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Abstract. A Software Product Lines (SPL) is "a set of software-intensive 
systems sharing a common, managed set of features that satisfy the 
specific needs of a particular market segment or mission and that are 
developed from a common set of core assets in a prescribed way". 
Variability is a central concept that permits the generation of different 
products of the family by reusing core assets. It is captured through 
features which, for a SPL, define its scope. Features are represented in a 
feature model, which is later used to generate the products from the 
line. From the testing point of view, testing all the possible 
combinations in feature models is not practical because: (1) the number 
of possible combinations (i.e., combinations of features for composing 
products) may be untreatable, and (2) some combinations may contain 
incompatible features. Thus, this paper resolves the problem by the 
implementation of combinatorial testing techniques adapted to the SPL 
context.  

Keywords: testing, software product lines, combinatorial testing, feature 
coverage, pairwise 

1   Introduction 

A Software Product Line (SPL) is a set of software-intensive systems sharing a 
common, managed set of features which satisfy the specific needs of a particular 
market segment or mission and which are developed from a common set of core 
assets in a prescribed way [1]. Products in a line share a set of characteristics 
(commonalities) and differ in a number of variation points, which represent the 
variabilities of the products. Software construction in SPL contexts involves two 
levels: (1) Domain Engineering, which refers to the development of common features 
and the identification of the variation points; (2) Product Engineering, where each 
concrete product is built. At this second level, commonalities must be included in the 
products, and the corresponding variation points must be adequately managed.  



Traceability and reuse are fundamental aspects in SPL development and, thus, 
testing is an essential task in this kind of software development paradigm. In fact, and 
error introduced in a common part which remains undetected may affect all the 
products in the line; in the same way, an error in a variation point will be propagated 
to all the products which include that variation.  

In previous works [2], a framework for model-driven testing in SPL was defined. 
The framework includes a methodological approach to automate the generation of test 
models from SPL design models, and specifies a way to deal with variability: given a 
SPL design, the approach produces a test model which includes enough information 
to build specific test cases both for the common features of the line, as well as for the 
specific characteristics of the variation points finally implemented in each product.  

However, just as the execution of integration testing is required after unit testing in 
a classic testing process, features of a SPL must be also tested when they are 
integrated into a single product; finding no faults in core assets at the Domain 
Engineering level does not mean that its transformation into a concrete product 
(generated at the Product Engineering level) does not introduce defects. In the same 
way, the fact of not discovering errors when an isolated feature is tested does not 
guarantee that a given product with that very same feature, together with others, will 
be free of defects, even in those features which, apparently, were previously error-
free.  

From a testing point of view, testing all the possible feature combinations in a SPL 
is unfeasible. In a SPL with just 5 features and 4 variants, the number of products that 
can be generated is 45=1024. Testing each possible product is expensive and 
unrealistic for software industry. 

This paper defines a strategy for testing products proceeding from SPL feature 
models. The strategy uses pairwise as its covering criterion, in the sense that all the 
pairs of features must be included and tested in at least one product. The Orthogonal 
Variability Model (OVM, [3]) is used to represent the variation points and its variants. 
This does not mean any loss of generality in the proposal, since any other metamodel 
can be used to represent the feature model. In fact, the same rules would be applied to 
obtain the test suite of products to test.  

One of the most widely-used strategies to obtain pairwise coverage is the AETG 
algorithm [4], which works in polynomial time. In the SPL context, the algorithm 
must be modified to deal with requires and excludes relationships between features. If 
a variant in a feature excludes a variant in another feature, then the pair between both 
variants must not be present in any product. One of the SPLs we use as a case study 
consists of a system to play board games over the internet. Thus, we may be dealing 
with four variation points (Game, Dice, Opponent and Number of Players) and 
several variants in each ({Ludo, Trivial, Chess, Checkers}, {Dice, No-dice} {Person, 
Computer}, {2, >2}). Ludo or Trivial with No-dice make no sense, and neither do 
Chess or Checkers with Dice or with more than two players (>2). Restrictions 
between pairs such as these are not contemplated by AETG and, therefore, the 
algorithm has been modified to not consider undesired pairs. 

This change to the algorithm is not restricted to SPL testing, since it is common to 
test systems excluding invalid combinations of test values. Pairwise assumes that 
many errors only arise from the specific interaction of certain values of two or more 
parameters [5], but in the actual practice of software testing, test cases containing 



undesired pairs are often removed from the final test suite. For these situations, the 
improved version of AETG can be also used. 

2  Representing variability in SPL 

Variability is a central concept in product family development. It allows for the 
generation of different products in the family by reusing core assets. Variability is 
captured through features. A feature can be a specific requirement, a selection 
amongst optional or alternative requirements, or can be related to certain product 
(functionality, usability, performance, etc) or implementation characteristics (size, 
execution platform, standards compliance, etc)[6]. 

Domain engineering techniques are used to systematically extract features from 
existing or planned members of a product line. Feature trees are used to relate features 
to each other in various ways, showing sub-features, alternative features, optional 
features, dependent features or conflicting features [6]. Examples of these methods 
are FODA [7], FORM [8], FeatuRSEB [9], among others. Figure 1 shows a feature 
model example. 

In this work, the proposal by Pohl et al. [3] is used to manage the variability, 
defined in their Orthogonal Variability Model (OVM). In OVM, variability 
information is saved in a separate model containing data about variation points and 
variants. A variation point may involve several variants in, for example, several 
products. OVM allows the representation of dependencies between variation points 
and variable elements, as well as associations among variation points and variants 
with other software development models (i.e., design artifacts, components, etc.). 
Variation points and variants are the core concepts of the OVM language. Each 
variation point offers at least one variant. Additionally, the constraints-associations 
between these elements describe dependencies between variable elements [3]. 

 

Figure 1 – Feature Model for Board Game SPL 

OVM includes a graphical notation: Variation Points are represented by triangles 
and their variants with a rectangle. Dotted lines represent optional variants (i.e., they 
can be omitted in some products), whereas solid lines represent mandatory variants 
(they are present in all products). The associations between variants may be 
requires_V_V and excludes_V_V, depending on whether they denote that a variation 
requires or excludes another variation. In the same way, associations between a 



variation and a variation point may be requires_V_VP or excludes_V_VP, also to 
denote whether a variation requires or excludes the corresponding variation point.  

Figure 2 shows the OVM model for the board game SPL. The board games share a 
wide set of characteristics, such as the existence of a board, one or more players, the 
use of dice, possibility of taking pieces, presence or absence of cards, policies related 
to the assignment of the turn to the next player, etc. As we showed in the previous 
section, there are 4 four variation points (Game, Dice, Number of players and 
Opponent) and 4, 2, 2, and 2 variants respectively. 

 

Figure 2 – OVM model for Board Game SPL 

In previous works, a specific UML profile to represent OVM models was 
defined[10]. Figure 3 shows the same information as in Figure 2 but using the profile.  

 

 

Figure 3 – Board Games SPL using UML profile for OVM 



The use of one or another metamodel is independent for the process: Roos-Frantz, 
Benavides and Ruiz-Cortés[11] have shown that it is possible to use model-to-model 
transformation in order to generate a target model conforming to an OVM metamodel, 
preserving all the semantics in the source models.  

3. Combination testing strategies and related works 

Combination strategies are a class of test-case selection methods where test cases are 
created by the combination of “interesting values”, which have been previously 
identified by the tester. The input of all these testing strategies is a set of sets 
(parameters), each with some elements (values). The output is a set of combinations, 
all of them composed of one element from each input set. 

Like many test-case selection methods, combination strategies are based on 
coverage. In the case of combination strategies, coverage is determined with respect 
to the use of the parameter values that the tester decides are interesting. Thus, for 
example, a test suite satisfies Each-use (also known as 1-wise) coverage when each 
test value is included in at least one test case in the test suite. Pairwise (also known as 
2-wise) coverage requires that every possible pair of interesting values of any two 
parameters be included in some test case. Note that the same test case may cover 
more than one unique pair of values. A natural extension of pairwise coverage is t-
wise, which requires that every possible combination of interesting values of t 
parameters be included in some test case in the test suite. 

Different test generation strategies have been published for pairwise testing, some 
of them collected in a survey article by Grindal, Offut and Andler [12]. Since the 
problem of generating minimum pairwise test sets is NP-complete, different 
researchers have developed strategies to generate near-minimum pairwise test sets, 
such as algorithms based on orthogonal arrays [13] or covering Arrays [14]. One 
important drawback to these two methods is that they can only be applicable to sets 
(parameters) with the same number of elements (test values), which restricts the 
actual application of these techniques.  

One very interesting approach for pairwise coverage was proposed by Cohen et al. 
[4], who developed the AETG algorithm for t-wise coverage (Figure 4).  

Considering the combinatorial strategies in SPL context, Perrouin et al. [15] uses t-
wise for feature coverage using SAT solvers, dividing the set of clauses (transformed 
from a feature diagram) into solvable subsets. They use the features as parameters; 
each parameter may receive two values (true or false) to represent the presence or 
absence of the feature: thus, the combination strategy followed up by these authors 
may produce much more products  to be tested that those required. Actually, the 
feature model should have information enough to consider the relationship between a 
variation point and its variants. The authors take into account mandatory and optional 
features, the requires relationship, but no the excludes one. In our approach, variation 
points are considered as the parameters: instead of having two boolean values for each 
feature, we process the feature model to consider that each feature variant is a 
parameter value. Moreover, all the relationships defined in OVM are processed to 
include or exclude pairs. The use of combinatorial testing to cover features in SPLs 



has also been the focus of previous works by McGregor[16] and Cohen et al.[17], 
who address the issue of pairwise testing through orthogonal arrays and covering 
arrays respectively. However, we consider that these approaches have a key limitation 
in that they that require all of the features to have the very same number of variants. 
In our experience (also corroborated by examples found in the literature[18]), this is 
unrealistic, since features very rarely offer the very same number of variants. 
Moreover, these works neither consider the excludes relationship between features. 
Indeed, we decided to improve the AETG algorithm because the number of values in 
each parameter can be variable.  

 
Assume that we have a system with k test parameters and that the i-th parameter has li  
different values. 
 Assume that we have already selected r test cases. We select the r + 1 by first 
generating M different candidate test cases and then choosing one that covers the most 
new pairs.  
Each candidate test case is selected by the following greedy algorithm: 

1. Choose a parameter f and a value l for f such that that parameter value 
appears in the greatest number of uncovered pairs.  

2. Let f1 = f. Then choose a random order for the remaining parameters. Then, 
we have an order for all k parameters f1, ..., fk.  

3. Assume that values have been selected for parameters f1, ..., fk. For 1 ≤ i ≤ k, 
let the selected value for fi be called vi. Then, choose a value vk+1 for fk+1 as 
follows.  

For each possible value v for fk, find the number of new pairs in the set of 
pairs {fk+1 = v and fi = vi for 1 ≤ i ≤ k}. Then, let vk+1 be one of the values that 
appeared in the greatest number of new pairs. 
Note that, in this step, each parameter value is considered only once for 
inclusion in a candidate test case. Also, that when choosing a value for 
parameter fj+1, the possible values are compared with only the k values 
already chosen for parameters f1,..., fk.  

Figure 4. Original explanation of the AETG algorithm for covering pairwise [4] 

4   Selection of products to test in SPL 

Testing all the existing combinations in a feature model is similar to exhaustive 
testing in traditional software development and is economically unviable. The 
objective, then, is to select a testing strategy to decide what products will be tested, 
assuming that these products are representative of the set of all the possible products 
in the line.  

Obviously, if the core assets are tested in isolation, it is less likely to find defects 
when they are assembled in a product. However, it is necessary to ensure that there 
are no undesired results when the product is generated. Rather than exhaustive testing, 



a combinatorial approach can help SPL engineers to decide what combinations of 
features are more interesting to test, based on feature coverage and feature 
dependencies. 

In our proposal, the variation points are the parameters for the pairwise, whereas 
variations are the values of the parameters. First, we define how pairs between 
features are generated from the OVM model and second, how the test cases are 
selected using the modified version of the AETG algorithm. Each test case is a 
combination of features, i.e., a product of the line. 

4.1 Building the pairs set 

We use the OVM model to describe the features and the relationships between 
features. As described in Section 2, OVM is used to exemplify the proposal, since the 
results of this study can be extrapolated to any other representation of feature models. 

There are four parameters in the example of the Board Games SPL: Game, Dice, 
Players and Opponent. The values for the parameters are the Variations for each 
Variation Point. Table 1 shows the parameters and its values for the Board Games 
SPL.  

 

Table 1 – Features and variants 

Actually, the information in Table 1 is incomplete, as it is necessary to add the 
information about the relations between the parameters and their values. Table 1 is 
augmented with the following information: 
• Variation Point :  If the variation point is optional, then a new value is added. 

This value states that the entire variation point is not selected for the product.  
The rule is: 
If VP is an optional Variation Point with n variants, then the VP parameter has 
n+1 values: one for each variant and one more for the value “no”. 
 In the example, the variation point Dice is optional and the “no” value is added. 

• Variants: In OVM the relationship between a Variation Point and a Variant can 
be optional, mandatory or alternative. For each case:  

• Optional: The optional variability dependency states that a variant can (but 
does not need to) be part of a product line application [3]. No values are 
added for this relationship. 

• Mandatory: The mandatory variability dependency states that a variant must 
be selected for an application if and only if the associated variation point is 
part of the application [3]. For example, variant 2 in Figure 2 for the Players 
variation point is mandatory: then, value 2 can be present in all products of 
the line (because the Player variation point is also mandatory) and the variant 
More than 2 is optional. The rule is: 



If VP is a variation point with n variants, being k mandatory and n-k 
optional, then the parameter VP has (n-k)+1 values, where the first value is 
the selection of all the k mandatory values together, and the n-k remaining 
values are pairs of each optional value with the first value. 
 For the example, since value 2 is mandatory, it must be added to the other 
values: i.e., MoreThan2 and (2,MoreThan2), which is the second value for 
the parameter Player. 

• Alternative: The alternative choice groups a set of variants that are related 
through an optional variability dependency to the same variation point and 
defines the range for the amount of optional variants to be selected for this 
group [3]. The alternative contains two attributes: min and max. The rule is: 
If VP is a variation point with n optional variants, where the alternative 
dependency is [j, k] , the values for the parameter VP are the result of 
Comb(n,i) where Comb is the combinatorial function of i values taken from 
n values, with i = j..k. 

With this information, the table of parameters is built as shown in Table 2. 
 

 

Table 2 – Parameters for pair-wise 

The next step is to build the tables of pairs between the parameters shown in Table 3. 
 

 

Table 3 – Pairs between parameters 

 The OVM model also states the relationship between variation points or variants 
belonging to different variation points. The relationship can be:  
• Variant requires variant (requires_V_V): The selection of one variant v1 in 

the variation point VP1 requires the selection of another variant vk in the 
variation point VPk, without taking into account the variants associated. The rule 
is: 
For each pair (v1, vj), where vj is different from vk, the value vk is added to the 
pair, thus getting (v1,vj,vk). 



• Variant excludes variant (excludes_V_V): The selection of one variant v1 in 
the variation point VP1 excludes the selection of another variant vk in the 
variation point VPk, without taking into account the variants associated. The rule 
is: 
The  (v1, vk)  pair is deleted from the corresponding pairs table. 
In the example in Figure 2, the Chess variant excludes the MoreThan2 variant 
(the same occurs with the Checkers variant). Thus, the pairs (Chess-2,More2) and 
(Checkers-2,More2) are deleted from the (Type-Players) pair table. 

• Variant requires Variation Point (requires_V_VP): The selection of one 
variant v1 in the variation point VP1 requires the consideration of a variation 
point VPk. The rule is: 
If the variation point VPk is optional, the value “no” was added as value for the 
parameter VPk. The (v1, no) pair is deleted from the pairs between VP1 and VPk 
In the example in Figure 2, the Ludo variant requires Dice (the same occurs with 
the Trivial variant). The pairs (Trivial,no) and (Ludo, no) are deleted from the 
pairs between type and dice. 

• Variant excludes Variation Point (excludes_V_VP): The selection of one 
variant v1 in the variation point VP1 excludes the consideration of variation point 
VPk. The rule is: 
If the variation point VPk is optional, the value “no” was added as value for the 
parameter VPk. All pairs between (v1, vk) are deleted from the pairs between 
VP1 and VPk except the pair (v1, no) 
In the example of Figure 2, the Chess and Checkers variants exclude Dice: thus, 
(Chess, dice) and (Checkers, dice) are deleted from the pairs between type and 
dice. 

• Variation Point requires Variation Point (requires_VP_VP): The selection of 
one variation point VP1 requires the consideration of variation point VPk. The 
rule is: 
If the variation point VPk is optional, the value “no” was added as value for the 
parameter VPk. The pair (vi, no) is deleted from the pairs between VP1 and VPk 
where vi represents all values of VP1 

• Variation Point excludes Variation Point (excludes_VP_VP): The selection of 
one variation point VP1 excludes the consideration of variation point VPk. The 
rule is: 
If the variation point VPk is optional, the value “no” was added as value for the 
parameter VPk. All pairs between (vi, vk) are deleted from the pairs between 
VP1 and VPk except the pair (v1, no), 

 
Table 4 shows the resulting pairs between the parameter values, excluding the 

relationships between features. 
Once the pairs table is built, the AETG algorithm must be modified to remove the 

undesired pairs from the final products. 



 

Table 4 - Pairs between parameters excluding relationships between features 

4.2 Modifications to the AETG algorithm  

The next step is to calculate the test cases using pairwise. Achieving pairwise 
coverage requires each pair to be covered by at least one test case. The AETG 
heuristic algorithm must be adapted to consider feature dependencies.  

AETG selects the value for each parameter that appears in most unvisited pairs. 
The problem in this case is that, after removing the undesired pairs, not all pairs are 
present in the final set of pairs. Therefore, the algorithm must find the value in each 
parameter that appears in most unvisited pairs, but taking into account that the pairs 
between the selected values exist. Considering, for example, the pairs in Table 4, the 
execution of the original AETG algorithm selects {ludo, dice, person, 2} as first test 
case. The second test case selected will be {trivial, no dice, computer, 2-moreThan2}; 
however, the (trivial, no dice) pair is not present in the set of pairs. The original 
AETG algorithm (Figure 4) is improved in step 3: instead of leaving “the pair selected 
appears in the greatest number of new pairs”, adding “and the pair exists in the pairs 
set” is required.  

The stop condition for the algorithm also must be changed. The original AETG 
algorithm stops when all pairs in the pairs set have been visited. In our case, pairs 
may exist that are unreached. This is the case for the pair (no dice, 2-moreThan2), 
which is never visited because is not possible to find a combination of feature values 
where this pair is valid. Then, this pair remains unvisited at the end of the algorithm. 
The stop condition is changed and the algorithm stops when the test case selected 
does not visit any unvisited pair. We have called the AETG algorithm with these 
improvements Customizable AETG. 

4.3   Implementation of a Customizable AETG algorithm   

Previously, a framework for combinatorial testing called Combinatorial Testing for 
Software Product Lines (CTSPL) was implemented as a web application1. Any of the 
testing strategies supported by the framework can be resumed as an algorithm which 
takes a set of sets as input (S={S1, S2, …,Sn}, which correspond to the parameters or 
variation points) and produces a set of combinations of the elements in the sets (which 

                                                           
1 http://161.67.140.42/CombTestWeb/ 



correspond to the parameter values, or products in the SPL context). Thus, the 
algorithm implementing each strategy can be seen as a specialization of an abstract 
Algorithm (Figure 5), which builds its corresponding collection of elements by means 
of an abstract operation (buildCombinations), which is implemented in each 
specialization.  

 

Figure 5. Partial view of the hierarchical structure of Customizable AETG 

As seen in the figure, each algorithm holds a collection of sets, which represent the 
parameters. Moreover, each algorithm has a collection of integers (selectedPositions), 
which hold the positions of the selected combinations.  

 

1. Build pairTables for S, the set of parameters ( pairTables does not includes the 
unrequired pairs). 

2. let c=combination #0  

3. Add c to the selected set  

4. Update pairTables with the pairs visited by c  

5. while there are unvisited pairs in pairTables and continue 

1. initialize c putting the value which visits more unvisited pairs in pairTables  

2. complete c with the values of the remaining sets in such way most pairs are 
jointly visited and the pairs selected exists in pairTables  

3. if c covers some unvisited pair 

3.1  Add c to the selected set  

3.2  Update pairTables with the pairs visited by c  

else continue := false 

Figure 6. Pseudocode of the Customizable AETG algorithm 

Each Combination keeps an array of as many integers as there are sets in its 
positions field. Each integer in positions represents the index of the selected element 



from the corresponding set. Given a combination, the algorithm extracts the 
parameter values by visiting its collection of sets.  

Figure 6 shows a pseudocode of this new version of AETG. Note the changes 
introduced in the stop condition (step 5) and in the selection of values (step 5.2). 

4.3 Description of the web application  

The web application accepts the description of the elements in the sets (sets are 
distributed in columns; their elements in rows) and allows the application of any of 
the implemented combination algorithms. Moreover, the application also accepts xmi 
files representing the feature model of the SPL. In Figure 7, the user has selected and 
is ready to submit the xmi file corresponding to the feature model of the Board Games 
SPL.  

 

Figure 7. Uploading the feature model shown in Figure 3 

Once the application has received the feature model with the xmi file, it analyzes it 
and shows the pairs tables (Figure 8) leaving the user to select those that should not 
be included in the final suite. At this time, we are modifying the code of the 
subsystem in charge of processing the xmi file to detect, via the relationships defined 
in the model (excludes and requires), which pairs should be removed. 

Then, the user is ready to select any of the provided algorithms (left side of Figure 
7) and obtain the results. If s/he selects the Customizable Pair AETG algorithm, the 
algorithm shows the results. 

We will illustrate how the results are reached describing the steps followed by the 
Customizable AETG in Figure 6. The first step in the algorithm is “Build pairTables 
for S, the set of parameters, the pairTables does not include the restricted pairs”, the 
pairTables is shown in Table 6. At the beginning, the column corresponding to the 
test case that visits this pair is blank. Table 5 shows the visited pairs in each step of 
the algorithm. In the first step, the ludo value appears in 5 unvisited pairs (see Table 



6). When the combination # 0 ={ludo, dice, person,2}, is selected, Table 6 is updated 
and for step 2, the ludo value appears now in 2 unvisited pairs. 

 

Figure 8. The user selects the pairs to be removed 

 

Table 5 – Visited pairs and test cases in Customizable AETG 

The algorithm selects the value for each parameter that visits the most pairs. In step 
2,  it first selects computer because this value appears in 8 pairs; the selected test case 
up to now is {-,-,computer,-}. Then for the rest of the parameters, the algorithm 
selects the value that visits the most pairs. The first parameter selected is Type and the 
value trivial is selected because it appears in 5 pairs. The test case is now {trivial,-
,computer,-}. For the parameter Dice, the value no dice appears 6 times, but the pair 
(trivial, no dice) does not exist in pairsTable, so the value dice is selected. The test 
case is {trivial, dice,computer,-}. For the parameter player, value 2, moreThan2 
appears 6 times and is selected. The test case is {trivial, dice, computer, 2-



MoreThan2}. Once the test case is selected, Table 6 is updated with the visited pairs 
for the test case. 

The algorithm continues 9 more steps and the test cases selected are shown in 
Table 5. In the last step, only one pair is unvisited, this pair is (no dice, 2-
MoreThan2). This pair is unreacheable by a combination of pairs, so in step 10 the 
algorithm selects {chess,no dice, person, 2}. Due to the fact that this pair does not 
visit any unvisited pair, the algorithm stops. 

 

Table 6 – Test cases that visit each pair in Customizable AETG 

Using the CustomizedAETG algorithm the test cases obtained are shown in Table 
5, this mean that the test engineer must test the followings products in the line (where 
CF refers the set of common features to all the products in the line):  

Product 1 = CF U {ludo, dice, person, 2} 
Product 2 = CF U {trivial, dice, computer, 2, MoreThan2} 
Product 3 = CF U {chess, person,2} 
Product 4 = CF U {checkers, computer,2} 
Product 5 = CF U {trivial, dice, person, 2, MoreThan2}  
Product 6 = CF U {ludo, dice, computer, 2, MoreThan2}  
Product 7 = CF U {chess, computer, 2}  
Product 8 = CF U {trivial, dice, person, 2}  
Product 9 = CF U {checkers, person, 2 }  

4   Conclusions 

This paper describes the application of combinatorial testing to the context of 
Software Product Lines. Products proceeding from a SPL consist of different types of 
combinations of the variants and variation points composing the line. Since 
exhaustive testing is not viable and, furthermore, many of the possible combinations 
will not belong to any of the final products, several authors have also approached 
combinatorial testing strategies for SPL testing, especially applying pairwise 
coverage. However, even some combinations proceeding from this kind of coverage 
criterion will not be present in any product (in the Board Games example, neither 
chess nor checkers will match with more than two players). Thus, the AETG 
algorithm for pairwise coverage has been modified to remove the unfeasible products 
from the final suite. 

The modified version of the algorithm has been included on a web page, which 
furthermore makes it possible to upload a feature model described in xmi. The tool 
loads the variants and variation points and is capable of applying a variety of 
algorithms. In current SPL practice, there are pairs of combinations which the tester is 



more interested in testing. Therefore, we are also improving the algorithm to give 
weight to each pair, in order to more exhaustively test the most important pairs. 
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