
Built-in Data-flow Integration Testing in
Large-Scale Component-Based Systems ?

Éric Piel, Alberto Gonzalez-Sanchez, and Hans-Gerhard Gross

Software Technology Department, Delft University of Technology, The Netherlands
{e.a.b.piel, a.gonzalezsanchez, h.g.gross}@tudelft.nl

Abstract. Modern large-scale component-based applications and ser-
vice ecosystems are built following a number of different component
models and architectural styles, such as the data-flow architectural style.
In this style, each building block receives data from a previous one in
the flow and sends output data to other components. This organisa-
tion expresses information flows adequately, and also favours decoupling
between the components, leading to easier maintenance and quicker evo-
lution of the system. Integration testing is a major means to ensure the
quality of large systems. Their size and complexity, together with the
fact that they are developed and maintained by several stake holders,
make Built-In Testing (BIT) an attractive approach to manage their in-
tegration testing. However, so far no technique has been proposed that
combines BIT and data-flow integration testing. We have introduced the
notion of a virtual component in order to realize such a combination.
It permits to define the behaviour of several components assembled to
process a flow of data, using BIT. Test-cases are defined in a way that
they are simple to write and flexible to adapt. We present two implemen-
tations of our proposed virtual component integration testing technique,
and we extend our previous proposal to detect and handle errors in the
definition by the user. The evaluation of the virtual component test-
ing approach suggests that more issues can be detected in systems with
data-flows than through other integration testing approaches.

1 Introduction

The component paradigm and the service paradigm advocate to the rapid con-
struction of large-scale systems-of-systems. Both help facilitate the integration
of third-party building blocks through fostering loose coupling, and ameliorating
system maintenance to the extent that it can be carried out online. Many large-
scale systems-of-systems, such as situational awareness systems, support-systems
of all kinds, swarm robotics, and distributed sensor and actuator networks, em-
ploy powerful data sharing and event processing techniques and middleware plat-
forms. Such event- and data-driven systems or parts thereof are more naturally
? This work has been carried out as part of the Poseidon project under the responsi-
bility of the Embedded Systems Institute. This project is partially supported by the
Dutch Ministry of Economic Affairs under the BSIK03021 program.



expressed through event processing, data-flow processing, or message-driven ar-
chitectural styles, implemented on top of, or being part of the component and
service platforms. The size and complexity of these large systems, together with
the fact they are developed and maintained by multiple parties, make the quality
assurance activities focus not only on unit testing but also on the validation of
the adaptation and integration process [6, 8].

Built-In Testing (BIT) [9, 20, 18] is a powerful method for validating the
adaptation and integration of systems-of-systems of such dynamic and hybrid
nature. BIT prescribes components to be equipped with the ability to check
their execution environment, and the ability of being checked by their execution
environment [10], before or during runtime. BIT also aims at a better main-
tainability of testing aspects surrounding each component. The responsibility in
validating the components’ environment is distributed and assigned to the com-
ponents themselves which makes this method viable to assessing the integration
and also the evolution of dynamic systems-of-systems.

The objective of integration testing is to uncover errors in the interaction
between components or services, and their execution environment, i.e., other
components and services, or the underlying middleware platform. The integra-
tion of a system must be assessed in its final context, because typically, such
systems are extremely difficult to duplicate for testing. The integration must
also be re-validated along with every reconfiguration, when services are replaced
and reconfigured, or the system’s topology is changed in any kind, in order to
address evolving requirements.

Various techniques to support integration testing of systems following the
event- or data-processing architectural styles exist, but in this paper we con-
centrate on testing data-flows as units. In earlier work, we have introduced the
concept of a virtual component [16] that combines integration testing of data-
flow-type systems with the advantages that built-in testing offers. In this article,
we extend this work with the following contributions:

– We extend the component enumeration algorithm with additional functions
to detect ill-formed flow definitions, allowing efficient development and main-
tenance of the tests.

– We present approaches for realizing the virtual component testing technique,
and demonstrate how this should be done in two different platform styles,
namely, client-server and publish-subscribe styles.

– We evaluate our proposed method using part of a concrete industry-scale
surveillance system-of-systems [5, 19].

The paper is structured as follows. In Section 2, some background and re-
lated work is presented, including the concept of a virtual component. Section 3
introduces the new algorithms and methods to extend the concept of virtual
component. A description of the implementation of the concept for two different
component frameworks is outlined in Section 4, and the assessment of the effec-
tiveness of virtual components for integration testing of typical data-flow-based
systems is presented in Section 5. Finally, Section 6 concludes this article and
presents future work.



2 Background and Related Work

Integration testing. In order to validate complex systems, one primordial
step consists in performing unit testing on different levels of granularity of the
system, such as module-level, class-level, component-level, etc. Even if every
unit respects its own specification and has been successfully unit tested, there
is the chance of residual system defects through component coordination issues
and adaptation [1]. A common approach to ensure component integration is
integration testing [6, 8], that validates the interactions between sets of black-
box components [22]. In contrast to full system testing, it concentrates on subsets
of the system to be assessed in combination, allowing early checking, e.g., before
all components are available.

Data-flow and call-reply architectural styles. Architectural styles [17] de-
termine the assembly and “wiring” of components in a system, and have con-
sequences for integration testing. Our systems of interest are aimed at high-
volume data processing, and organised following the data-flow paradigm, also
termed as “message-driven architectures”, “data push technology”, or “publish-
subscribe architectures”. They all have in common that components receive input
data, process it, and generate output data for other, subsequent components in
a so-called “flow”. Typically processing is performed asynchronously. Another

AB
C

D

(a) Data-flow

A

B

C

D
(b) Call-reply

Fig. 1: Examples of two typical architectural styles.

architectural style is the “call-reply” style typically found in service-oriented ar-
chitectures. Here, client components are “aware” of their servers. Data is passed
to the server, processed, and passed back to the client, mostly in a synchronous
fashion. In data-flow styles, components do not have such “mutual awareness,”
which is significant for testing. Figure 1 illustrates these two styles. Both are suit-
able for the same application, although the implementation of their components
would be different. For instance component A in the call-reply organisation must
be “aware” of the component B, of the data it receives, the returned information,
and even what to do next with this result.

The main advantage of the data-flow organisation is that the system archi-
tecture follows closely the data processing organisation of a physical system.



This helps the designer to translate a data-flow into an implementation. It also
facilitates concurrent execution of components without blocking and waiting,
and components are loosely coupled, since they have no mutual behavioural
expectation (contract), but only a defined data type.

Built-In Testing. Built-In Testing (BIT) is a useful paradigm in order to sim-
plify the testing of dynamic component-based systems [18, 20] and to improve
the maintainability of the tests. BIT has two facets. First, components can be
equipped with special ports supporting their testability, e.g., in order to control
or observe internal state, or for separating testing and nominal operations [18]
(test awareness). Second, the direct association of test-cases with the compo-
nent [7] facilitates maintainability and traceability of test operations by keeping
the test-cases and the test material closely linked together with the compo-
nent [2]. This associates tests with the component throughout its life-cycle and
supports re-assessment in various operation contexts. It also permits distribution
of the test responsibility to the components themselves, maintaining indepen-
dence of components and fostering their loose coupling, by decentralising both
the definition of the tests and the testing.

checkShip

Visualiser
MonitorTest
BaseTest

MonitorTest Monitor

checkShip

TestManager

TCAC TSC

Fig. 2: Built-in Integration Testing – Example.

Several approaches have been proposed to use BIT also for integration test-
ing. In most approaches, each component carries out all or part of its integration
testing itself [4, 7]. The component’s requirements on its execution environment
(implicit execution context), and on other associated components (explicit ex-
ecution context) can be validated using test-cases contained in the component,
or delivered as test component in its own right [9]. We call this pattern provider
integration testing. A typical example of such integration testing is depicted
schematically in Figure 2. The Visualiser component tests its own integration
with the Monitor component on which it depends. The Visualiser contacts the
TestManager (one of the BIT facilities) through the Acceptance port (AC). Test
Manager “knows”, through the TC port, where to find the MonitorTest (a test
service assessing the Monitor), and it notifies the Monitor that it will be tested,
through TSC. Test results are reported back to the Visualiser. Because test-
ing is performed from a component’s perspective, it is only possible to validate
the underlying platform and the components on which it depends directly. For



the call-reply architectural style this kind of testing is sufficient. However, in a
data-flow organisation, integration testing would be very limited.

Data-flow integration testing using virtual components. Earlier ap-
proaches were proposed for integration testing in data-flow architectural styles.
Bertolino et al. have presented a method [3] to determine in a data-flow-based
system which flows are the most relevant for assessing component integration.
Their study deals with the combinations of concurrent executions of components,
which is useful to determine a test goal. Unfortunately, they do not elaborate
upon how this could be done.

Paul [15] describes “end-to-end” testing, a technique for assessment of system
behaviour with respect to inputs and corresponding expected outputs. This is not
an integration testing technique, but a system-level testing technique focusing on
system use cases which does not address distribution of tests in large systems.
Similarly, Jorgensen [13] describes “thread testing” as a series of inputs and
expected outputs to validate the functional behaviour at the system level. It
only focuses on the theoretical design of the test cases, and does not treat their
implementation on any specific platform.

Another technique for integration testing relies on the generation of a large
number of random input-data sequences to probe the various possible combina-
tions of executions [21]. Each sequence is considered one test-case. Drawbacks
are the sheer number of test-cases necessary to execute this technique, and that
the oracle must fit any randomly generated sequence. Therefore the oracle only
detects generic fault behaviour such as non-handled Java exceptions. Alterna-
tively, the oracle can be based on a “golden” implementation, but this exists only
in mature projects. There is no possibility to explicitly test typical component
protocol interactions.

In our earlier work [16] to test data-flow-based component systems and ser-
vices, we introduced the notion of virtual component, which permits the de-
termination of one data-flow (or a part of a flow) through a system, and its
representation in terms of a component in its own right, i.e. the virtual com-
ponent. The data-flow may involve several physical components and represents
them and their data exchange as one single “unit of high cohesion and low cou-
pling with contractually specified ports for external communication”. Testing
this representation is then equivalent to integration testing the data-flow and its
components associated. Here, BIT can be used to maintain tests for each flow,
by associating them with the corresponding virtual component, in the same way
as outlined above, in Figure 2. Consequently, tests can be managed indepen-
dently in separate parts of the system. The component framework can set up
the tests associated with the virtual components, execute the tester components,
process and report any issues found, and maintain a history of testing along the
evolution of the system.

Compared to a composite component, which is made of sub-components and
is present in hierarchical component models [14], a virtual component does not
influence the topology of the system. It is only a logical entity used for testing.



Each virtual component is independent from any other one, so they can overlap,
corresponding to the presence of several data-flows involving the same physical
components. For instance, in Figure 3, two virtual components V C1 and V C2
are defined to represent the two data-flows B, C, E and B, D, whose integration
can be tested independently.

VC2 AB
C

D

E
n

o

q

r

VC1

m

p

p

o

n

n

q

Fig. 3: Example of two virtual components.

Another difference between a virtual component and a composite component
is the way it is defined. The latter is defined by the set of enclosed compo-
nents, and the connections between its interfaces and the interfaces of the sub-
components. A virtual component is only defined by the connections between its
interfaces and the interfaces of the sub-components (situated on the edges of the
flow). The set of components it encloses is computed dynamically according to a
specific algorithm. This permits to adapt easily to the evolution of the system:
when a component is added or removed, or when a connection is modified, if the
modifications are not on the edges of the flow, the virtual component adapts to
the new data-flow automatically. This is a strong advantage in the context of
large systems where the virtual components are created by the testers while the
architecture is modified by the developers. For example in Figure 3, the virtual
component V C1 is defined to represent the data-flow going from component B
to E. It is defined only by the input port m of B, and the output port p of E.

The algorithm to compute the set of components enclosed in a virtual com-
ponent has been defined [16] so that in the typical cases its result is “intuitive”.
The set C of components contained in a virtual component specified by its sets
of inputs Pi and outputs Po is computed as follow:

1. The set Cp is computed by iteratively adding all the components predecessor
to Po. For each output port, the component owner of this port is added to
the set. For each newly added component, the input ports which are not in
Pi are followed, and the component generating input for this port is again
added to the set Cp. This is repeated until the set has not been extended.

2. The set Cs is computed similarly by iteratively adding all the components
successor to Pi.

3. C is defined as Cp ∩ Cs.

For example, the set of components in the virtual component V C1 of Figure 3,
defined with Pi = {mB} (the port m of B) and Po = {pE} (the port p of E),
is computed by finding the sets Cs, which is {B,C,E,D,A}, and Cp, which is



{E,C,B}. The intersection of these two sets is {B,C,E}, the components in the
data-flow.

As we will see in the next section, in practice, this algorithm is not sufficient
to detect and correctly report errors in the definition of a virtual component,
which can be caused either by a mistake during the definition or by a modification
of the system architecture.

3 Realizing Virtual Components in Component Models

Additional concepts and techniques are required in order to practically use vir-
tual components in real component models. This section gives an overview of
the properties of virtual components, and outlines additional requirements in
order to realize the concepts of virtual components in two concrete component
execution frameworks.

3.1 Detecting Ill-Formed Virtual Components

Virtual components are defined solely via their inputs and outputs. The algo-
rithm to determine which components are part of a flow, and hence a virtual
component, was presented in [16]. In practice, only a limited combination of
inputs and outputs will lead to a meaningful data-flow. Incorrect combinations
can be due to user errors in flow definition, or due to changes in the system
architecture. Such combination can lead to tests validating component interac-
tions not representative of the interactions in the complete system, prevent the
test component to connect to the virtual component, or reveal directly that the
implementation does not conform to the specification. In order to provide a user-
friendly integration testing environment, ill-formed virtual components must be
detected and reported with enough information, so that it is easy to correct or
accept them. In the following, we discuss algorithms to handle most of the issues
in flow definition.

Weak flows. A virtual component should always correspond to a complete set
of component interactions, i.e. incorporate all components that contribute to the
considered flow. However, some components in a flow might receive inputs from
components which have not been defined as being part of that particular flow.
We refer to these flows as weak flows. For example, the flow in Fig. 4, does not
incorporate the input to sC as part of the virtual component. In real systems,
the combined behaviour of the components in the flow will also likely depend
on these inputs unidentified in the virtual component. This might depend on
the particular context of the running system and cannot be determined from
the topology of the system alone. An integration test may fail because of a
poorly defined virtual component, and not because of a fault. Inversely, the test
could pass while in the actual system, with all the inputs, the implementation
behaves wrongly. Generally, weak flows are signs of an oversight from the tester.
Weak flows must be detected and indicated, so that the integration tester may



determine the full test flow. Let us note that this is different for the symmetrical
case with outputs, because not taking into account an output in the test cannot
change the behaviour of the components.

The following algorithm can be used to verify the completeness of virtual
components. Pi is the set of input ports, Po is the set of output ports, Pw is
empty initially, and C is the set of components in the virtual component:

1. For each input of each component in C, add it to the set Pw.
2. For each output of each component, for each of the input ports to which

they are connected, remove the input port from Pw.
3. Remove all inputs of Pi from Pw.

If the Pw is not empty, the flow is weak, and the inputs contained in this set
are the ones causing the weak flow.

AB
C

D

E
n

o

q

r
m

p

p

o

n

n

q

sGs

Fig. 4: Example of a weak flow.

Empty flows. Another problem of a virtual component is that of an empty
flow, as illustrated in Fig. 5: there is no flow from input nD to output pE . Such
ill-formedness appears if an input or an output explicitly part of the virtual
component is not used in component interaction. In Fig. 5, the error is either
the absence of port tF in the virtual component (an error in the test definition),
or the need for component D to also transmit its output to E (an error in the
implementation). Such topologies should not be accepted as virtual component,
and should be reported to the user as an error. The following algorithm permits

AB
C

D

E
n

o

q

r
m

p

p

o

n

n

t
F tq

Fig. 5: Example of an empty flow.

to verify such condition:

1. For each input in Pi, add the component owning it to Cm.
2. For each output in Po, add the component owning it to Cm.
3. Remove from Cm all the components in C.

In case the set Cm is not empty, there is one or more empty flow. Each empty
flow starts or ends with one of the component in Cm.



Parallel flows. The third peculiar topology of a virtual component is parallel
flows, illustrated in Fig. 6, in which the virtual component has been defined to
correspond to two independent flows C,E and D,F . This is likely a sign that
inputs and outputs which were related in the specification are not related to
each other in the implementation. In such a case, the implementation is probably
incorrect. At least, this ill-formedness is an indicator that one large-scale virtual
component could be redefined as several smaller-scale virtual components, which
would be easier to test and to maintain. However, this is not necessarily an issue
caused by the tester, it could be intentional, for example, to validate the timing
between the two flows. This is why only a warning should be displayed in such a
case. Detecting parallel flows is equivalent to the connected component problem

AB
C

D

E
n

o

q

r
m

p

p

o

n

n

t
F tq

Fig. 6: Example of a parallel flow.

in graph theory, which may be addressed through techniques described in [11]:

1. Select i, one of the inputs in Pi, and remove from Pi.
2. Initialize Cc as an empty set.
3. Starting from the component owning i, recursively add all the successors

and predecessors to Cc. For each of these components remove all their input
ports from Pi.

4. Add Cc to the set of sets SCc.
5. Repeat until Pi is empty.

If SCc contains more than one set, then the virtual component contains parallel
flows. Each of the flows corresponds to one of the sets in SCc.

3.2 Extending the Component Model

For a component framework to support virtual components, its API and im-
plementation must be extended. Here, we describe the amendments in general
terms, as most component models provide comparable concepts supporting these
modifications. Two concrete implementations are described in Section 4.

Typically, an API provides functions to start and stop components, to bind
and unbind their interfaces – unless connections are implicit and components are
automatically linked when using the same data type – and to add components
to and remove components from the framework. The most essential change to
be introduced in the component model is the concept of a “virtual” component.
This adds to the concepts of composite and primitive types of most component
models. In hierarchical frameworks, we propose to associate each virtual compo-
nent with the composite component that is parent of all components comprising a



data-flow. In other words, each composite component has a set of virtual compo-
nents to test several interactions between its sub-components. This organisation
permits to follow the component and BIT paradigms naturally. That is, compo-
nents are black boxes, and their development and deployment are separate. This
allows for a scalable virtual component approach. Every component will have
its own integration testing facility, which is also managed independently. Later
in the development and testing process, additional virtual components can be
associated with larger composite components to validate the global composites
of these building blocks.

A new interface is added to the composite components for adding/removing
virtual components. Note that composite components have already an interface
to add/remove components but it is better not to use it, in order to avoid mixing
testing functionality with nominal functionality. Using a separate interface to
manage the virtual components means that only the parts of the framework
involved with testing must be updated, and it ensures that they are completely
transparent for the normal existing components.

The new component type “virtual” shares many of the typical component in-
terfaces, but also has its own characteristics. The BIT interface used to associate
and run test-cases can be realized exactly like in the other component types. The
BIT interface used to notify a component of the fact that it is tested is also iden-
tical to the normal interface. It notifies all components contained in the flow.
Similarly, the interface to request the start and stop of a component passes the
requests to the components contained in the flow. This is used to initialise and
end the components during a test. The interface found in composite components
used to add and remove sub-components is not necessary for the virtual compo-
nents, as components are automatically enclosed. Nevertheless, the functionality
to list the sub-components inside a component is replicated in order to retrieve
the information about which components are contained in a flow.

In composite components, the bind and unbind interface allow to associate
the external interfaces with the sub-component interfaces. This API can be ex-
ploited to specify the inputs and outputs of the virtual component, with the
idiosyncrasy that this specifies the actual shape of the virtual component. It
should be noted that if multiple modifications to the connections are required
and successively applied, the topology of the virtual component might be tempo-
rary incorrect (as specified in Subsection 3.1). Therefore, unless the framework
supports to group modifications in an atomic way, the construct verification
cannot be done directly after a change. The verification should be done either
whenever the set of contained components is queried, or just before the test-cases
associated with the flow are executed.

4 Implementation

In the context of this research, the concepts of virtual components have been
implemented in two different component models. One adaptation was performed



<virtual-composite name="flowRawData2FilteredData">
<interface name="in" role="server" signature="AISin"/>
<interface name="out" role="client" signature="AISin"/>
<binding client="this.in" server="ais-listener.ais-in"/>
<binding client="filter.ais-out0" server="this.out"/>
<test provider="JUnitProviderFlow" name="RawProcess" definition="RawProcess"/>

</virtual-composite>

Listing 1.1: Definition of a virtual component with a test-case in an ADL file.

for the OpenSplice1 framework, which is a non-hierarchical publish-subscribe
platform in which components are not explicitly connected, but are automati-
cally assembled when they share common “topics”. This adaptation is not freely
available due to confidentiality restrictions. The other adaptation was performed
for our Atlas component framework, which is based on the Fractal component
model2. This framework supports hierarchical structure, has explicit connec-
tions, and permits reflective view on the components. It is freely available from
our website3, including the virtual component extension.

The Atlas extension introduces a new component type to represent virtual
components, as well as the interfaces discussed above. Because the framework
is fully aware of the virtual components, tests can be executed automatically
during initialisation of system. Moreover, if the system is modified, the notifica-
tion of changes are passed to the virtual component infrastructure, which will
automatically reset the test status for the data-flows affected. The instantiation
of the test component and its binding and unbinding are also handled automat-
ically by the framework. In case a test-case fails, the failure is displayed on the
framework console, and the system cannot be started until this is fixed.

The Architecture Description Language (ADL) used by Atlas for describing
the system has also been extended to support these new concepts. Listing 1.1
presents an example of a virtual component expressed in this ADL. This flow
is taken from the example system described in Section 5. The interface tags
define the interface of the component. The binding tags define the beginnings
and ends of the flow, by identifying the specific components at its edges. Finally,
the test tag denotes the test component containing the test-cases for this flow.
The JUnitProviderFlow is a component belonging to the BIT infrastructure
of Atlas, which is in charge of handling the execution of test components.

Test-cases for data-flow integration testing are defined in terms of a JUnit
class, provided that this class also implements the complementary interfaces of
the flow. An excerpt of such a class is displayed in Listing 1.2. This corresponds
to the flow mentioned in the previous listing, with one test-case oneMessage

which validates the correct transmission of a message through the flow. The
method init() is executed just before the test-cases are executed (and after
the component has been created and bound to the flow). The method AISin()

corresponds to the input interface of the testing component.

1 http://www.opensplice.org
2 http://fractal.ow2.org
3 http://swerl.tudelft.nl/bin/view/Main/Atlas



public class RawProcess implements AISin, BindingController {
private AISin myServer;
private List<AISMessage> AISrcv;

@Before
public void init() {
AISrcv = new ArrayList<AISMessage>();

}

@Test
public void oneMessage() throws NoSuchInterfaceException {
AISMessage mes = new DynamicAISMessage("32w@HUP0380@O‘s@1T1P06", 5925L);
myServer.AISin(mes);
assertEquals("Message not received.", AISrcv.get(0), mes);

}

public void AISin(AISMessage m) {
AISrcv.add(m);

}
...

}

Listing 1.2: Definition of a test-case for validating the flow.

The OpenSplice implementation follows a different approach, mainly due
to the lack of component hierarchy, and of centralised management functions
(components can start and stop completely independently from the rest of the
system). A special program was created to handle all the virtual components of
a given system. Following the definition of the flows given in separate files, and
the information about which components have been modified (to be provided by
the user, because automatic notification of changes is not available), the program
establishes the flows to be tested. Each flow is associated with an OpenSplice
component written as a JUnit class. This contains all the test-cases for test-
ing the integration of all components associated with the flow. The framework
automatically connects components with compatible topics, so the test-cases,
integrated as yet another component, are directly attached with the right flow.
It is important to note that we use existing operations of the component model
in order to implement these mechanisms.

In the next section, we use the Atlas implementation to evaluate with a real
system to which extent the advantages of the virtual component approach pay
off during integration testing.

5 Evaluation

In addition to performing a feasibility study, the goal of this evaluation is the
assessment of whether the virtual component approach improves the failure de-
tection rate during integration testing compared to the provider testing approach
presented in Section 2. In order to being able to compare the performance of the
two approaches in terms of failure detection, mutations are introduced in the
system and for each of them, integration tests are executed, according to the
principles of the two approaches. The evaluation is performed on a part of a
maritime surveillance system used as case study.



ClientRcv

World LS Filter

Plotter

Warning
MergerRcvAISin
MergerAISinAISin

Monitor

ReceivedInDisplay

Kml

RawProcess

TrackProcess

Fig. 7: Architecture of the surveillance system used, with 3 virtual components.

Study Subject. Before going into more details on the evaluation, we briefly
present the case study system. The surveillance system receives information
broadcasts from ships, called AIS messages [12], and it processes them in order
to form a situational picture of the coastal waters. The (simplified) architec-
ture of this system is displayed in Fig. 7. The World component simulates the
ships transmitting data, by replaying AIS messages recorded from reality. The LS
component receives all AIS data from the antennas physically spread along the
coast. The Filter component suppresses duplicate messages, because some re-
ceivers cover overlapping areas. The Merger acts as a temporary database of AIS
messages, and client components can consult it to receive tracking information
of a ship. The clients must send typical database query requests for retrieving
the ship tracks. They are connected following a call-reply architectural style.
However, at a high level of abstraction, they are organised according to a data-
flow architectural style. The Monitor and the Plotter are both clients of the
Merger. The former detects discrepancies in the data, while the latter displays
the ship tracks on the screen of the command and control centre (by sending
vector drawings to the actual display system). The components are implemented
as Atlas components in Java.

Test-cases. Three virtual components were defined, i.e., RawProcess,
TrackProcess, and ReceivedInDisplay (Fig. 7). These correspond to three
data-flows each of which has a defined expected behaviour. Every flow (i.e., each
virtual component) is associated with several test-cases used to validate the de-
fined behaviour. For example, one of the test-cases of ReceivedInDisplay sends
AIS messages from two ships and verifies that instructions to display both ships
are sent. For the provider integration testing, the components are also equipped
with test-cases for assessing the correct responses of the components on which
they depend. As an example, the LS component has a test-case which transmits
some AIS messages and validates that no exceptions happened. The Plotter
component comes with test-cases validating the interpretation of the database
protocol by the Merger component.

Component Mutation Testing. Mutation testing is a technique in which
faulty programs, i.e., the mutants, are generated in order to check the efficiency



of a test method to uncover failures. A mutant is a semantic modification in the
implementation of a component introducing a fault.

We had these mutants generated through the µJava4 tool for the Merger and
Filter component. Each of the mutations was applied separately, providing a
different version of the system, for which both integration testing methods were
executed. “Equivalent” mutants, i.e., modifications that cannot lead to a fault
because the system performs nominally as if it was the original version, were
sorted out manually. Out of the 181 generated mutants, 94 were deemed as non-
equivalent and included in the study. When a test does not find any errors, i.e.,
the mutated system is considered to operate fine, the result is termed “positive”.
When an error is reported, the result is termed “negative”. “False positives” are
the mutants which are said to be working fine, although it was manually verified
that they behave outside of the specification. “False negative” represent cases for
which a correct system is classified as having an error.

All tests pass when applied to the original (non-mutated) system. Table 1
summarizes the integration testing results obtained when using the provider and
virtual component testing approaches. None of the tests applied has produced
false negatives. This had been expected because all the tests passed on the orig-
inal system. The provider integration testing approach is only able to trigger a
few failures, i.e., 6% of the faulty mutants detected. In contrast, the virtual com-
ponent integration testing approach is able to detect a much larger population
of the faulty mutants, i.e., 49%. All the failures triggered by the provider testing
approach are also identified by the virtual component testing approach.

Source True
positive

False
positive

True
negative

False
negative

Total

Provider
testing

Filter 36 26 2 0 64
Merger 51 62 4 0 117

Virtual
component

Filter 36 7 21 0 64
Merger 51 41 25 0 117

Table 1: Mutation test results.

Architecture mutation testing. To evaluate the detection of faults in the
architecture, we seeded faults in the case study system by changing or removing
connections between components. All the 5 mutated configurations had signifi-
cant incorrect behaviour. The provider testing method detected 2 of the 5 faults,
while the virtual component method detected all the 5 faults. More precisely, 3
of the faults were directly detected by the well-formedness checks, therefore not
even requiring the execution of the test-cases.

Discussion. First, these results confirm our initial supposition that the virtual
component integration testing approach is successful in detecting failures in the
specific context of a data-flow architectural style. Second, the results suggests
4 http://cs.gmu.edu/~offutt/mujava/



a much better capacity of detecting problems compared with a more “tradi-
tional” or “typical” integration testing approach. It should be noted that the
tests were written without knowledge of the mutants. The creation of additional
tests specifically crafted to detect the mutants, would have probably increased
the true negatives.

Unit tests for the two mutated components were able to detect 75% of the
bugs introduced, and 100% would probably be achievable with more elaborate
test suites. However this would not be a fair comparison. Integration testing
can only detect bugs in program sections which are executed, and therefore
cannot detect all the mutations. Moreover, the integration testing also targets
faults that are due to different interpretations of a same specification, or due to
mistakes in the architecture of the system. This cannot be simulated by mutation
testing alone, and unit testing cannot detect such issues, as highlighted by the
architecture mutations, which none of the unit tests would have revealed.

6 Conclusions and Future Work

We have presented the implementation and usage of virtual components to facili-
tate the integration testing of component systems organised following a data-flow
architectural style. First, three algorithms have been introduced to enforce well-
formedness of the virtual components. They are key to a user-friendly realization
of this new concept in a component middleware platform. A guideline to extend
the typical component interfaces for the manipulation of virtual components
was presented. Second, we introduced two implementations of virtual compo-
nent testing for two types of component middleware platforms, demonstrating
the applicability of the approach in practice. Finally, the evaluation of this inte-
gration testing approach using mutation testing on a system from our industrial
partner showed the effectiveness in detecting errors in systems organised follow-
ing a data-flow schema. We could show that on this system half of the component
mutants were detected by this approach, in contrast to 6% detected by the tra-
ditional provider integration testing approach. All 5 architecture mutants were
also detected instead of the 2 detected using provider testing.

In future work, we will study ways to minimize the number of test-cases
executed during regression integration testing. For example, a test might be
repeated only if it assesses non-functional properties, or it is repeated depending
on a modification performed.

References

1. Abdullah, K., Kimble, J., White, L.: Correcting for unreliable regression integration
testing. In: ICSM’95: Proceedings of the International Conference on Software
Maintenance. p. 232. IEEE Computer Society, Washington, DC, USA (1995)

2. Beer, A., Heindl, M.: Issues in testing dependable event-based systems at a sys-
tems integration company. In: ARES’07: Proceedings of the the Second Interna-
tional Conference on Availability, Reliability and Security. pp. 1093–1100. IEEE
Computer Society, Washington, DC, USA (2007)



3. Bertolino, A., Inverardi, P., Muccini, H., Rosetti, A.: An approach to integra-
tion testing based on architectural descriptions. In: ICECCS’97: Proceedings of
the Third IEEE International Conference on Engineering of Complex Computer
Systems. p. 77. IEEE Computer Society, Washington, DC, USA (1997)

4. Brenner, D., Atkinson, C., Malaka, R., Merdes, M., Paech, B., Suliman, D.: Re-
ducing verification effort in component-based software engineering through built-in
testing. Information Systems Frontiers 9(2-3), 151–162 (2007)

5. E. U. Commission, Maritime Affairs: An integrated maritime policy for the euro-
pean union (Oct 2007)

6. Gao, J.Z., Tsao, H.S.J., Wu, Y.: Testing and Quality Assurance for Component-
Based Software. Artech House (2003)

7. González, A., Piel, É., Gross, H.G.: Architecture support for runtime integra-
tion and verification of component-based systems of systems. In: 1st International
Workshop on Automated Engineering of Autonomous and run-time evolving Sys-
tems (ARAMIS 2008). pp. 41–48. IEEE Computer Society, L’Aquila, Italy (Sep
2008)

8. Green Hat Software: Lessons from testing service oriented architectures white paper
(2008)

9. Gross, H.G.: Component-Based Software Testing with UML. Springer, Heidelberg
(2005)

10. Gross, H.G., Mayer, N.: Built-in contract testing in component integration testing.
Electronic Notes in Theoretical Computer Science 82(6), 22–32 (2004)

11. Hopcroft, J., Tarjan, R.: Algorithm 447: efficient algorithms for graph manipula-
tion. Commun. ACM 16(6), 372–378 (1973)

12. International Telecommunication Union: Recommendation ITU-R M.1371-1 (2001)
13. Jorgensen, P.: Software Testing: A Craftman’s Approach. CRC Press, Inc., Boca

Raton, FL, USA (2001)
14. Object Management Group: UML 2 Infrastructure (Final Adopted Specification).

http://www.omg.org/cgi-bin/doc?ptc/2003-09-15 (Sep 2003)
15. Paul, R.: End-to-end integration testing. In: APAQS’01: Proceedings of the Sec-

ond Asia-Pacific Conference on Quality Software. p. 211. IEEE Computer Society,
Washington, DC, USA (2001)

16. Piel, É., Gonzalez-Sanchez, A.: Data-flow integration testing adapted to runtime
evolution in component-based systems. In: Workshop Software Integration and
Evolution @ Runtime. ACM, Amsterdam, The Netherlands (Aug 2009)

17. Shaw, M., Garlan, D.: Software Architecture: Perspectives on an emerging disci-
pline. Prentice Hall (1996)

18. Suliman, D., Paech, B., Borner, L., Atkinson, C., Brenner, D., Merdes, M., Malaka,
R.: The MORABIT approach to runtime component testing. In: 30th Annual In-
ternational Computer Software and Applications Conference. pp. 171–176 (Sep
2006)

19. Thales Group: Maritime safety and security (2007), http://www.thalesgroup.
com/Portfolio/Security/D3S_Maritime_Safety_and_security/

20. Vincent, J., King, G., Lay, P., Kinghorn, J.: Principles of built-in-test for run-time-
testability in component-based software systems. Software Quality Journal 10(2),
115–133 (2002)

21. Yuan, X., Memon, A.M.: Generating event sequence-based test cases using GUI
run-time state feedback. IEEE Transactions on Software Engineering 36(1) (2010)

22. Zhu, H., He, X.: Testing Commercial-off-the-Shelf Components and Systems, chap.
A Methodology of Component Integration Testing, pp. 239–269. IEEE Computer
Society (2005)


