
An Empirical Study on Applying Anomaly
Detection Technique to Detecting Software and

Communication Failures in Mobile Data
Communication Services

Hiroyuki Shinbo and Toru Hasegawa

KDDI R&D Laboratories Inc.
2-1-15 Ohara, Fujimino-shi, Saitama 356-8502, Japan

{shinbo,hasegawa}@kddilabs.jp

Abstract. A mobile operator offers many mobile data communication
services to its users, such as e-mail, Web browsing, company proprietary
services. Although quick detection of communication and software fail-
ures are important to improve users’ satisfaction, such a quick detection
is difficult because the services are served by many servers, network nodes
and mobile terminals. Thus we developed the anomaly detection tech-
nique for the mobile operator’s network to detect anomalies caused by
communication failures such as server and network halts. Our technique
is based on the observation that users reconnect to servers many times
when a communication failure occurs. It is useful not only to detect such
communication failures, but also those which would be caused by soft-
ware failures of mobile terminals and servers. This means that a mobile
operator would be able to detect software failures missed at the testing
period. In this paper, we empirically study how our technique is used to
detect software failures of mobile terminals.

Keywords: mobile data communication, anomaly detection,
interoperability testing

1 Introduction

Mobile terminals such as cellular and smart phones are owned by most people,
and mobile data communication services such as e-mail and Web browsing ser-
vices are becoming inevitable tools for social life. Since out-of-service has a seri-
ous impact on it, failures leading to out-of-service should occur as less frequently
as possible. However, complete prevention is difficult due to a complicated sys-
tem structure providing such a service. First, it is prone that software failures,
i.e. bugs, are overlooked even by intensive tests because the system consists of
various programs which run on various servers and mobile terminals. Especially,
due to the competition in the mobile communication market, the number of mo-
bile terminal models is becoming larger and a development period including a
testing period is becoming shorter. Second, a service request is not always com-
pleted because of insufficient resources of servers and a network. It means that



2 H.Shinbo and T.Hasegwa

some service requests are thrown away by a congested server and that some mes-
sages are lost at a congested link. Of course, such an incomplete service request
is also caused by hardware failures of servers and network equipments. Please
note that the failures caused by problems on wireless links are out of scope in
this paper. Our motivation is to detect failures that affect around a mobile data
communication service, and it does not include detections of failures caused by
each wireless environment of mobile terminal.

Quick detection of such failures in an operational network is a practical and
promising approach. This approach is called anomaly detection [1] assuming
that such a failure exhibits some unusual behavior (This unusual behavior is
called anomaly.). We have developed an anomaly detection tool to detect how
users abruptly change their behaviors [2] regarding a reconnect as the fact that a
user’s service request is not successfully completed due to some failure. The tool
monitors service request messages on the network and calculates how many users
reconnect to servers in every sample period, e.g., 180 seconds. Then, it detects an
anomaly when a reconnecting terminal ratio (the ratio of terminals reconnecting
to a server to all terminals) of current sample period abruptly changes from the
previous one.

We applied this tool to a commercial mobile data communication system [2]
and the results show that it can detect failures which result in an abrupt increase
of reconnecting terminal ratio. Example failures are halts of components which
simultaneously handle many sessions such as servers and network equipments. (A
session is a communication path between a mobile terminal and an application
server. It corresponds to a single service request.) These failures make many users
simultaneously reconnect to servers. However, the tool may miss failures if only
a small portion of users reconnects. We think that software failures would fall
into this category of failures. (In this paper, we call a software failure as a “bug”,
and it does not mean problem locations within program codes in softwares.) For
example, some bugs may happen in limited conditions. Other bugs exist in only
software programs running on some specific model.

The goal of this paper is to empirically understand how such bugs are de-
tected using our anomaly detection technique. Our insight is that if we focus on
only mobile terminals or servers which have a bug, the reconnecting terminal ra-
tio of them abruptly changes. For example, if a new release of software programs
is affected by a bug, the reconnecting terminal ratio of mobile terminals which
downloaded it would increase. Thus we calculate the ratio with some group of
mobile terminals in order to know whether a bug which was overlooked in the
testing period is detected or not.

The contributions of the paper are three-fold. First, we actually found a
bug of mobile terminals as an anomaly by analyzing the log data of a mobile
data communication system. This implies that appropriate grouping of mobile
terminals enables to detect a bug of mobile terminals which have a common
feature, e.g., the same release and the same application. Second, a threshold used
for detecting anomaly is carefully determined. Third, our anomaly detection tool



An Empirical Study on Anomaly Detection for Software Failures 3

is so scalable that a few PCs (Personal Computer) with the tool can monitor a
commercial mobile data communication system.

Although this paper does not deal with software testing techniques, the
anomaly detection technique which this paper proposes is complementary to
these techniques and plays an important role to detect bugs as soon as possible.
This paper is organized as follows. Section 2 provides an overview of a mobile
data communication system. Section 3 describes our anomaly detection tool and
its algorithm. Section 4 describes how this tool is applied to detect anomalies
caused by mobile terminals’ bugs. Section 5 discusses the related work. Section 6
presents our conclusions.

2 Overview of mobile data communication system

A mobile operator offers many mobile data communication services such as e-
mail, Web browsing and company proprietary applications as shown in Fig.1.
We call a mobile data communication service just as a “service” and a mobile
data communication system just as a “system” in the rest of this paper.

Base Stations

Session Management 

Nodes

with
E-Mail 

Application

with

Web Browser

Application

with
Company 

Proprietary

Application

Company

Proprietary

Server

Web
Server

E-Mail
Server

Radio

Access

Network

Wireless

Links

Core

Network

Mobile Terminals

with Applications

Application
servers

Anomaly 
Detection Tool

monitoring

er

Fig. 1. Overview of a mobile data communication system

A system consists of the following components:

– Applications are software programs which provide a service to a user and
they are running on a mobile terminal and an application server. A service
is provided to a user by combination of applications on both the mobile
terminal and server.

– Mobile Terminals are accommodated by a mobile operator’s Base Stations
and Radio Access Network.

– Session Management Nodes provide authorization and charging functions for
services. After a mobile terminal is authorized by a session management node
by sending a session creation request message, it can send a data request to
an application server.



4 H.Shinbo and T.Hasegwa

– Application servers are operated by either the mobile operator or third party
application providers. The servers are accommodated by a Core Network.

– Anomaly Detection Tool detects anomalies based on a traffic monitoring, and
it was developed by us. The detail will be described and discussed in Sect. 3
and later.

Figure 2 shows how a user gets a service in the following two steps.

(A) Session creation step
A session is a communication path between a mobile terminal and an application
server. Before a user gets a service, a mobile terminal should send a session
creation request message to a session management node. The mobile operator
authorizes the user (or the mobile terminal) by validating this message. After
the authorization succeeds, a session creation complete message is sent back and
a session is created at the session management node. The mobile operator can
charge user-data which is sent by the authorized mobile terminal based on the
created session. The session creation request message includes the information
of identifications of the mobile terminal and the requested service.

(B) Data communication step
After the session is created, data communication starts. The application on the
mobile terminal sends data request messages to an application server and it sends
back a data response message. This communication is a request-response style.
In the case of a Web browsing service, they correspond to a HTTP Get request
message and a HTTP Get reply message containing the data.

Session creation request

Session creation complete

Data request

Data response

Application

on Mobile terminal

Mobile

Terminal

Session 
Management Node

Application

server

(A) 

Session 

creation 

step

(B)

Data 

communication

step

Session (created)

Application on

Application server

Fig. 2. Steps to get a service

3 Methodology

3.1 Principles of anomaly detection

An anomaly is an unusual behavior of some component of the system which is
likely to be caused by a failure. Our motivation is to use the detected anomaly



An Empirical Study on Anomaly Detection for Software Failures 5

to identify a failure causing it, thus we summarize failures before defining the
anomaly. Table 1 lists possible failures for individual components in the system,
such as mobile terminals and session management nodes. Please note that all
failures are not listed and that these failures are typical ones. Possible failures
are categorized to the steps in Fig.2:

– (A) Session creation step: A failure of this step results in session not being
created.

– (B) Data communication step: A failure of this step results in data request
not being completed, even if a session is successfully created.

Table 1. Possible failures of the steps (A) and (B)

Step Component Possible failures

(A)
Mobile terminals

Hardware failure, Protocol software program bug

(B) Application software program bug

(A) Session management nodes Hardware failure, Node software program bug,
Overload

(B) Application servers Hardware failure, Application software program
bug, Overload

(A) Radio access network Network congestion, Network equipment (e.g.
Ethernet switches, Routers) failure, Link failure

(B) Core network

Usually, an abrupt change of the number of messages (packets) is defined
as an anomaly in the Internet [1]. Thus in order to identify which component
is in failure, all messages sent by all components such as mobile terminals, ses-
sion management nodes and application servers should be monitored. It means
that many tools (equipments with network interface cards) capturing messages
should be set at many links to which these components are connected. Although
the method of monitoring all messages is useful to precisely identify the failed
component, applying many tools is too expensive to be used commercially.

On the contrary, we use as small number of tools as possible. As described
in Sect. 3.2, a few anomaly detection tools are set at the link connected to ses-
sion management nodes as shown in Fig.1. The anomaly detection tool captures
session creation request messages. Apparently, failures at the session creation
step (A) are easily detected because the tool can monitor failed session creation
request messages. On the contrary, how anomalies caused by failed data requests
are detected is an important issue.

We focus on the observation that a user (a mobile terminal) reconnects to
an application server after a mobile data communication service is not success-
fully completed [3]. It means that since a user should create a session before
getting a service from an application server, the user re-sends a session creation



6 H.Shinbo and T.Hasegwa

request message to a session management node again. Such a re-sent session
creation request message is regarded as the fact that a user reconnects to an ap-
plication server. Thus we define reconnections as mobile terminals which re-send
session creation request messages for reconnecting to an application server, and
an anomaly as an abrupt increase (change) of reconnections. (The anomaly is
precisely defined in Sect. 3.3.) This enables to detect a failure of a data request
to an application server at the data communication step (B) without capturing
data request and response messages. As far as we know, only our tool uses such
reconnections to detect anomalies in other communication systems.

This definition has two advantages. First, capturing only session creation re-
quest messages requires less computing power. It is more scalable than capturing
all messages sent by all components such as mobile terminals, session manage-
ment nodes and application servers. Second, this apparently reflects customers’
satisfaction.

3.2 Anomaly detection tool

– The anomaly detection tool takes a traffic monitoring approach rather than
a probing approach [1].
• In a probing approach, a probing tool sends test messages to individ-

ual components in the system and thus it clearly pinpoints a failure of
each component. However, it is time-consuming because a mobile data
communication system consists a number of components, e.g., more than
hundreds of servers.

• A traffic monitoring approach enables to quickly detect anomalies be-
cause captured packets (messages) are immediately analyzed just after
capturing them. In addition, this traffic monitoring avoids imposing load
on servers and network nodes in the system.

– The anomaly detection tool is a software program running on a PC (Per-
sonal Computer) with a network interface card. The PC with the imple-
mented tool is set at a link of a session management node in a radio access
network (described in Fig.1), and it is used to capture only session creation
request messages transferred between mobile terminals and session manage-
ment nodes. The implemented tool running on a PC with Intel CoreDuo
2.0GHz CPU and 2G bytes memory can simultaneously process more than
60,000 session creation request messages per a minute. Thus a few anomaly
detection tools are enough to monitor all sessions in a commercial mobile
data communication system [2].

3.3 Anomaly detection algorithm

This section precisely defines the metric for the anomaly detection. We defined
the anomaly as an abrupt change of reconnections, the metric is based on how
many mobile terminals re-send session creation request message. Before defining
it, we define how many times a mobile terminal sends session creation request
messages in a sample period a “session count”. Since a session creation request



An Empirical Study on Anomaly Detection for Software Failures 7

message does not explicitly specifies that it is a reconnection, we regard those
subsequent to the first request as reconnections. That is, if the session count is
2, the number of reconnections is 1.

An important issue is whether sending of these session creation request mes-
sages are really reconnections. Thus we carefully determine how long the sample
period is so that no new session creation request messages exist in the sample
period. In addition, the sample period should be determined as a small value as
possible for quickly anomaly detections.

We collected the 2 month’s log of session creation request messages in the
system and investigated session intervals of each mobile terminal without fail-
ures. A session interval is defined as an interval of sending successive session
creation request messages. Then, a cumulative frequency distribution of session
intervals is created. We see that 90% of intervals are more than 180 seconds.
Then we determine 180 seconds as the sample period. Thus in a 180 seconds
sample period, about 90% of session creation request messages might not be re-
connections. In this case, about 10% of session creation request messages might
be reconnections. We investigated the number of reconnections in a 180 seconds
sample period and obtained that about 90% of the number of reconnections was
once. (i.e., the session count is 2.)

Another important issue is for what group of mobile terminals and servers
the metric is calculated. A mobile operator or a third-party application provider
is responsible for each service. Thus the metric is calculated from session cre-
ation request messages to the same server which corresponds to a service. Before
defining the metric, we calculate a distribution of how many terminals connects
to a server the “session count” times. We define vm[n] as the number of mobile
terminals which have the session count n at the sample period m. Figure 3 shows
how to get a session count for mobile terminals. In Fig.3, at the sample period
m, the five mobile terminals MT-A to MT-E send session creation request mes-
sages. 2 (MT-B and MT-E), 2 (MT-C and MT-D) and 1 (MT-A) terminals send
1, 2, 3 session creation request message(s), respectively. That is, the results of
vm[n] are vm[1] = 2, vm[2] = 2 and vm[3] = 1.

* MT: Mobile terminal

* Assumption: All MTs use the same service.

MT-A O O O 3

MT-B O O O 1

MT-C O O 2
MT-D O O 2

MT-E O O 1

sample period

m

session count

of each MT 
at sample period m

A MT sends a session 

creation request message.

m - 1 m + 1

vm [n] : the number of 

MTs which have 

session count n at 

sample period m

vm[1] = 2, vm [2] = 2, 
vm[3] = 1

Fig. 3. How to get a session count



8 H.Shinbo and T.Hasegwa

The anomaly detection algorithm focuses on mobile terminals which recon-
nect once and it means that values of vm[2] are used. Please note that since
about 90% of the number of reconnections was once in a 180 seconds sample
period as described at the above, in the rest of paper, we use 2 as a session
count n and omit it from variable names. The other session counts or the sum
of a several session count values can be chosen.

After this, we will explain how to detect an anomaly based on vm[2]. Precisely,
it uses how xm is changed from that of the previous sample periodm−1. xm is the
normalized value of vm[2] with respect to sum of vm[n] as shown by Equation(1).
In Fig.3, xm is calculated as vm[2]/(vm[1] + vm[2] + vm[3]) = 0.4. We call xm as
the “reconnecting terminal ratio” and it is the metric for anomaly detection. A
reason why the normalized value used for the metric is that it is not sensitive to
a change of the number of total sessions.

Before explaining how to use xm for an anomaly detection, we defines two
values ym and y′m. ym in Equation(2) is the exponential average [4] of xm, and
y′m in Equation(3) is the square of exponential average of xm. The α is used for
calculating exponential average in Equation(2) and (3). To decide the α, we need
to decide the time-window tw and the sample period p. The time-window means
that xm values before tw get lost in oblivion, and we decide one day as tw (one
day equals to 86,400 seconds). p is defined as 180 seconds from the beginning of
this section, and thus α is calculated as around 0.002 (= p/tw).

Equation(4), (5), (6) and (7) are used for the anomaly detection based on
xm. We define the condition of an anomaly detection as that a difference gm is
more than a threshold tm shown as Equation(7).

– gm is a difference between the current xm and the exponential average of
ym−1.

– We choose the threshold tm based on the standard deviation σm. Equation(5)
shows that σm is calculated using the exponential average ym and y′m calcu-
lated by Equation(2) and (3). The threshold tm is calculated by k times as
the standard deviation σm shown as Equation(6). The standard deviation
σm means a possible range of a difference between xm and the exponential
average ym−1 in normal case at the sample period m. Our algorithm detects
an anomaly when the difference gm is more than k times of the possible
range.

xm =
vm[2]∑

i=1,∞ vm[i]
(1)

ym = α× xm + (1− α)× ym−1 (2)

y′m = α× x2
m + (1− α)× y′m−1 (3)

where α = p/tw

gm = abs(xm − ym−1) (4)



An Empirical Study on Anomaly Detection for Software Failures 9

σm =
√
(y′m − y2m) (5)

tm = k × σm−1 (6)

gm > tm (7)

Figure 4 shows how anomalies are detected by Equation(7). It shows a time
series of 600 samples of gm and each circle is gm in Equation(4) at each sample
period. It also shows the curve which plots values of tm in Equation(6) where k
is 3. Samples which are over the curve are regarded as anomalies, and they are
marked by cross marks in Fig.4. We will discuss how k is determined in Sect. 4
based on the log data.

0

5000

10000

15000

20000

25000

30000

0 100 200 300 400 500 600

V
a
lu

e

Sample period m

tm, k=3

gm, No anomaly

gm, Anomaly

Fig. 4. Anomaly detection example

3.4 Applying anomaly detection tool to detecting bugs

It is relatively easy to detect anomalies caused by failures of session management
nodes, servers, a radio access network and a core network because these failures
result in many session creation failures. However, we consider that detecting
anomalies caused by a bug (software failure) of mobile terminals is not easy
because all mobile terminals are not always affected by this bug. For example,
when some bug is injected to an application software program which is installed
in a new release of mobile terminals, only such mobile terminals have the bug.
Another example is that all users do not always use an application software
program with a bug. In these cases, only some portion of terminals exhibit
unusual behaviors. Monitoring all session creation request messages results in a
small change of the reconnecting terminal ratio, i.e., xm.

Thus it is necessary to group mobile terminals which are affected by the same
bug and then to calculate a change of the reconnecting terminal ratios for the
groups of mobile terminals. However, it is not clear how mobile terminals are



10 H.Shinbo and T.Hasegwa

grouped. In Sect. 4, we will study empirically what kinds of the groups are useful
by analyzing 6 month log data of session creation request messages.

4 Detection examples of software failures

We analyzed the 6 month log data of session creation request messages in a mo-
bile data communication system. The system which was targeted by our log data
analysis handled over 1.5 million mobile terminals and over 100 mobile terminal
models. A part of the mobile terminals were connected to the system at the same
time, and the mobile data communication services were requested randomly. We
successfully detected anomalies caused by failures of session management nodes
and a radio access network. The details are described in [2]. In this section, we
show how a bug of an application software program by a third-party application
provider on a mobile terminal is detected by our algorithm. The bug makes a
mobile terminal re-send a session creation request message in some conditions.
This section describes how such a bug is detected using our anomaly detection
technique.

4.1 How k for threshold tm is determined

To detect anomalies it is important how k for threshold tm in Equation(6) is
determined. If k is set to a large value, some anomalies may be missed. On the
contrary, if k is set to a small value, many fake anomalies which are not caused
by failures are erroneously detected. The anomaly detection tool is an operations
tool and thus anomalies are reported as “alarms” to operators. It is important
not to report many fake alarms. We set a goal that the number of fake alarms
is less than 0.2 percent. Since one day consists of 480 sample periods, about one
fake alarm would be reported in average per day.

To determine such k, we investigated the relationship between gm and tm
with various values of k. Fig.5 shows one-day result of gm and tm with k=1.5,
2, 2.5, 3, 3.5 and 4 from the log data. The curves in Fig.5 correspond to the
thresholds tm at all sample periods with k=1.5, 2, 2.5, 3, 3.5 and 4. Each circle gm
in Equation(6) corresponds to the difference between the reconnecting terminal
ratio and its exponential average at each sample period. If a circle is over the
curve, it is an anomaly. By counting the number of such circles for the 6 month
log data, we choose 3 as k such that anomalies are detected at about one percent
of total sample periods.

4.2 How the bug is detected based on reconnections

We apply our algorithm into the 6 month log data. We calculate the reconnecting
terminal ratio xm for all mobile terminals in the system. The anomaly detection
detected anomalies as shown in Fig.6(C). It shows the time-series of gm (calcu-
lated from xm by Equation(4)) and the curve of threshold tm with k=3 during



An Empirical Study on Anomaly Detection for Software Failures 11

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 100 200 300 400

V
a

lu
e

s

Sample period m

tm, k=3

gm

tm, k=1.5

tm, k=2

tm, k=2.5

tm, k=3.5

tm, k=4

Fig. 5. One-day result of gm and tm with various k

40 sample periods. At the sample periods 4 and 24 in Fig.6, values of gm are
over the threshold tm and these points are detected as anomalies.

However, it was not unknown which component’s failure caused these anoma-
lies because there were many candidates of failures causing these anomalies. Al-
though we checked logs of session management nodes, application servers and
equipments in the radio access and core networks, no failure was found. Thus
we suspected that mobile terminals would be affected by a bug of an application
software program on mobile terminals. At this time, since we heard a new release
provided by a third-party vendor for mobile terminals, we assumed that this re-
lease might have a bug. We validated this assumption in the following steps:
First, we found candidates of mobile terminals which might have downloaded
this release. Please note that some of these candidates have not downloaded it
yet. Second, mobile terminals are divided into two groups: (Group A) the group
of such candidate mobile terminals, and (Group B) the group of other mobile
terminals.

Figure 6(A) and (B) show the results for these two groups. Although anoma-
lies are detected in Group A, no anomaly is detected in Group B. As the result,
we consider that this anomaly would be affected by this release and then actually
found the bug in this release of application software program.

This grouping was useful to identify the bug, but this fact implies that the
anomaly could be detected earlier if we monitored only mobile terminals of this
group. In this empirical study, some days passed since the new release of the
software program had been announced. It means that before starting to collect
the log data, the release was announced and many mobile terminals already
downloaded it. If we monitored this group of mobile terminals, this anomaly
would be detected earlier. We consider that the monitoring for anomaly detection
per such groups of mobile terminals is important to quickly detect it.

To validate the above hypothesis, since we do not have the log data before
the new release date, we investigated the relationship between gm and tm with
k=3 for all mobile terminals and the group of them with the bugs (Group A and



12 H.Shinbo and T.Hasegwa

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

V
a

lu
e

Sample period m

(A) Group A

tm, k=3 gm

0

0.01

0.02

0.03

0.04

0.05

0.06

V
a

lu
e

Sample period m

(B) Group B

tm, k=3 gm

0

0.01

0.02

0.03

0.04

0.05

0.06
V

a
lu

e

Sample period m

(C) Total

tm, k=3 gm

Fig. 6. Time-series on gm and tm with k=3

Total is the same as Fig.6) after several days of releasing the patch (the program
of fixing the bug) for the software program. Our assumption is that the number
of mobile terminals with the bug was decreased since some mobile terminals
downloaded the patch to fix the bug and that in this case, the anomaly is detected
in Group A, but it is not detected in Total. If this assumption is correct, we can
detect such an anomaly by focusing on a group of mobile terminals with a bug.
Figure 7 shows the graphs of the relationship after several days of releasing the
patch. Since the circle as gm over the curve as tm with k=3, anomalies occur at
the sample period of 8 and 24 in Group A of Fig.7(A). On the contrary, in Total
of Fig.7(B), there is no anomaly.

0

0.01

0.02

0.03

0.04

0.05

V
a

lu
e

Sample period m

(B) Total

tm, k=3 gm

0

0.05

0.1

0.15

V
a

lu
e

Sample period m

(A) Group A

tm, k=3 gm

Fig. 7. Relationship between gm and tm with k=3 after several days of releasing the
patch



An Empirical Study on Anomaly Detection for Software Failures 13

5 Related work

There are two approaches for anomaly detection in communication systems [1]:
traffic monitoring and probing approaches. Our anomaly detection tool takes the
traffic monitoring approach. In this section, we discuss about the major related
work [1].

5.1 Traffic monitoring

Traffic monitoring is a passive scheme whereby messages (packets) are monitored
(observed) to detect anomalies.

Statistics-based monitoring
Statistics-based monitoring means that a management node collects the statis-
tics on packet transmission from nodes such as layer2 switches and routers by
communicating with the nodes (e.g., [5]). Such communication overheads be-
tween the management node and the other nodes are not negligible. Since the
system consists of a number of nodes, i.e., application servers, session manage-
ment nodes and so on, the overhead would be too heady and time-consuming.

Packet capturing-based monitoring
Packet capturing-based monitoring means that some equipment captures trans-
mitted packets and obtains packet transmission statistics. However, since a huge
number of packets (dozens of gigabits per day) are transmitted on a commer-
cial mobile core network, this method has a few disadvantages: Many capturing
points are needed to collect transmitted packets. Besides, the method of trajec-
tory sampling [6] can decrease the number of packets that need to be captured.
However, such a sampling would be prone to miss anomalies.

On the contrary, our tool only captures session creation request messages
(packets) which contain user’s requested services. This means that the number
of captured packets less than the number of all transmitted packets. All session
creation request messages can be obtained at a few (maybe one) capture points
with a few PCs.

5.2 Probing

Probing is an active scheme whereby probes which check whether equipments
are not in failure are sent to the equipments.

Internal probing
Probe programs are installed into equipments such as communication nodes or
application servers, and they check whether the equipments are not in failure [7].
However, such probe programs are difficult to install if the service nodes are not
in networks administrated by operators. In our system, they cannot be installed
on third-party application providers’ servers.



14 H.Shinbo and T.Hasegwa

External probing
A probe tool checks equipments by actually sending test messages to servers [8, 9].
This external probing is not scalable for a large-scale network. Many hours would
be needed to check all components such as application servers, session manage-
ment nodes and mobile terminals.

6 Conclusion

In this paper, we applied an anomaly detection technique to detect anomalies
caused by mobile terminal software failures (bugs). The anomaly detection tech-
nique focuses on user’s behavior to reconnect a service and it detects anomalies
based on how many mobile terminals re-send session creation request messages.
Although this is a light-weight mechanism, it enables to quickly (within a few
minutes) detect anomalies caused by not only communication failures, but also
bugs. This empirical study shows that a bug of mobile terminal was actually de-
tected. We consider that anomaly detection techniques are useful to detect bugs
which were overlooked during a testing period. As far as we know, this paper is
one of the first papers which actually detected a bug in a commercial environ-
ment. Although this paper does not deal with software testing techniques, an
anomaly detection technique is complementary to these techniques and plays an
important role to detect bugs as soon as possible.

In the future, we try a remaining issue about how to find such a group of
mobile terminals which are affected by the same bug. We also consider how to
apply our anomaly detection algorithm to other systems. Since our algorithm
can be applied to session-request based system, for example, we may apply it
easily to the IP Multimedia Subsystem (IMS) [10].

References

1. Marina T. and Chuanyi J.: Anomaly Detection in IP Networks. IEEE Transactions
on signal processing, Vol. 51, No. 8, pp. 2191–2204. (2003)

2. Hiroyuki S., Satoshi K., Hideyuki K., Teruyuki H. and Hidetoshi Y.: A scheme for de-
tecting communication abnormality in mobile core networks based on user behavior.
The 12th International Symposium on Wireless Personal Multimedia Communica-
tions (WPMC 2009). (2009)

3. Sumaru N.: Experimental Study on User Behavior Analysis by Keylogs of Cellular
Phone (in Japanese). IEICE 5th Workshop on Brain Communication. (2008)

4. NIST/SEMATECH: e-Handbook of Statistical Methods.
http://www.itl.nist.gov/div898/handbook/, Sect.6.4.3.1. (2006)

5. Case J., Fedor M., Schoffstall M. and Davin J.: Simple Network Management
Protocol (SNMP). RFC1157. (1990)

6. Duffield N.G, Gerber A. and Grossglauser M.: Trajectory Engine: A Backend for
Trajectory Sampling. IEEE Network Operations and Management Symposium 2002.
(2002)

7. Matthias W., Peter U. and Xavier D.: An SNMP based failure detection service. The
Proceedings of 25th IEEE Symposium on Reliable Distributed Systems (SRDS’06).
(2006)



An Empirical Study on Anomaly Detection for Software Failures 15

8. Irina R., Mark B., Natalia O., Sheng M. and Genadv G.: Real-time Problem Deter-
mination in Distributed Systems using Active Probing. IEEE/IFIP Network Opera-
tions and Management Symposium, 2004 (NOMS 2004), Vol.1, pp. 133-146. (2004)

9. Wolfgang B.: Nagios, Second Edition, System and Network Monitoring. No Starch
Press. (2008)

10. Gonzalo C. and Miguel-Angel G.: The 3G IP Multimedia Subsystem: Merging the
Internet and the Cellular Worlds. Wiley (2004)


