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Abstract. An individual who intends to engage in sensitive transactions using a public
terminal such as an ATM needs to trust that (a) all communications are indeed carried
out with the intended terminal, (b) such communications are confidential, and (c) the ter-
minal’s integrity is guaranteed. Satisfying such requirements prevents man-in-the-middle
attacks and eavesdropping.
We have analysed several existing transaction schemes and concluded that they tend not
to meet all requirements during the entire transaction. We propose a new, generic pro-
tocol that provides (a) optional terminal identification, (b) key establishment, and (c)
customisable integrity assurance.

1 Introduction

Individuals often have to use public terminals for sensitive communication in which trust is taken
for granted; however, establishing trust is not easy in a public environment1. Several schemes in
the literature have been proposed for the users to verify such terminals and to receive a reliability
report before performing the main transaction. This approach is not sufficient as an adversary
can place an intermediary platform that relays all messages between the trustworthy terminal
and the user during verification. After verification this hostile platform will be trusted by the
user, who may communicate sensitive data during the main transaction.

To protect against such a man-in-the-middle (MitM) attack, the main transaction has to be
linked strongly to the verification. There are two ways to establish this link: key exchange and
identification. A key exchange is used to establish a secure channel that is bound to the verifica-
tion and to the verified honest device, while an identification process of a terminal demonstrates
locality, that is, a proof of direct contact between the user and the public terminal. Considering
these two methods independently, we can analyse and design protocols more consciously.

The purpose of the present study is twofold. First, we examine whether existing schemes can
exclude man-in-the-middle attacks. Second, we design a flexible generic protocol that optionally
incorporates these linking methods.

The paper is organised as follows. Section 2 presents preliminary notions in relation to cryp-
tography and trusted computing. The problem statement in Section 3 is divided into three parts.

⋆ This research is supported in part by the research programme Sentinels as project ‘Mobile
IDM’ (10522). Sentinels is being financed by Technology Foundation STW, the Netherlands Organisa-
tion for Scientific Research (NWO), and the Dutch Ministry of Economic Affairs. The work described
in this paper has been supported in part by the European Commission through the ICT programme
under contract ICT-2007-216676 ECRYPT II.

1 Recently ATMs have become also vulnerable to malicious software, or malware, as they tend to
use publicly available hardware, operating systems, and the Internet rather than exclusively private
elements. See e.g., ATM crime: Overview of the European situation and golden rules on how to avoid
it, ENISA, 2009 August.



First, the model and the main assumptions are described. Second, key exchange and identifica-
tion are discussed in detail. Third, we discuss the relevant state of the art in this area. Applying
our approach and model, Section 4 provides an analysis of two existing protocols and Section 5
reports and analyses our new protocol. Finally, Section 6 discusses conclusions and open ques-
tions.

2 Preliminaries

2.1 Cryptographic Tools

Since throughout this paper we use cryptographic concepts, this section aims to describe some
relevant notions without their mathematical background. For a more complete description see
e.g. [11].

Randomness plays a crucial role in cryptography and, instead of true randomness, computing
devices generate pseudorandom values in practice. A cryptographic hash function creates a fixed
length bit string, often called a hash value, from an arbitrary length bit string. Even if the
function is deterministic, a hash value is seemingly random and reveals nothing about the input
value. A nonce is a (pseudo)random number generated for using it only once in an instance of
a cryptographic protocol. The bit length of a nonce usually depends on the system’s security
parameter.

Symmetric- and public-key encryptions and digital signatures are essential topics in cryp-
tography,. While in case of symmetric-key encryption both the sender and the receiver of the
message have the same key and therefore encryption and decryption can be performed by both
of them, in case of public-key encryption only the receiver can decrypt by means of a secret key
and the corresponding encryption key can be put publicly available. Since computing a secret
key from the corresponding public key is intractable anyone can encrypt, but only the receiver
can decrypt. A digital signature on a message is an appendix to the message that can only be
produced by the signer but can be verified by anyone. The signer needs her private key, and
the verifier needs the corresponding public key. As any small modification in the message essen-
tially changes the signature, a digital signature provides authenticity (it is originated from the
signer) and integrity (it has not been changed) for the message. A signature of participant A on
a message m is denoted by sig{m}A.

In order to establish a secure channel, both participants have to hold a symmetric key that
enables them to encrypt and decrypt messages. Key establishment can be achieved by either
a secure key exchange, or some key distribution mechanism. In this study we make use of the
Diffie–Hellman key exchange [3] that enables two participants to create a shared secret key after
sending certain messages over an insecure channel. Although applying the pure Diffie–Hellman
key exchange is vulnerable to the MitM attacks, it can be protected by authenticating the
messages during the key exchange.

In the context of public-key cryptography an important issue is how participants receive keys
belonging to other participants. To verify a signature or to send a secret message, the public key
is often certified by a trusted third party, the certificate authority, or CA. By signing other CAs’
certificates, CAs can establish a hierarchy of public signature keys which is called a public-key

infrastructure, or PKI.

2.2 TPM

A trusted platform module, or TPM [10] is the hardware root of trust within a computing device.
Besides the TPM, a trusted subsystem of a host computer contains two software components:



A core root of trust for measurement (CRTM) and a trusted software stack (TSS). The CRTM,
usually located within the TPM, is the first piece of software to run during the boot process, and
the TSS communicates with the rest of the host platform and with other computers. A trusted
subsystem can create attestation identification keys (AIKs) certified by a unique endorsement
key, to sign its output. A trusted third party, the privacy certificate authority (Privacy CA)
may attest in a certificate that an AIK was actually signed by a valid TPM’s endorsement key.
According to the specification, the TPM’s actual identity (the public part of the endorsement
key) is not revealed during an attestation. This enables the design of privacy-preserving protocols.

An integrity report, created by the trusted subsystem and the host platform, is a statement
about the current state of a computer. When an integrity report is requested during a so-called
remote attestation, the TPM by means of its AIK creates and signs a secure summary about the
host computer’s current hardware and software configuration.

In the course of the verification of an integrity report, a verifier follows several steps. It checks
that the signature is valid and that the signing key (AIK) is certified by a Privacy CA. Moreover,
it verifies that the current state of the platform occurs in a previously stored database of “good”
states. In certain scenarios the verification requires big resources including large storage space
(storing all “good” states of all computers in a system), many computations (verifying large
measurement logs), and additional interaction with the Privacy CA.

3 Problem Statement

Verification of a computer is a process resulting in a report about the integrity of that device.
It determines the state of the device and is able to detect whether the device contains mali-
cious software, such as viruses or trojans. A special case of verification in which the computer
is in the direct vicinity of an individual, is called local verification. Local verifications are often
recommended to precede security or privacy critical actions. Examples of such actions are with-
drawing money from an ATM, paying at a POS terminal in a supermarket, or using a public
kiosk computer for internet access.

3.1 Model and Assumptions

A user U, having a trusted personal device M, such as a mobile phone, intends to verify whether
a public terminal T is trustworthy enough to be used for a security or privacy sensitive task.

The user trusts his mobile device to perform all computations correctly, and to display the
results honestly. Moreover, U relies on M’s security, i.e., that it does not leak any information to
a third party.

The terminal T is potentially untrusted. However, as in most proposed schemes, T is as-
sumed to have a hardware TPM as the root of trust, which is able to perform integrity checks
and to provide an integrity report about the current hardware and software configuration (see
Section 2.2). Being a hardware module, T’s TPM is able to reveal any software modification. T
is presumed to be tamper-resistant and hence no adversary can make hardware alterations.

Although in some scenarios mobile phones can be suitable to verify integrity reports, we
incorporate a trusted verification server S which is able to carry out this demanding task requir-
ing much storage, computation, and communication. To convey the resulting signed statement,
called an attestation about the state of the terminal in question, an authentic channel has to
be established from the server to the user’s trusted mobile phone via the untrusted terminal.
(This authentic channel is established by a digital signature of the verification server, which is
assumed to be efficiently verifiable, unforgeable, and it is assumed to provide message integrity.)



Fig. 1. Attacker model: The adversary has control over all digital channels.

Note that we do not assume a direct channel between M and S; however, we do presume that M
stores S’s public signature key or uses a matching PKI.

In our model the adversary is reasonably powerful as it controls all digital input and output
channels between M and T and between T and S, see Figure 1; all messages transmitted through
these channels can be eavesdropped on or modified by the attacker.

3.2 Approach: Key Exchange or Identification

The primary objective of a verification process is to assure the user U that a terminal T is not in
a compromised state. However, the positive result of a verification does not necessarily guarantee
that it does not originate from another terminal. Some previous protocols, such as [1] and [13],
suffer from a potential man-in-the-middle attack. In this type of attack, an adversary places a
hostile computer T’ between the honest computer and the user. While the verification is done
on the honest computer, the result is displayed on the hostile terminal. Consequently, the user
is convinced that the hostile computer is honest.

We would like to draw attention to two methods to eliminate man-in-the-middle attacks
by binding the communication to the honest terminal. A key exchange during the verification
produces a secure key between the user’s personal device and the honest terminal. This key is
used to build a secure logical channel between these participants, so even if a man in the middle
is present, it will not be able to extract or insert messages. The channel is tied to the verification
result and hence to the honest terminal; therefore, it provides security for the main transaction.
Identification, on the other hand, is a means to provide locality by determining that the device
included in the verification is in fact the same as the one the user is physically interacting with.

Combining these two independent optional methods generates four different types of verifi-
cation schemes to study (see Figure 2).

1. Schemes of type 1 do not establish a secure channel and provide no strong identification.
Since the lack of these features results in the lack of a link between the verification and the
main protocol, schemes of type 1 are vulnerable to man-in-the-middle attacks.

2. Schemes of type 2 provide assurance that the public terminal a user is standing at is indeed
the honest computer and not a platform in the middle that relays all the messages between
the honest host and the user. Although the main transaction does not require the use of
a personal device, robust identifications may require to involve it for the verification. This
would be a meaningful method for verifying ATMs before using them: (1) identification is
obviously required because of the human interaction, and (2) the use of a secure channel is
not possible since a user is required to communicate directly with the public terminal when
typing the 4-digit PIN.



Fig. 2. Binding the verification to the main protocol: key exchange and/or identification.

3. Schemes of type 3 allow computing devices to establish a secure channel (e.g., SSL) during
verification. This requires the user to apply a trusted personal device for the whole (secure)
communication with the public terminal. As a positive verification result is bound to the
honest terminal, the key of the secure channel is also bound to it. Therefore, even if there
is a device T’ in the middle controlled by an adversary, it is impossible for it to eavesdrop.
Consequently, schemes of type 3 provide security without identification. As an example, an
enhanced cash withdrawing protocol would enable the user to enter the PIN into her mobile
phone (instead of directly into the ATM) that would send it over the secure channel to the
honest ATM.

4. Schemes of type 4 establish a key between the user’s mobile phone and the public terminal
for the whole transaction and, simultaneously, they provide a technique for the identification
of the public terminal in the vicinity. By linking the identity of the terminal and the key
of the secure channel, these methods guarantee that the user and his personal device are
communicating with the same public terminal.

Distinguishing these types helps to understand the requirements of different scenarios and the
essential differences among proposed schemes in the literature.

3.3 Requirements

Consider the system model in Section 3.1. A verification scheme must provide an authentic
and verifiable integrity report about the current state of the public terminal with the following
properties:

– Completeness : An honest terminal should be able to convince a verification server and even-
tually the user about its good state.

– Soundness : A cheating terminal should not be able to convince either a verification server,
or a user that it is honest.

Furthermore, the scheme must bind the verification to the transaction by one of the methods
described in Section 3.2, i.e., it has to be of type 2, 3, or 4.

3.4 Related Work

Several schemes have been proposed in the literature for integrity reporting and locality verifi-
cation. We can classify proposals using the four types described in the previous section.



Recently, Toegl and Hutter [13] and Bangerter et al. [1] propose verification schemes that
output the state of a public terminal using its TPM. Even though these protocols claim to
provide identification of a public terminal, they do not as both schemes are vulnerable to man-
in-the-middle attacks (see Section 4). Consequently, these schemes are of type 1 instead of type
2.

McCune et al. propose Seeing-is-Believing (SiB) [7] techniques for demonstrative identifica-
tion of previously unknown devices by applying bar codes and cameras. SiB protocols, which
can securely associate a trustworthy device identifier with the present communication, are able
to assure the user that a man-in-the-middle attack does not take place. McCune et al. discuss
TPM related protocols, in which identification is based on the TPM identifier which is welded
securely on the cover of the host platform. This identifier and the one that provides authenticity
in the integrity report are compared and expected to be the same by the user’s mobile device.
This results in a verification protocol, which is also included as a sub-protocol in our proposal
(see Section 5), of type 2.

Locality can also be achieved by distance bounding, which was devised by Brands and
Chaum [2] and is still an important topic of research [6]. Distance bounding guarantees an
upper bound on the physical distance between the user and the public terminal.

Stumpf et al. [12] show that several remote attestation protocols are vulnerable to man-in-
the-middle attacks. To protect against this, they propose a new scheme that they call enhanced
integrity reporting. This method is based on a simple yet essential observation: The actual goal
of a remote attestation (and verifications, in general) is not the valid integrity report for its own
sake, but a secure communication that is bound to the computer that provides it. Therefore, in
the protocol of enhanced integrity reporting, remote attestation is complemented by a session
key establishment between the verifier server and the terminal. This key is then used to secure
the channel for the whole communication. Although Stumpf et al. study the problem of remote
attestation and therefore their scheme does not tackle identification of a local computer resulting
in a scheme of type 3, it can easily be incorporated into the verification of public terminals as
we show in our proposal (see Section 5).

Garris et al. [5] describe a specific scenario of type 4 in which a user can interact with a
public kiosk computer using a trusted mobile phone for encrypting all personal information.
The scheme, which uses the SiB concept for identification and TPM technology for verification,
enables the user to verify a public computer before using it. This protocol is closely related to our
proposal; however, it is not practical in some scenarios (e.g., ATM, POS terminal) as it requires
the public computer to reboot during an execution of the protocol and to run a virtual machine.
Oprea et al. [8] also design an application of type 4, that is, it guarantees both a secure channel
and identification. Their scheme is not just an initial verification for some main interaction, but
a complex protocol. It applies two SSL channels for scenarios in which users access a trusted
remote computer, such as their home computer, from an untrusted terminal.

In sum, though specific protocols of different types were designed that bind a computer with
the secure communication, no general description exists to prevent an adversary from performing
man-in-the-middle attacks. In particular, there does not exist a scheme of type 2, 3, or 4 that
can provide secure verification in the context of public terminals.

4 Analysis of Existing Schemes

A secure verification scheme does not only provide a trustworthy report about the public terminal
in question, but also guarantees that the transaction is properly bound to the verified device. To
analyse the design of a verification scheme, we perform the following steps with respect to its
security and its binding procedure:



– Determine the type of verification the scheme claims to perform

• If it is of type 1 (i.e., no identification, no key exchange), then it is vulnerable to a
man-in-the-middle attack.

• If it is of type 2, 3, or 4, then its security has to be studied further.

– Verify security of the messages: proper freshness (to prevent replay attack), inclusion of
the identifier of the terminal (to prevent the use of another terminal’s report), authentic
evaluation result (to prevent a rogue evaluation).

– Verify security of the channels (depending on the type): identification (channel between the
user and the terminal) and/or key exchange (channel between the personal device and the
terminal) are properly bound to the transaction.

After studying several schemes, we found that proposed verifications of public terminals often
fail to provide robust solutions. Below we describe the analysis of two schemes briefly.

The objective of Toegl and Hutter’s elegant scheme (Sections 4 and 5 in [13]) was to build
a verification protocol of type 2, that is, it should incorporate identification. In their work,
locality is provided by using a direct near-field communication (NFC) channel from the TPM
to the user’s mobile device – according to Parno’s [9] suggestion in his theoretical work. They
proposed a design modification in the TPM specification by extending it with an NFC interface.
Nevertheless, another recent study by Francis et al. [4] shows that NFC is vulnerable to man-
in-the-middle attacks, so its use for proving locality is not secure enough. The scheme can be
enhanced for each verification type in the following manners:

– Type 2: Apply mitigations against NFC man-in-the-middle relay attacks by location-based
information, distance-bounding, or multi-channel communication [4]; however, those are not
always possible.

– Type 3: For communicating S’s verification result, a secure channel is established between
M and T’s TPM in the scheme. Either the protocol should be extended and the honest
host terminal should learn this key, or the TPM should be involved during the whole secure
communication.

– Type 4: By combining the security and locality extensions above, the scheme can be reinforced
to be of type 4.

Bangerter et al. [1] proposed a scheme that applied the proprietary AXS system2, which
uses special flickering images, for secure communication from S to M, while T is used only for
conveying encrypted messages. Their protocol aims to produce a type 2 verification, but it also
turns out to be vulnerable against man-in-the-middle attacks in our model. Our attack works as
follows. As the adversary has control over all input and output channels of the terminal, messages
from the server can be captured and displayed on the monitor of a dishonest terminal. Even if
the flickering image cannot be relayed, as Bangerter et al. assume, the data is seized on a lower
level. Because the terminal’s identifier is not included in the protocol, there is no way for the user
to detect this man-in-the-middle attack. If the protocol is extended by an adequate identification
procedure of the terminal, it does become a verification of type 2.

2 The AXS system contains hardware and software elements. Each user has a small electronic device,
the AXS token, that has two input channels (an optical sensor and a fingerprint reader) and an output
channel (display). The software element is at the server’s side and its main output is an unforgeable
flickering pattern that can be sent and displayed on the client side. AXS tokens can read and interpret
these patterns as numbers.



Fig. 3. Protocol for verifying a public terminal.

5 General Proposal

In this section, we propose a resilient verification protocol for public terminals that can provide
key exchange (type 3) and optionally identification (type 4) together with the terminal verification
process. First, we present a set of requirements that the protocol has to meet, then we show our
scheme, and finally, we give a brief security analysis.

5.1 Verification Scheme

Our proposal, shown in Figure 3, is based on two previous proposals. Firstly, the scheme in-
corporates key exchange that provides a secure channel for further communication according to
Stumpf et al.’s robust integrity reporting [12]. Secondly, the scheme applies the SiB principle
(see 3.4 and [7]) that enables the identification of the public terminal. A brief description of the
scheme is as follows:

1–4 A fresh integrity report is generated with an additional Diffie–Hellman key exchange (in a
standard cryptographic setup) as in [12]. (Besides the nonce n and the DH key share gb, the
integrity report rep contains a quote that describes the measurement of the current state,
the public key of the terminal, and a certificate about the AIK that is used to sign the whole
report.)

5–8 Having received the integrity report, the server evaluates it (“good” state, signature, key,
etc.) and creates a signed message containing the state and the identity of T as well as the
nonce.

9–10 (a) Depending on whether direct U–T interaction is necessary in the main transaction or
not, the scheme does or does not include identification. In the first case the user, by means
of his mobile device, employs SiB techniques to scan and compare the terminal’s identifier
IDT from the signature and that on the outside of the terminal (IDT ). In the latter case,



in which no direct U–T interaction is necessary in the main transaction, the user does not
initiate identity verification. (b) To verify freshness, the mobile device confirms that the
nonce in the attestation and the original nonce from step 8 are equal. Furthermore, the
mobile device also checks equality of the terminal’s public channel key gb from step 3 and
10.

11 Finally, after validating freshness, channel security, identification, and T’s verified state re-
port, M displays the result to U whether T is in a trustworthy state.

As a result of this verification protocol, the user knows the state of the public terminal; moreover,
M and T have a session key K = gab that establishes a secure and authentic channel between
the mobile device and the honest terminal. If identification supplements the verification (in steps
9–10), the user is also convinced that the honest terminal is the one directly in front of him.

5.2 Security Analysis

Although a comprehensive security analysis has not been carried out in this research, we argue
that the protocol above is of type 3 or type 4, depending on the exclusion or inclusion of identi-
fication, and it meets the security requirements described in Session 3.3. Basically, there are two
cases according to the state of the platform.

If terminal3 T with its TPM cannot produce a valid integrity report, i.e., either the TPM’s
signature is not valid, or the state is not in the set of “good” states, then the verification server
will output “bad” as the terminal’s state in step 6. Since the state – together with the nonce
and the terminal’s identifier – is sent signed by S, it is impossible to change the values without
knowing S’s private signature key. Eventually, M will display to the user that T should not be
used for processing sensitive data. As a result, we get that the scheme is sound, that is, no
malicious terminal T’ can convince U that it is honest.

If T can produce a valid integrity report, there are further evaluations. If the scheme includes
the identification steps in 9 and 10, the IDT in S’s signed message and the identifier IDT on the
casing of the public terminal have to match. Moreover, the nonces generated by M in step 1 and
signed by S in step 7 should be the same as it is verified in step 10. As a result we get that an
honest terminal can convince U that it is honest; therefore, the scheme is complete.

We show that the scheme without the identification method in steps 9 and 10 is of type 3. First,
we show that the channel established in steps 1–4 is secure between M and the honest terminal
T. We need to prevent an attacker to break the channel key, replay previous communications,
and being able to mischievously have M establish a key with T’ instead of T. Since a and b are
only known by M and T, respectively, according to the Diffie–Hellman assumption4, the key of
the secure channel K = gab can only be computed by these participants. Furthermore, the nonce
freshly generated by M (see step 1) prevents replay attacks. Finally, T’s share gb is included in
the integrity report (see steps 2 and 8), therefore it is bound to T. The key verification in step
4 guarantees that the two participants share the same key. Second, we show that it does not
provide identification. It is easy to see that a terminal T’ is able to impersonate T by relaying
all messages between M and T (although T’ can only see encrypted messages). Therefore, the
scheme is of type 3.

By incorporating the identification in steps 9 and 10, the scheme is of type 4 since it provides
not only secure communication between M and T as above, but also between U and T. Since
IDT as well as T’s key share gb are included in the integrity report, M and U communicate with
the same honest terminal.
3 Throughout this section, we refer to the honest terminal as T, while to an adversarial terminal as T’.
4 Informally, the Diffie–Hellman problem is to compute gab from g, ga, and gb without knowing a or b.
The Diffie–Hellman assumption states that in certain groups this problem is hard.



6 Conclusions

We have considered the security problem of verification of a public terminal prior to sensitive
communication between an individual and the terminal. The findings suggest that two indepen-
dent security methods, identification and key exchange, can prevent man-in-the-middle attacks.

While the strongest schemes provide both methods, one of them is often sufficient. When
direct user interaction is required with the public terminal, key exchange, which is computa-
tionally intractable for humans, is not possible. Therefore, in this case terminal identification is
preferred. On the other hand, when a private mobile device can be employed for conveying all
sensitive information, prior key exchange without actual identification is often adequate.

In order to put the problem of verification of public terminals in a broader context, we
construct an overview table (see Table 1) of scenarios that illustrates eight different alternatives
depending on which of the three channels are present for sensitive communication in the main
transaction between a user U, a personal device M, and a public terminal T. They characterise
distinct scenarios, security and channel requirements, and user experience.

U–M U–T M–T Description Requirment Example

0 0 0 No comm. among agents - -

0 0 1 U is not included - -

0 1 0 Only U–T ID (M–T in verification) ATM

0 1 1 No U–M channel ID+KE M is a smart card

1 0 0 T is not included - -

1 0 1 No U–T channel KE ATM with secure PIN entry

1 1 0 No trust can be built low entropy messages one-time password

1 1 1 Full trust ID+KE both U–T and M–T secure

Table 1. All possible scenarios for single-channel communication between a user U, a mobile device M,
and a public terminal T.

We have described a way to analyse verification schemes and, in order to demonstrate the
analysis, we have studied existing schemes and found that some of them failed to provide either
of these methods. We made recommendations to rectify those.

We have designed a generic user-friendly and privacy-friendly protocol that provides both
methods to accompany the verification. The protocol design is modular in the sense that, ac-
cording to the requirements, besides establishing a secure channel identification can be added or
removed.

6.1 Further Research

Although this research can be enhanced in several directions including the verification of not
only public terminals but also other (mobile) devices or the whole environment a mobile device
is placed, we focus on two interesting questions.

As the personal device is often a mobile phone in practice, the presumption that there is
no independent channel between M and S may be eliminated. In this case new protocols can
be designed in which the server can communicate the evaluation result easier as the untrusted
public terminal is excluded.

As mobile phones are ever more disposed to malicious software, the trust assumption about
M can be questionable. Using the model in which T and M are both untrusted but independent
(i.e., assuming that they are not attacked by the same adversary), new protocols can be designed
to verify whether T is in a valid state.
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