ITP
is in general informal, in the form of an incomplete sequence of actions represent-
ing a critical property to be verified. Generally it can be designed by experts or
provided by standards guidelines for test selection. Test purpose is a commonly
used method in the field of testing to focus on the most important properties of
a protocol, as it is generally impossible to validate all possible behavior described
in specifications. Nonetheless, an ITP itself must be correct w.r.t the specification
to assure its validity. Formally, an ITP can be represented by a deterministic and
complete IOLTS equipped with trap states used to select targeted behavior.

ITP = (Q'TF, oITF AITP | gITFYy where:

— SITP C ySetientyySserver wwhere Sepient and Sserver are the specifications
on which the IUTs are based.

— Q'TF is the set of states. An ITP has a set of trap states Accept’ 7T, indicating
the targeted behavior. States in Accept!TT imply that the test purpose has
been reached and are only directly reachable by the observation of outputs
produced by the TUTs.

— ITP is complete, which means that each state allows all actions. This is done
by inserting “x” label at each state ¢ of the I'TP, where “x ” is an abbreviation
for the complement set of all other events leaving ¢. By using “x” label, ITP is
able to describe a property without taking into account the complete sequence
of detailed specifications interaction.

2. Once the ITPs chosen, an iop test case (ITC) is generated for each ITP. An ITC
is the detailed set of instructions that need to be taken in order to perform the
test. The generation of iop test case can be either manual, as usually done in most
of the interoperability events, also for “young” protocols whose specifications are
not yet stable. ITCs can also be generated automatically by using various formal
description techniques existing in the literature such as [11,4]. Formally, an iop
test case ITC is represented by an IOLTS: ITC = (Q!7¢, ITC, AITC ¢ITC) where
¢tTC is the initial state. {Pass, Fail, Inconclusive} € QT are the trap states
representing interoperability verdicts. Respectively, verdict Pass means the ITP is
satisfied (Accept’™" is reached) without any fault detected. Fail means at least
one fault is detected, while Inconclusive means the behavior of IUTs is not faulty,
however can not reach the ITP. 2/7¢ denotes the observation of the messages
from the interfaces. A!TC is the transition function. In active testing, ITCs are
usually controllable. i.e, ITC contains stimuli that allow controlling the IUTs. On
the contrary, in passive testing, ITCs are only used to analyze the observed trace
produced by the IUTs. The correct behavior of IUTs implies that the trace pro-
duced by the IUTs should exhibit the events that lead to Pass verdicts described
in the test cases. In the sequel, an ITC is supposed to be deterministic. The set of
test cases is called a test suite. An example of ITP and ITC can be seen on Fig.6
in Section 4.2.

3. Analyze the observed behavior of the TUTs against each test case and issue a
verdict Pass, Fail or Inconclusive. In this paper we choose offiine testing, where
the test cases are pre-computed before they are executed on the trace.

3.3 Request-response Protocol Passive Interoperability Testing

In offline passive interoperability testing for request-response protocols, the pack-
ets exchanged between the client and server are captured by a packet sniffer. The
collected traces are stored in a file. They are key to conclude whether the protocol
implementations interoperate (c.f. Fig.2).

In passive testing, one issue is that the test system has no knowledge of the
global state where the system under test SUT can be in w.r.t a test case at the
beginning of the trace. In order to realize the trace analysis, a straight way is
trace mapping [6]. This approach compares each event in the trace produced by
the SUT strictly with that in the specification. SUT specification is modeled
as a Finite State Machine (FSM). Recorded trace is mapped into the FSM by
backtracking. Initially, all states in the specification are the possible states that
the SUT can be in. Then, the events in the trace are studied one after the other:
the states which can be led to other states in the FSM by the currently checked
event are replaced by their destination states of the corresponding transitions.
Other states are redundant states and removed. After a number of iterations, if
the set of possible states becomes empty, SUT is determined faulty. i.e., it con-
tains a behavior which contradicts its specification as trace mapping procedure

fails. This approach however, has some limitations. First, to model a complex
network by a single FSM maybe complex. Moreover, this approach does not
suit interoperability testing: as the SUT concerned in interoperability testing in-
volves several IUTSs, therefore to calculate their global behavior encounters state
explosion.

In [5], another method called invariant approach was introduced. Each in-
variant represents an important property of the SUT extracted from the spec-
ification. It is composed of a preamble and a test part, which are cause-effect
events respectively w.r.t the property. The invariant is then used to process the
trace: The correct behavior of the SUT requires that the trace exhibit the whole
invariant.

In this paper, we propose another solution to perform passive trace verifica-
tion. The idea is to make use of the special interaction model of request-response
protocols. As the interoperability testing of this kind of protocol essentially in-
volves verifying the correct transactions between the client and the server, there-
fore each test case consists of the dialogues (requests and responses) made be-
tween them, and generally starts with a request from the client. A strategy is as
follows: (i) the recorded trace is filtered to keep only the messages that belong
to the tested request-response protocol. In this way, the trace only contains the
conversations made between the client and the server. (ii) Each event in the
filtered trace will be checked one after another according to the following rules,
which correspond to the algorithm of trace verification (c.f. Algorithm 1). This
algorithm aims at mapping the test case into the trace. i.e., to match a test case
with the corresponding conversation(s) in the trace. Recall that in our work,
each test case specify the events that lead to verdicts Pass, Fail or Inconclusive
assigned on its trap states. Therefore, if a test case is identified on the trace, we
can check whether it is respected by comparing each message of the test case
with that in its corresponding conversation(s), and emitting a verdict once an
associated verdict is reached.

1. If the currently checked message is a request sent by the client, we verify whether
it corresponds to the first message of (at least one of) the test cases (noted T'C;)
in the test suite T'S. If it is the case, we keep track of these test cases T'C;,
as the matching of messages implies that T'C; might be exhibited on the trace.
We call these T'C; candidate test cases. The set of candidate test cases is noted
TC. Specifically, the currently checked state in each candidate test case is kept in
memory (noted Current;).

2. If the currently checked message is a response sent by the server, we check if
this response corresponds to an event of each candidate test cases T'C; at its
currently checked state (memorized by Current;). If it is the case, we further
check if this response leads to a verdict Pass, Fail or Inconclusive. If it is the case,
the corresponding verdict is emitted to the related test case. Otherwise we move to
the next state of the currently checked state of T'C};, which can be reached by the
transition label - the currently checked message. On the contrary, if the response
does not correspond to any event at the currently checked state in a candidate test
case T'C;, we remove this T'C; from the set of the candidate test cases T'C'.

3. Besides, we need a counter for each test case. This is because in passive testing, a
test case can be met several times during the interactions between the client and the

server due to the non-controllable nature of passive testing. The counter C'ounter;
for each test case T'C}; is initially set to zero. Each time a verdict is emitted for
TC;, the counter increments by 1. Also, a verdict emitted for a candidate test
case T'C; each time when it is met is recorded, noted verdict. TC;.Counter;. For
example, verdict. T'C1.1=Pass represents a sub-verdict attributed to test case T'Cy
when it is encountered the first time in the trace. All the obtained sub-verdicts are
recorded in a set verdict. T'C;. It helps further assign a global verdict for this test
case.

4. The global verdict for each test case is emitted by taking into account all its sub-
verdicts recorded in verdict. T'C;. Finally, a global verdict for T'C; is Pass if all its
sub-verdicts are Pass. Inconclusive if at least one sub-verdict is Inconclusive, but
no sub-verdict is Fail. Fail, if at least one sub-verdict is Fail.

Algorithm 1: Trace verification for request-response protocols

Input: filtered trace o, test suite T'S
Output: verdict. TC;
Initialization: TC = 0, Counter; = 0, Current; = qgci, verdict. TC; = 0 ;
while o # 0 do
o=a.0’ ;
if a is a request then
for TC; € TS do
if a € I'(Current;) then
TC =TCUTC; /*Candidate test cases are added into the candidate test
case set*/;
Current;=Next; where (Current;, a, Next;) € ATC:
end
end

end
else
for TC; € TC do
if a € I'(Current;) then
Current;=Next; where (Current;, a, Next;) € ATc‘i;
if Next; € {Pass, Fail, Inconclusive} then
Counter;=Counter;+1 ;
verdict. TC;.Counter;=Next; /* Emit the corresponding verdict to
the test case™/;
verdict. TC;= verdict. TC; Uwverdict. TC;.Counter;
end
end
else
| TC=TC\ TC;
end

end
end

end
return verdict. T'C;

The complexity of the algorithm is O(M x N), where M is the size of the
trace, N the number of candidate test cases. The trace verification procedure
in fact, aims at looking for the possible test cases that might be exhibited in
the trace by checking each event taken in order from the trace. Regarding the
transaction mode of request-response protocols, each filtered traces are in fact
composed of a set of conversations. The objective of the algorithm is intended
to match the test cases with the conversations, so that the occurrence of the
test cases in the trace is identified. By comparing each message of the test case
with that of its corresponding conversation(s), we can determine whether TUTs
interactions are as expected as they are described by the test cases. Moreover,

the possibility that a test case can appear several times in the trace is also taken
into account. Therefore the global verdict for a given test case is based on the
set of subverdicts, increasing the reliability of interoperability testing. Not only
we can verify whether the test purposes are reached, but also non-interoperable
behavior can be detected due to the difference between obtained subverdicts.

3.4 Passive Testing Tool

To realize trace verification, we have developed a passive testing tool [2], which
alms to automate the process of trace verification. A description of this tool is
given in Fig.3.

POST I r:;:szr H Preprocessor
(pcap file) /
Y
HTTP
Frontend testcase Filtered Traces ‘
HTML

report
Pl
4—\ Report Trace
generation Verification

Fig. 3. Passive interoperability testing tool

The tool is implemented in language Python3* mainly for its advantages: easy
to understand, rapid prototyping and extensive library. The tool is influenced by
TTCN-3°. It implements basic TTCN-3 snapshots, behavior trees, ports, timers,
messages types, templates, etc. However it provides several improvements, for
example object-oriented message types definitions, automatic computation of
message values, interfaces for supporting multiple input and presentation format,
implementing generic codecs to support a wide range of protocols, etc. These
features makes the tool flexible, allowing to realize passive testing.

As illustrated in Fig.3, a web interface (HTTP frontend) was developed.
Traces produced by client and server implementations of a request-response pro-
tocol, captured by the packet sniffer are submitted via the interface. Specifically
in our work, the traces should be submitted in pcap format® . Each time a trace
is submitted, it is then dealt by a preprossesor to filter only the messages rele-
vant to the tested request-response protocol, i.e., to keep only the conversations
made between the client and server.

The next step is trace verification, which takes into two files as input: the set
of test cases and the filtered trace. The trace is analyzed according to Algorithm
1, where test cases are verified on the trace to check their occurrence and validity.

* http://www.python.org/getit /releases/3.0/
® http://www.ttcn-3.org/
5 http://www.tcpdump.org/

Finally, unrelated test cases are filtered out, while other test cases are associated
with a verdict Pass, Fail or Inconclusive. The results are then reported from the
HTTP frontend: Not only the verdict is reported, also the reasons in case of Fail
or Inconclusive verdicts are explicitly given, so that users can understand the
blocking issues of interoperability (c.f. a use case in Section 4.3).

4 Experimentation

The proposed passive interoperability testing method for request-response pro-
tocols has been put into operation in the CoAP Plugtest - the first formal CoAP
interoperability testing event in the context of the Internet of Things.

4.1 CoAP Protocol Overview

The Internet of Things (IoT) is a novel paradigm that is rapidly gaining ground in
the field of modern wireless telecommunications. It combines the general mean-
ing of the term ‘Internet’ with smart objects, such as sensors, Radio-Frequency
IDentication (RFID) tags, mobile phones, etc. which are able to interact with
each other and cooperate to reach common goals. However, applications in the
context of IoT are typically resource limited: they are often battery powered
and equipped with slow micro-controllers and small RAMs and ROMs. The
data transfer is performed over low bandwidth and high packet error rates, and
the communication is often machine-to-machine. To deal with the various chal-
lenging issues of constrained environment, the Constrained Application Proto-
col (CoAP) has been designed by Constrained RESTful Environments (CoRE)
working group’ to make it possible to provide resource constrained devices with
Web service functionalities.

CoAP protocol is a request-response style protocol. A CoAP request is sent
by a client to request an action on a resource identified by a URI on a server. The
server then sends a response, which may include a resource representation. CoAP
is consist of two-layers (c.f. Fig.4): (i) CoAP transaction layer deals with UDP
and the asynchronous interactions. Four types of message are defined at this
layer: Confirmable (CON, messages require acknowledgment), Non-Confirmable
(NON, messages do not require acknowledgment), Acknowledgment (ACK, an
acknowledgment to a CON message), and Reset (RST, messages indicate that
a Confirmable message was received, but some context is missing to properly
process it. eg. the node has rebooted). (i) CoAP Request/Response layer is
responsible for the transmission of requests and responses for resource manipu-
lation and interoperation. CoAP supports four request methods: GET retrieves
the resource identified by the request URI. POST requests the server to up-
date/create a new resource under the requested URIL. PUT requests that the
resource identified by the request URI to be updated with the enclosed message
body. DELETE requests that the resource identified by the request URI to be
deleted.

" http://datatracker.ietf.org/wg/core/charter/

Request/Response
Transaction §| CoAP

UDP

6LowPan

Fig. 4. Protocol stack of CoAP

4.2 Test Purposes and Test Cases

As one of the most important protocol for the future Internet of Things, the
application of CoAP is potentially wide, especially concerning energy, building
automation and other M2M applications that deal with manipulation of vari-
ous resources on constrained networks. For that CoAP applications be widely
adopted by the industry, hardware and software implementations from different
vendors need to interoperate and perform well together. Regarding the specifi-
cations of CoAP [1], a set of 27 interoperability test purposes are selected. To
ensure that the I'TPs are correct w.r.t the specifications, the ITPs were chosen
and cross-validated by experts from ETSI®, IRISA® and BUPT!?, and reviewed
by IPSO alliance. The test purposes concern the following properties:

Basic CoAP methods GET, PUT, POST and DELETE. This group of tests in-
volves in verifying that both CoAP client and server interoperate correctly w.r.t
different methods as specified in [1], even in lossy context as often encountered by
M2M communication. (c.f. an example in Fig.5-(a)).

Resource discovery'!. As CoAP applications are considered to be M2M, they must
be able to discover each other and their resources. Thus, CoAP standardizes a
resource discovery format defining a path prefix for resource as /. well-known/core.
The interoperability testing of resource discovery requires verifying that: when the
client requests /.well-known/core resource, the server sends a response containing
the payload indicating all the available links.

Block-wise transfer'? : CoAP is based on datagram transports such as UDP, which
limits the maximum size of resource representations (64 KB) that can be trans-
ferred. In order to handle large payloads, CoAP defines an option Block, in or-
der that large sized resource representation can be divided in several blocks and
transferred in multiple request-response pairs. The interoperability testing of this
property therefore involves in verifying that: when the client requests or creates
large payload on the server, the server should react correctly to the requests (c.f.
an example in Fig.5-(b)).

Resource observation'® is an important property of CoAP applications, which pro-
vides a built-in push model where a subscription interface is provided for client to
request a response whenever a resource changes. This push is accomplished by the

8 http://www.etsi.org/WebSite/homepage.aspx
9 http://www.irisa.fr/
10 http://www.bupt.edu.cn/
" http:/ /tools.ietf.org/id /draft-shelby-core-link-format-00.txt
2 http:/ /tools.ietf.org/html/draft-ietf-core-block-08
'3 http:/ /tools.ietf.org/html/draft-ietf-core-observe-04

device with the resource of interest by sending the response message with the lat-
est change to the subscriber. The interoperability testing of this property consists
of: upon different requests sent by the client to register or cancel its interest for
a specific resource, the server should react correctly. i.e., it adds the client to the
list of observers for the resource in the former case, while remove it from the list
in the latter case (c.f. an example in Fig.5-(c)).

The following figure demonstrates some typical examples of CoAP transactions.
Fig.5-(a) illustrates a confirmable request sent by the client, asking for the re-
source of humidity. Upon the reception of the request, the server acknowledges
the message, transferring the payload while echoing the Message ID generated
by the client. Fig.5-(b) illustrate a block-wise transfer of a large payload (hu-
midity) requested by the client. Upon the reception of the request, the server
divides the resource into 4 blocks and transfers them separately to the client.
Each response indicates the block number and size, as well as whether there
are further blocks (indicated by value m). Fig 5-(c) illustrates an example of
resource observation, including registration and cancellation. At first, the client
registers its interest in humidity resource by indicating Observe option. After a
while, it cancels its intention by sending another GET request on the resource
without Observe option.

CoAP CoAP CoAP CoAP CoAP CoAP
client server client server client server
L CON [0x7af2] Token=3a
CON GET Hhumidity Observe:0 GET /humidit
CON [0x7af2] GET p—2oserved St IUMCY ! registration
Jhumidity ACK block(nr=0, m=1, sz=1024) ACK [0x7af2] Token=3a
2.05 "<humidity>" | Observe:27_2.05 “<humidity>"
CON block(nr=1, m=0, sz=1024) CON [0x7af3] Token=3a
K [0X7af. R
ZIOASC“J?JM%?P" GET /humidit Observe:28 2,05 *<humidity>"
ACK b‘?;‘;z:‘hm;kyiz.,:wz") ACK [0x7af3] Token=3a
CON block(nr=2, m=0, s2=1024) CON [0x7af4] Token=3a
GET /humidity Observe:28 2.05 “<humidity>"
ACK block(nr=2, m=1, sz=1024)
2,05 “<humidity>" ACK [0x7af4] Token=3a
CON block(nr=3, m=0, sz=1024) .
GET /humidity /humidity
(40968B) CON [0x7af5] Token=33
ACK block(nr=3, m=0, sz=1024) GET Ihumidity
2.05 “<humidity>" [&
ACK [0x7af5] Token=33
2.05* "
(a) confirmable request (b) Block transfer (c) CoAP Observation

Fig. 5. CoAP transaction examples

Once the set of test purposes are defined, a test case is derived for each test
purpose. The following figure shows an example. The test purpose focuses on
the GET method in confirmable transaction mode. i.e., when the client sends
a GET request (It implies parameters: a Message ID, Type=0 for confirmable
transaction mode, Code=1 for GET method. The parameters are omitted in the
figure due to the limitation of space), the server’s response contains an acknowl-
edgment, echoing the same Message ID, as well as the resource presentation
(Code=69(2.05 Content)). The corresponding test case is illustrated in Fig.6-
(b). The bold part of the test case represents the expected behavior that leads

to Pass verdict. Behavior that is not forbidden by the specifications leads to In-
conclusive verdict (for example, response contains a code other than 69. These
events are noted by m in the figure for the sake of simplicity). However other
unexpected behavior leads to Fail verdict (labeled by Otherwise). The test cases
are derived, validated by the experts of IRISA, BUPT, ETSI and IPSO Alliance
w.r.t the specifications of CoAP. They are implemented in the testing tool, taking
into account all the verdicts. For simplicity, during the test event, only expected
behavior to be observed is provided to the users as test specification document
(Fig.6-(c)). Nevertheless, in case of Inconclusive or Fail verdicts, an explication
will be provided to the users.

° Interoperability Test Sequence
Identifier TD_COAP_CORE_01
Client! CON_GET Client! CON_GET Test purpose GET transaction (CON mode)
N . b Server offers a root resource
Otherwise condiions
step| Need to Observe
Test id
m 1 | client sends a GET request with: Type =
Sequence 0(CON) Code = 1(GET)
Server!Ack_Payload Server!Ack_Payload
2 | Serversends a response containing:
Code = 69(2.05 Content). The same
Message ID as that of the previous
request
(a) An iop test purpose (b) An iop test case (c) Test specification

Fig. 6. Example of test purpose and test case

4.3 CoAP Plugtest

CoAP Plugtest'* is the first formal interoperability event, held in Paris, March
2012 during two days for CoAP protocol in the scope of Internet of Things. It was
co-organized by the Probe-IT!® (the European project in the context of Internet
of things), the IPSO Alliance and ETSI*® (the European Telecommunication
Standard Institute). The objective of the CoAP plugtest is to enable CoAP im-
plementation vendors to test end to end interoperability with each other. Also,
it is an opportunity for standards development organization to review the ambi-
guities in the protocol specifications. 15 main developers and vendors of CoAP
implementations, such as Sensinode!'”, Watteco'®, Actility'®, etc. participated
in the event. Test sessions are scheduled by ETSI so that each participant can
test their products with all the other partners.

The testing method is based on the technique of passive testing as described
in Section 3. During the test, the participants start launching their equipments.

M http:/ /www.etsi.org/plugtests,/coap/coap.htm
5 http://www.probe-it.eu/

16 http://www.etsi.org/

'7 http:/ /www.sensinode.com/

'8 http://www.watteco.com/

19 http://www.actility.com/

Packets exchanged between CoAP implementations (CoAP client and CoAP
server) were captured by using Wireshark?. Captured traces were analyzed
against the test cases by using the passive testing tool presented in Section 3.4.
For CoAP Plugtest, the tool was developed to support the message formats of the
CoAP drafts. It checks the basic message type code as well as parameters such
as token or message ID. CoAP test suite is implemented. During the plugtest,
410 traces produced by the CoAP devices were captured and then submitted
and processed by the passive validation tool. Received traces are filtered, parsed
and analyzed against the test cases. And an appropriate verdict Pass, Fail, or
Inconclusive is issued for each test purpose. A use case of the tool is as follows:

Summary
CoAP validation tool
Version: 20120325_43 ip6-localhost (::1) vs ip6-localhost (::1)
TD_COAP_CORE_01 7 occurence(s) inconc
Submit your traces (pcap format) =
Choisissez un ficher | Aucun... choisi TD_COAP_CORE_02 2 occurence(s) | fail
TD_COAP_CORE_03 2 occurence(s) fail
TD_COAP_CORE_04 0 occurence(s) none
Tagree to leave a copy of this file on the server (for debugging purpose)
TD_COAP_CORE_05 0 occurence(s) none
Valger TD_COAP_CORE_06 0 occurence(s) none
- 3 PROBE TD_COAP_CORE_07 0 occurence(s) none
©:IRISA % 0
TD_COAP_CORE_08 0 occurence(s) none
TD_COAP_CORE_09 7 occurence(s) inconc
Testcase TD_COAP_CORE_01
Conversation 1 -> inconc
<Frame 1: [::1 -> i1] CoAP [CON Oxaeca] GET />
[pass] match: CoAP (type=0, code=1)
<Frame 2: [::1 > i1] CoAP [ACK Oxaeca] 2.16 Success >
| inconc | mismatch: Coap (code=69, mid=0xaeca)
CoAP.code: ValueMismatch
got: 80
expected: 69

Fig. 7. Trace verification tool use case

The top left image is the user interface of the tool. Users can submit their
traces in pcap format. Then, the tool will execute the trace verification algorithm
and return back the results as shown at the top right corner in the summary
table. In this table, the number of occurrence of each test case in the trace
is counted, as well as a verdict Pass, Fail or Inconc(lusive) is given (For a
test case which does not appear in the trace, it is marked as “none” and will
not be verified on the trace). Moreover, users can view the details about the
verdict for each test case. In this example, test case TD_COAP_CORE_1 (GET
method in CON mode) is met 7 times in the trace. The verdict is Inconclusive,
as explained by the tool: CoAP.code ValueMismatch (cf. the bottom of Fig.7).
In fact, according to the test case, after that the client sends a request (with
Type value 0 and Code value 1 for a confirmable GET message), the server

20 http://www.wireshark.org/

should send a response containing Code value 69(2.05 Content). However in the
obtained trace, the server’s response contains Code value 80, indicating that the
request is successfully received without further information. This response is not
forbidden in the specification, however does not allow to satisfy the test case. In
fact, the same situation exists in all the other conversations that correspond to
this test case. Therefore, the global verdict for this test purpose is Inconclusive.

4.4 Results

The CoAP plugtest was a success with regards to the number of executed tests
(3081) and the test results (shown in the sequel). The feedback from participants
on the testing method and passive validation tool is positive mainly due to the
following aspects:

— To our knowledge, it is the first time that an interoperability event is conducted
by using automatic passive testing approach. In fact, conventional interoperability
methods that rely on active testing are often complicated and error-prone. Ac-
cording to our previous experience [8], active testing requires usually experts for
installation, configuration, and cannot be run reliably by the vendors. Also, test
cases are not flexible, as they involve the ordering of tests, needs to re-run a test,
etc. Moreover, inappropriate test configuration cause often false verdicts. By using
passive testing, complicated test configuration is avoided. Bug fixes in the tool do
not require re-running the test. Moreover, it provides the ability to test products
in operational environment.

— Also, the passive testing tool shows its various advantages: By using passive testing
tool, the participants only need to submit their traces via a web interface. The
human readable test reports provided by the validation tool makes the reason of
non-interoperable behavior be clear at a glance. Besides, another advantage of the
validation tool is that it can be used outside of an interoperability event. In fact, the
participants started trying the tool one week before the event by submitting more
than 200 traces via internet. This allows the participants to prepare in advance the
test event. Also, passive automated trace analysis allows to considerably increase
the efficiency. During the CoAP plugtest, 3081 tests were executed within two
days, which are considerable. Compared with past conventional plugtest event,
e.g. IMS InterOp Plugtest?!, 900 tests in 3 days, the number of test execution and
validation benefited a drastic increase.

— Moreover, the passive testing tool not only validates test purposes, but also shows
its capability of non-interoperability detection: Among all the traces, 5.9% reveal
non-interoperability w.r.t basic RESTful methods; 7.8% for Link Format, 13.4% for
Blockwise transfer and 4.3% for resource observation. The results help the vendors
discover the blocking issues and to achieve higher quality implementations.

5 Conclusion and Future Work

In this paper, we have proposed a passive interoperability testing methodology
for request-response protocols. According to their interaction mode, the traces

2! http://www.etsi.org/plugtests/ims2/About_TMS2.htm

collected during the test were analyzed to verify the occurrence of the test cases.
Also, interoperability is determined by comparing each event in the test case
with that of its related conversation(s) in the trace. The trace verification proce-
dure has been automated by implementing a testing tool, which was successfully
put into operation in the first interoperability testing event of CoAP protocol,
where an amount of protocol applications were tested, and non-interoperable
behavior was detected. Future work intends to improve the passive validation
tool. E.g online trace verification and solutions to solve message overlapping will
be considered. Also, the tool is considered to be extended to a wider range of
protocols and more complex test configurations.

References

[6]

[7]

[10]

[11]

[12]

Shelby, Z., Hartke, K., Frank, B.: Constrained application protocol
(CoAP), draft-ietf-core-coap-08, (2011)

Baire, A., Viho, C., Chen. N.: Long-term challenges in TTCN-3 a proto-
type to explore new features and concepts, ETSI TTCN-3 User Conference
and Model Based Testing Workshop Conference, (2012)

Arnedo,J.A., Cavalli,A., Nufiez,M.: Fast Testing of Critical Properties
through Passive Testing. Lecture Notes on Computer Science, Volume
2644/2003, pp. 295-310, (2003)

Seol, S., Kim, M., Kang, S., Chanson, S.T.: Interoperability test genera-
tion and minimization for communication protocols based on the multiple
stimuli principle. IEEE Journal on selected areas in Communications, 22
(10), pp. 2062-2074, (2004)

Zaidi, F., Cavalli, A., Bayse, E.: Network Protocol Interoperability Testing
based on Contextual Signatures. The 24th Annual ACM Symposium on
Applied Computing SAC’09, (2009)

Lee,D., Netravali,A.N., Sabnani,K.K., Sugla,B., John,A.: Passive testing
and applications to network management. In Int Conference on Network
Protocols, ICNP’97, pp. 113-122, (1997)

ISO. Information Technology - Open System Interconnection Conformance
Testing, Methodology and Framework, Parts 1-7. International Standard
ISO/TEC 9646/1-7,(1994)

Sabiguero, A., Baire, A., Boutet, A., Viho, C.: Virtualized Interoperabil-
ity Testing: Application to IPv6 Network Mobility. 18th IFIP/IEEE Int
Workshop on Distributed Syst: Operations and Management. (2007)
Verhaard, L., Tretmans, J., Kars, P. Brinksma, Ed.: On asynchronous
testing. In Protocol Test Systems, vol C-11 of IFIP Transactions, pp. 55-
66. (1992)

Fielding, R.T.: Architectural Styles and the Design of Network-based Soft-
ware Architectures, Doctoral dissertation, University of California, (2000)
Desmoulin, A., Viho, C.: Automatic Interoperability Test Case Generation
Based on Formal Definitions. Lecture Notes in Computer Science, vol 4916,
pp. 234-250, (2008)

Falcone, Y., Fernandez, J.C., Mounier, L.: Runtime Verification of Safety-
Progress Properties. In Runtime Verification, Lecture Notes in Computer
Science, vol 5779, pp. 40-59, (2009)

