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Abstract. High speed IP communication is a killer application for 3rd
generation (3G) mobile systems. Thus 3G network operators should per-
form extensive tests to check whether expected end-to-end performances
are provided to customers under various environments. An important
objective of such tests is to check whether network nodes fulfill require-
ments to durations of processing packets because a long duration of such
processing causes performance degradation. This requires testers (per-
sons who do tests) to precisely know how long a packet is hold by vari-
ous network nodes. Without any tool’s help, this task is time-consuming
and error prone. Thus we propose a multi-point packet header anal-
ysis tool which extracts and records packet headers with synchronized
timestamps at multiple observation points. Such recorded packet headers
enable testers to calculate such holding durations. The notable feature
of this tool is that it is implemented on off-the shelf hardware platforms,
i.e., lap-top personal computers. The key challenges of the implementa-
tion are precise clock synchronization without any special hardware and
a sophisticated header extraction algorithm without any drop.

Keywords: End-to-end Performance Tests, Clock Synchronization Protocol,
Packet Header Analysis

1 Introduction

Providing high performances in the 3rd generation (3G) mobile systems which
have begun being deployed is important for 3G mobile system operators. The
1xEV-DO (1x Evolution Data Only) system based on the specification of
cdma2000 High Rate Packet Data [1] is an example of 3G mobile system and
it uses a special data link protocol [1, 2]. The 3G mobile system operators (in
the rest of paper, we call them just 3G operators) extensively perform inter-
operability tests [3], where end-to-end performances between a mobile terminal
and a server are measured with various environments. In order to detect latent
causes of performance degradations before a commercial service begins, testers
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(persons who do tests) of the 3G operators usually do the two tasks. First, if
performance degradation is observed at the tests, they identify which software at
which network node is the cause of degradation. Second, testers check whether
network nodes process a packet within the predefined duration or not. This
testing is especially important for network nodes on the backbone because they
should process it in a small duration, e.g., hundreds of micro-seconds, to provide
high end-to-end performances.

Since network nodes’ implementations are black-boxes to the 3G operators,
the testers should capture packets at incoming/outgoing links of each network
node with timestamps and then calculate how long each packet is hold at the
network node by comparing the timestamps. However, this style of tests is very
time-consuming because such calculations should be manually performed for all
packets at all network nodes.

In order to automate such testers’ tasks, we propose a multi-point packet
header analysis tool which consists of IP packet header capture devices and
the manager. An IP packet header capture device captures IP packets from a
tapped link, extracts only IP packet headers and records them to its disk with
timestamps. The manager does calculations which the testers manually do by
controlling all the IP packet header capture devices.

The main goal is that it is implemented on an off-the-shelf hardware platform.
Actually we use a lap-top PC (Personal Computer) with a crystal oscillator,
network interface cards and a RAM (Random Access Memory) disk instead of
using expensive commercial packet tester such as IXIA [4]. This style of imple-
mentation contributes not only to reducing costs of testing, but also to increasing
chances of using such tools in various environments.

However, implementing it as user-space software on (lap-top) PCs is not
trivial. There are two key challenges for the implementation. The first and the
most difficult challenge is clock synchronization with scores of micro-second level
precision. Clocks, of which values are used as timestamps, of all PCs should be
synchronized to calculate how long an IP packet is hold by a network node.
Since a maximum holding duration of some network node is less than several
hundred milliseconds, i.e., about 400 micro-seconds, the maximum error among
the clocks should be less than scores of micro-seconds. This precision is not easy
to achieve without special hardware.

The second challenge is recording all IP packet headers to a RAM disk with-
out any drop. Since an IP packet sent by either a server or a mobile terminal is
encapsulated by PPP (Point-to-Point Protocol) and segmented by RLP (Radio
Link Protocol) [1], the boundaries of captured packets do not always correspond
to IP packet boundaries. Although the straight-forward way is to capture all
packets in order to bridge the gap, it is difficult for PCs to record a number
of 30 or 50 byte long packets segmented by RLP to its RAM disk without any
drop.

In this paper, we have developed a multi-point packet header analysis tool
which is useful for end-to-end performance tests over 3G mobile systems. The
contributions of are twofold: a simple and precise clock synchronization protocol
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and a real-time IP packet header extraction algorithm. First, taking advantage
of the fact that clock synchronization need to be maintained only for a test du-
ration which would be less than scores of minutes, we adopt a post-processing
approach where timestamps are synchronized after all IP packet headers are
records. This achieves simple, but precise clock synchronization with the maxi-
mum error of scores of micro-seconds. Second, we design a real-time IP header
packet extraction algorithm specialized for 3G mobile systems by reading as
small number of bytes from captured packets as possible. This algorithm en-
ables to record all IP packet headers to a RAM disk without any drop. These
sophisticated features make this tool so useful that it was used for commercial 3G
packet services, such as 1xEV-DO and BCMCS (Broadcast-Multicast Service)
system [5, 6]. In the tests with this tool, we detected more than 10 software bugs
of network nodes, which were not detected by their vendors.

The rest of this paper is organized as follows: Section 2 describes the overview
of 1xEV-DO system. Section 3 describes the overview of the multi-point packet
header analysis tool. Section 4 and 5 describe the clock synchronization protocol
and the IP packet header extraction algorithm, respectively. Section 6 describes
how the tool is used at the actual tests. Section 7 describes related work.

2 Overview of 1xEV-DO System

Fig.1 shows network nodes and protocols of the 1xEV-DO system. The 1xEV-DO
system provides a high speed IP communication between a mobile access
terminal (called AT in Fig.1) and a server. We define that Forward-link is the
direction from a server to an AT, and Reverse-link is the direction from an AT
to a server. Each network node takes the following role:

– A server is located at the Internet.
– An HA (Home Agent) provides handovers between PDSNs according to the

Mobile IP (MIP).
– A PDSN (Packet Data Serving Node) is used for authenticating/accounting

ATs. It provides an endpoint of a PPP session between a PDSN and an AT.
– A PCF (Packet Control Function) / ANC (Access Network Controller) seg-

ments PPP frames to RLP (Radio Link Protocol) packets and reassembles
RLP packets. RLP provides a reliable packet transfer using packet retrans-
missions.

– An ANTS (Access Network Transceiver System) transmits radio wave.
– An AT (Access Terminal) is a mobile access terminal.

In the 1xEV-DO system, PPP is used to encapsulate IP packets sent by
either an AT or a server. We call these IP packets as end-to-end IP packets.
PPP frames are segmented to 30 or 50 byte RLP packets between an AT and a
PCF/ANC.

Fig.2 shows how end-to-end IP packets are segmented and reassembled by
network nodes and how capsule-headers are used on the Reverse-link of the
1xEV-DO system. The packets are done so on the Forward-link. Encapsulation,
segmentation and reassembly are performed as follows:
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1. An application on an AT makes an end-to-end IP packet. The AT adds a
PPP header to it and segments it to RLP packets.

2. The AT adds the RLP header to each segmented packet (S1 to S3), and
transmits them to an ANTS at a radio link.

3. After each segmented packet is received, the ANTS adds a UDP/IP header
and transmits it to a PCF/ANC.

4. The PCF/ANC removes the UDP/IP header and the RLP header. Then,
the GRE/IP header is added to the segmented packets, and transmits the
packets to the PDSN.

5. The segmented packets are reassembled at a PDSN. The PDSN also checks
whether the IP packet is correctly reassembled or not by a CRC of the PPP
header.

6. The PDSN adds a MIP header to the IP Packet and transmits it to a HA.
7. The HA removes the MIP Header and transmits the IP packet to a server.
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Fig. 1. Network Nodes and Protocols in 1xEV-DO system
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3 Multi-point Packet Header Analysis Tool

3.1 Overview

The structure of multi-point packet header analysis tool is illustrated in Fig.3.
It consists of IP packet header capture devices and the manager. In the rest
of paper, we call the multi-point packet header analysis tool as the analysis
tool, and an IP packet header capture device as a capture device. We implement
them as the user-space software running a PC with a crystal oscillator, network
interface cards and RAM disk.

NotePC with AT

Capture
Device

Capture
Device

Capture
Device

Observation
Point

Manager

Control Network

Multi-point Packet Header Analysis Tool

Capture
Device

Observation
Point

Observation
Point

PCF/ANCANTS PDSN HA

Server

Observation

Point

Fig. 3. Multi-point Packet Header Analysis Tool

Each capture device is a lap-top PC with two network interface cards. One
network interface card is used to tap a link and the other is used to communicate
with the manager. Capture devices are set to tap links between all pairs of
network nodes including a server and an AT. We call tapped links as observation
points. A capture device extracts an end-to-end IP packet header from a captured
packet and records it into its RAM disk with a timestamp when the packet is
captured. On the contrary, the manager controls capture devices and analyzes
all captured IP packet headers collected from them.

3.2 How Analysis Tool is Used?

How this tool is used to analyze a communication flow between the AT and the
server is as follows:
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Preparation for Clock Synchronization
Before the AT and the server start communicating, the manager broadcasts a
packet for synchronizing the capture devices’ clocks to that of one the capture
devices. All capture devices are connected via a broadcast medium such as
Ethernet.

Packet Header Extraction
A tester makes all capture devices start capturing packets from tapped links.
When a packet is captured, each capture device extracts an end-to-end IP packet
header and then records it to its local RAM disk with its timestamp. The time-
stamp is read from the clock of PC which is a crystal oscillator. How the real-
time IP packet header extraction algorithm handles protocol headers of captured
packets will be described in Section 5.

Packet Holding Duration Analysis
After the test communication finishes, the manger collects all headers from all
the capture devices. The timestamps set by individual capture devices are syn-
chronized to the clock of one of the capture device. In other words, all timestamps
are re-written so as to be synchronized to such device’s clock. How clocks are syn-
chronized will be described in Section 4. Then by analyzing timestamps for the
same end-to-end IP packet at difference observation points, a tester calculates
how long each end-to-end packet is hold by each network node.

4 Clock Synchronization Protocol

4.1 Problem Statement

The required precision should be around scores of micro-seconds. This is be-
cause the PDSN and the HA, i.e., backbone network nodes, handle a number
of communication flows between ATs and servers. Usually, these network nodes
should process each end-to-end IP packet within less than hundreds of micro-
seconds. In some system, the average duration of processing a packet is about
400 micro-seconds as described in Section 6. Thus the goal of the maximum error
is within scores of micro-seconds.

In order to precisely explain our clock synchronization protocol, we define
several terms. A clock is a hardware register of a PC and its value is created
from its crystal oscillator. A clock value is how many the crystal oscillator ticks
and corresponds to the elapsed time. We use a time value and a timestamp
interchangeably as a clock value. When a clock value is set to a captured packet,
we call it is a timestamp. A clock frequency is how many it ticks in one second.
Clock synchronization or synchronizing clocks means that difference between
clock values of different capture devices are less than some threshold. For exam-
ple, if the difference is always less than 100 micro-seconds, clocks are said to be
100 micro-seconds precise or the maximum error is within 100 micro-seconds.
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4.2 Hurdles to Prevent Clock Synchronization

The goal of clock synchronization protocol is to synchronize all clocks of capture
devices to a selected capture device, which we call it the master capture device,
within scores of micro-second error. The protocol consists of the two procedures.
First, the manager broadcast a packet informing all capture devices of clock
values being set to 0 (initialization). During the test, each capture device reads
its clock value and sets it as a timestamp to a captured IP packet header. Second,
after the test, timestamps at different capture devices are compensated so that
the clocks are synchronized.

There are two factors which prevent the clocks from being synchronized.

Long-term and Short-term Errors of Crystal Oscillators
A crystal oscillator is not either accurate or stable. Each oscillator’s frequency is
different from the ideal frequency. The difference is called the frequency error and
that in most PCs is accurate to one part in 104 to 106. Besides, its frequency
changes due to environmental factors such as variations in temperature and
supply voltage. Due to frequency errors between two devices, the clock values
are gradually drifting as shown in Fig.4. The x-axis and y-axis show the ideal
time and the time observed at the ideal clock or the actual clock. The ideal
clock means a clock without any frequency error. The dotted line shows how
the ideal clock advances, and the angle is 45 degree. The observed time values
of the actual clock are plotted and they are interpolated to the line using the
least squares method. The angle difference between the two lines corresponds to
the average frequency error. Since this angle or the difference is stable for a long
duration, we call it a long-term error. On the contrary, the plots are not always
on the interpolated line. A short term error is a difference between the observed
time value of the actual clock and the dotted line.
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Non-deterministic Delay of Initialization Packet Transfer
At the initialization, the manger broadcast a packet for setting all clock values
to 0. However, the packet does not always reach capture devices at precisely
the same time. In other words, delay of sending the packet from the manager
to each capture is not deterministic due to several non-deterministic delays: the
time spent by the manager, the delay incurred waiting for access to a physical
interface card, the time needed for a packet from the manager to a capture
device, and the time required for the capture device’s network interface card
to receive and notify the user space software of its arrival. Due to such non-
deterministic delays, the ideal time of capture device is different from that of
the master capture device.

4.3 Design Principles

We set out the two design principles to compensate for the two factors.

Compensating for Clock’s Long-term Error
We assume that the duration of each test is less than 20 minutes. We choose 20
minutes because it is recommended that TCP performance tests should continue
more than 15 minutes. Due to such a short duration, we can assume that a
hardware clock is stable for the duration and that we can ignore the short term
error. By assuming that all clocks are stable, we can easily synchronize the clocks
by compensating for the angle difference from the capture device to the master
one.

Compensating for Non-deterministic Delay with Broadcast
Communication
We compensate for non-deterministic delays using the broadcast media. Capture
devices, which are usually located at an in-house test-bed, are directly connected
each other via a broadcast medium so that a packet sent for synchronizing
clocks are received by all the capture devices at almost the same time.

4.4 Preliminary Measurements of Long-term and Short-term Errors

How the design principles work well depends on how long-term and short-term
errors of actual crystal oscillators are, how stable they are and how the packet
delays of the actual broadcast medium are. Thus we have measured them in the
following experimental conditions:

– A packet tester, e.g., IXIA 400 [4], is used to broadcast a 40 byte long test
packet every second for 20 minutes. The clock’s precision of the packet tester
is 1 PPM (Part Par Million).

– A shared Ethernet hub is used as a broadcast medium.
– Two PCs, which run Linux (kernel 2.4.18), are set at the broadcast medium

and capture the test packets using tcpdump software [7]. Tcpdump runs in
the user space and sets a timestamp to every captured packet.
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– This 20 minutes experiment was performed 10 times and thus 20 measure-
ment results for a clock were totally obtained.

Clock’s Long-term and Short-term Errors
Two typical measurement results are shown in Fig.5. The x-axis is the clock value
(the time value) at the packet tester and the y-axis is the error from the clock
value at the PC (PC1 or PC2) from that of the packet tester. We interpolate
all the errors from the clock values to the lines with the least squares method.
Among the 20 measurement results, 19 measurements show that the clock was
stable for the 20 minutes. This result is shown by the line with caption PC1
in Fig.5. All the errors are almost on the interpolated line. On the contrary,
at one measurement, the clock was not stable, i.e., the clock frequency changes
during the 20 minutes. This result is shown by the line with caption PC2 in
Fig.5. The angle of interpolated line of PC2 changes when 445 seconds elapses
at the packet tester. Since the error of PC2 increases to about 300 micro-seconds
after 20 minutes elapse, it is difficult to make the error at any time less than 100
micro-seconds only by compensating for the angles of the interpolated lines.
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Due to this, we adopt an approach that results of a test during when such
clock unstableness is detected are thrown away and the test is retried.

Besides, we calculate all the short-time errors, i.e., the distances from all the
measured clock values to the interpolated lines. The maximum short-time error
is about 20 micro-seconds. Since the long-duration error would become almost
0 by compensating for the angle differences, this 20 micro-seconds level error
is not a problem to synchronize clocks within the maximum error of scores of
micro-seconds.

Non-deterministic Delay
We cannot correctly measure how long the difference between the delays from
the packet tester to each PC is. However, the above maximum 20 micro-seconds
error includes both the short-term clock error and the above difference. Thus



10 H.Shinbo, A.Tagami, S.Ano, T.Hasegwa and K.Suzuki

it is estimated that the maximum difference is less than 20 micro-seconds. It
means that the differences between start times at different PCs are less than 20
micro-seconds. As the result, the error of clocks would be less than twice as 20
micro-seconds, i.e., 40 micro-seconds during 20 minutes.

4.5 Protocol Details and Performance

This subsection describes the details of the clock synchronization protocol. It is
assumed that there are n capture devices numbered from 0 to n − 1 and the
master capture device is 0.

1. The manager broadcasts m broadcast packets Ps = {Ps1, Ps2, . . . , Psm}
to all capture devices at equal intervals via the broadcast medium.
Each capture device k records the clock values when it received Ps as
ts(k) = {ts1(k), ts2(k), . . . , tsm(k)}.

2. When the test starts, the capture device k reads its clock value and records
it as a timestamp of captured IP packet header. The timestamp of the i th
IP packet header is denoted as tk(i).

3. After the test finished, the manager broadcasts m broadcast packet
Pe = {Pe1, Pe2, . . . , Pem} to all capture devices at equal intervals via the
broadcast medium. Each capture device k records the clock values when it
received Pe as te(k) = {te1(k), te2(k), . . . , tem(k)}.

4. The manager calculates angles of the clock values before and after the test,
i.e., ts(k) and te(k), using the least squares method. If the difference between
the calculated angles is larger than the predefined threshold th such that
Angle(ts(k))−Angle(te(k)) ≥ th , the frequency error of capture device i is
larger than the predefined threshold. The clock of capture device k cannot
be synchronized to the master capture device 0. The clock synchronization
protocol stops. (As the result, the test result would be thrown away and this
test would be re-tried again.)

5. The manager rewrites timestamp tk(i) to tk(i) according to Equation(1),
and ts1(0), tem(0) are the clock values of the first and the last packets re-
ceived by the master capture device. (All timestamps of capture device k
are synchronized to those of the master capture device 0.) This rewrite is
performed for all the capture devices except for the master capture device 0.

tk(i) = ak · tk(i) + bk (1)

where

ak =
ts1(0)− ten(0)

ts1(k)− ten(k)
, bk =

ts1(k) · (ten(0)− ts1(0))

ts1(k)− ten(k)

We applied the clock synchronization protocol to the 10 experiments de-
scribed in Section 4.4. PC1 and PC2 are regarded as a capture device and the
master capture device, respectively. For the 10 experiments, the maximum er-
ror after clock synchronization is about 16.8 micro-seconds for 9 experiments.
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At one experiment, the clock synchronization protocol stops. (This corresponds
to the case that the clock frequency changes after 445 seconds elapse in Fig.5.)
This result shows that our clock synchronization protocol can synchronize clocks
within an error of scores of micro-seconds. This definitely fulfills the tool’s re-
quirement, i.e., the maximum effort within scores of micro-seconds.

5 End-to-end IP Packet Header Extracting Algorithm

5.1 Design Principles

It is not trivial to capture and record all packets in the 1xEV-DO system without
any drop. We should be careful to handle packets at a link between a PCF/ANC
and a PDSN. The PDSN receives packets with GRE/IP headers (we call these
packets as GRE/IP packets) to which an end-to-end IP packet encapsulated
according to PPP by an AT is segmented. Each size of segmented packet is
either 30 or 50 bytes long as shown in Fig.2 of Section 2. It is difficult for an
off-the-shelf PC with tcpdump software to record a number of small GRE/IP
packets into its RAM disk at the link rate of 100Mbps without any drop. Since
many flows between ATs and servers are aggregated at this link, the total traffic
is about 100Mbps. Thus we decide to record only end-to-end IP packet headers
instead of all packets at the link between a PCF/ANC and a PDSN. Please note
that a timestamp at the link between a PCF/ANC and a PDSN is the time
when the last GRE/IP packet is captured.

5.2 End-to-end IP Packet Header Extraction Algorithm

In order to record only end-to-end IP packet headers, we design a real-time
header extraction algorithm. The algorithm is not trivial because boundaries
between PPP frames which encapsulate end-to-end IP packets do not always
correspond to the beginning/end of GRE/IP packets. Besides a PPP header
does not have a PPP payload length and a size of a PPP frame is not the same
as that of an encapsulated end-to-end IP packet due to PPP escape sequences.

The algorithm finds boundaries of PPP frames as small number of accesses to
captured GRE/IP packets as possible. It makes use of the fact that an end-to-end
IP packet header follows just after a PPP header and that the PPP payload is
longer than the end-to-end IP packet by the size of the PPP escaped sequences.
For example, PPP escapes 0x7E to two bytes 0x7D-5E because 0x7E is used as
the Flag Sequence. Thus the algorithm skips reading bytes from the captured
GRE/IP packets while the sum of skipped GRE/IP packet sizes is less than the
end-to-end IP packet size, and then reads bytes from the next GRE/IP packet
on byte-to-byte basis to find a flag sequence of the next PPP frame.

The details of the algorithm are as follows, as illustrated in Fig.6. The algo-
rithm uses variable REMAINING BYTES to skip reading the bytes described
above.
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1. The algorithm captures a GRE/IP packet.
2. Bytes of the captured GRE/IP packet are read on byte-to-byte basis until

finding Flag Sequence (0x7E) of a PPP frame. After finding Flag Sequence,
it goes to 3. Otherwise, it goes to 1.

3. “Protocol” field in the PPP header is checked. If “Protocol” field is IP packet,
it goes to 4. Otherwise, since this PPP frame is not IP packet, it goes to 2
for finding the next PPP frame.

4. It obtains an end-to-end IP packet length by reading an IP packet length
field of an end-to-end IP packet header just after the PPP header. If the
current GRE/IP packet does not include the IP packet length field, the
next GRE/IP packet is read on byte-to-byte basis until finding the IP
packet length field. Then, the end-to-end IP packet length is set to vari-
able REMAINING BYTES.

5. When the next GRE/IP packet is captured, it checks the payload size of
the GRE/IP packet. If the payload size is less than REMAINING BYTES,
the end of current PPP frame does not exist in this GRE/IP packet. In this
case, REMAINING BYTES is decreased by the payload size of this GRE/IP
packet, and it repeats this procedure. Otherwise, since there is the end of
the current PPP frame in this GRE/IP packet, it goes to 6.

6. Bytes of the captured GRE/IP packet are read on byte-to-byte basis un-
til finding Flag Sequence as the end of the current PPP frame. Then, it
puts the end-to-end IP packet header information with this GRE/IP packet
timestamp to a RAM disk, and it goes to 2.

S6
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IP Header

PPP

Header
IP Packet3
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Segmented packets

(=payload of GRE/IP packets)
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gets an end-to-end IP packet 
length from IP header. 

End-to-end IP packets

Skip REMAINING_BYTES
based on the obtained end-to-end IP 

packet length.

Fig. 6. End-to-end IP Packet Header Extraction Algorithm

We have measured performances of our algorithm recording only IP packet
headers and the tcpdump software recording packets. The traffic is collected from
the real 1xEV-DO system. Tcpreplay [8] is used to replay the collected traffic with
various rates. The performance tests are performed using PCs with GbE (Giga
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bit Ethernet) network interface cards. The number of transmitted packets is
7,119,000 (1,228Mbytes), which includes 1,547,000 end-to-end IP packets. Table1
shows the numbers of end-to-end IP packets correctly recorded by tcpdump, and
the numbers of end-to-end IP packet headers recorded by our algorithm. The
performance of our algorithm is better than that of tcpdump. Our algorithm did
not drop any end-to-end IP header even for 120 Mbps traffic. On the contrary,
the tcpdump software dropped some end-to-end IP packets.

Table 1. How many Packets/Headers are recorded?

Traffic 80Mbps 100Mbps 120Mbps
Packet per sec 63kpps 79kpps 96kpps

tcpdump 1546963 1539242 1541213
(99.9%) (99.50%) (99.62%)

Our algorithm 1547000 1547000 1547000
(100%) (100%) (100%)

Note: The percentage means the ratio of how many packets (tcpdump) or headers (our
algorithm) are recorded.

6 Actual Tests with the Developed Tool

We applied the analysis tool to tests of the BCMCS system which provides
multicast packet delivery to ATs using forward-links of the 1xEV-DO system.
The network nodes and protocol stacks are those of Fig. 1 except for that MIP
and HAs are not used. Important requirements to the BCMCS system are that
the number of lost packets should be as small as possible and that every packet
should be processed by the PDSN within hundreds of micro-seconds. The main
objections of these tests are to check whether the PCF/ANC and the PDSN
satisfies the above requirements under the condition that radio-link’s quality is
good and that no congestion occurs at the backbone network.

We conducted about 50 test scenarios in this environment. At each scenario, a
server sends multicast packets to ATs at various sending rates. In order to check
how long each packet is process at network nodes, we set capture devices at the
link between the server and the PDSN (observation point 1), the link between
the PDSN and the PCF/ANC (observation point 2) and the AT (observation
point 3).

During the tests, we found more than 10 software bugs of the PDSN and the
PCF/ANC. The bugs are classified into two bugs. Fig.7 (a) and (b) show typical
examples of these two. Please note that several packets are received by the AT
at the same time in Fig.7 (a) and (b) because such packets are encoded using
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Between 

Server and PDSN

Between 

PDSN and PCF /ANC
at AT

Num Timestamp
#1 18.057512 [s]

#2 18.077513 [s]

#3 18.097514 [s]

#4 18.117515 [s]

#5 18.137516 [s]

#6 18.157522 [s]

#7 18.177521 [s]

#8 18.197521 [s]

#9 18.217524 [s]

#10 18.237525 [s]

Timestamp

18.057828 [s]

18.077814 [s]

18.097887 [s]

18.117819 [s]

18.137816 [s]

18.157890 [s]

18.177821 [s]

18.197818 [s]

18.217890 [s]

18.237831 [s]

Timestamp

24.329193 [s]

24.339208 [s]

24.399295 [s]

The Packet #1 to #4 

are not observed at  

Observation Point 3..

Num Timestamp
#1 26.788076 [s]

#2 26.808077 [s]

#3 26.828079 [s]

#4 26.848082 [s]

#5 26.868082 [s]

#6 26.888084 [s]

#7 26.908085 [s]

Timestamp
26.788469 [s]

26.808437 [s]

26.828401 [s]

26.848446 [s]

26.888460 [s]

26.908521 [s]

26.869917 [s]

#135 29.568257 [s]

#136 29.588258 [s]

#137 29.618265 [s]

#138 29.638267 [s]

#139 29.658268 [s]

#140 29.678269 [s]

#141 29.698271 [s]

29.568667 [s]

29.588627 [s]

29.618704 [s]

29.638577 [s]

29.658639 [s]

29.698620 [s]

29.686023 [s]

Timestamp

33.011773 [s]

33.081875 [s]= =

=

35.715691 [s]

35.785793 [s]

=

Delay

393[us ]

360[us ]

322[us ]

364[us ]

1835[us]

376[us ]

436[us ]

410[us ]

369[us ]

439[us ]

310[us ]

371[us ]

7754[us]

349[us ]

(a) Lost packets (b) Longer delay

Between 

Server and PDSN

Between 

PDSN and PCF /ANC
at AT

Observation
Point 1

Observation
Point 1

Observation
Point 2

Observation
Point 2

Observation
Point 3

Observation
Point 3

Fig. 7. Packet sequences with typical bug cases

some FEC (Forward Error Collection) method and these packets are decoded at
the same time by the AT.

Lost packets at the PCF/ANC
At some scenario, we observed packet losses at the AT even if there is no con-
gestion in the network. Fig.7 (a) shows the outputs of the analysis tool, i.e., the
timestamps of the multicast packets (these are end-to-end IP multicast packets)
at three observation points. We easily knew that the multicast packets were lost
between the observation points 2 and 3. It means that they were lost either
at the PCF/ANC or the ANTS. Then we identified that they were lost at the
PCF/ANC by analyzing the communication logs of the PCF/ANC. Finally, after
talking with its vendor, we found that the PCF/ANC had a software bug such
that multicast packets are lost with a specific condition.

Longer Duration of Processing Packets at PDSN
At another scenario, the test seemed to be successful because all the multicast
packets were correctly received by the AT. However, we observed two multicast
packets (Packet #5 and #140 in Fig.7 (b)) went through longer delay than one
millisecond between the observation points 1 and 2 although most packets did
about 400 micro-second delays. We identified that the longer delay occurred
at the PDSN and asked its vendor to identify the reason and fix the problem.
Finally, we knew that this was caused by the software bug of how the PDSN
handles packets at its memory.

Although the vendors intensively tested the software for the PCF/ANC and
the PDSN, they missed these bugs. It means that the analysis tool was useful to
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detect such bugs. Especially, in the case of Fig.7 (b), we would miss the software
bug unless we used the analysis tool.

7 Related Work

As far as we know, there is no testing tool which captures packets or packet head-
ers with synchronized timestamps at multiple observation points. Besides, there
would be no study for extracting IP headers from packets which are transferred
on 3G mobile systems.

On the contrary, clock synchronization is studied for distributed systems.
The most straight-forward way is to use the Global Positioning System [9]. Many
products are commercialized using the pps (plus per second) signal of GPS and
synchronize their clocks with an absolute precision of better than 10us to the
absolute time, i.e. UTC (Universal Time, Coordinated). However, the GPS re-
quires a clear sky view, which is usually unavailable in our test-bed environments.
There is another product, which synchronizes clocks with a precision of better
than 1 nano-second using common timing signal [10] among nodes only which
are located within a few meters. This requirement is not fulfilled in our test-bed
environment and this product requires a special and expensive hardware.

Over the years, many clock synchronization protocols, which would be imple-
mented based on the software, have been designed for distributed system [11–16].
NTP [11] and SNTP [12] are most prominent clock synchronization protocols
used in Internet; however, their several millisecond level precision is not enough
for our testing tool. IEEE1588 [13] is a clock synchronization protocol over lo-
cal area networks. Although this precision is one micro-second level on some
types of local area networks, it is vulnerable to random delay on local area
network switches which would be used as the broadcast medium of our testing
tool. Some clock synchronization protocol implementations [14, 15] achieve sev-
eral micro-second precision. However, these optimize firmware of MAC (Media
Access Control) protocol and require some hardware support.

Our clock synchronization scheme is similar to the clock synchronization
protocol of [16] in that the both use the broadcast medium for compensat-
ing non-deterministic packet delays. However, taking advantage of the fact that
clock synchronization needs to be maintained only for a testing duration, which
would be just less than scores of minutes, we adopt a post-processing approach
where the timestamps are synchronized after all IP packet headers are captured
with timestamps. This makes our scheme far simple and efficient from the clock
synchronization protocol of [16].

8 Conclusion

This paper has proposed a multi-point packet header analysis tool for end-to-
end performance tests for 3rd generation (3G) mobile systems. This tool extracts
end-to-end IP packet headers with synchronized timestamps at multiple observa-
tion points. The synchronized timestamps at multiple observation points enable
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testers to identify a reason of performance degradation and to check whether each
network node processes a packet within a predefined threshold. We implemented
this tool on off-the-shelf hardware platforms, i.e., lap-top personal computers,
which enable this tool to be used widely for various purposes. The notable fea-
tures of this tool are scores of micro-second precision in clock synchronization
without using any special hardware and a sophisticated end-to-end IP packet
header extraction algorithm without any drop. Due to these features, this tool
is so practical and useful that it was used for testing a few commercial 3G mo-
bile systems. Especially, scores of micro-second precision in synchronized clocks
was useful to detect more than 10 bugs of some network nodes which were not
detected by their vendors. This was helpful to launch the commercial 3G ser-
vices on time. Besides, although this tool is developed for testing 3G mobile
systems, the main functions of multi-point packet capture and scores of micro-
second level clock synchronization are so general that this tool is used for testing
various IP-based communication systems.
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