
Secure Logging of Retained Data for An
Anonymity Service

Stefan Köpsell1 and Petr Švenda2

1 TU Dresden, Germany, <sk13@inf.tu-dresden.de>
2 Masaryk University, Czech Republic, <svenda@fi.muni.cz>

Abstract. The recently introduced legislation on data retention to aid
prosecuting cyber-related crime in Europe also affects the achievable se-
curity of systems for anonymous communication on the Internet. We have
analyzed the newly arising risks associated with the process of accessing
and storage of the retained data and propose a secure logging system,
which utilizes cryptographic smart cards, trusted timestamping servers
and distributed storage. These key components will allow for controlled
access to the stored log data, enforce a limited data retention period,
ensure integrity of the logged data, and enable reasonably convenient
response to any legitimated request of the retained data. A practical
implementation of the proposed scheme was performed for the AN.ON
anonymity service, but the scheme can be used for other services affected
by data retention legislation.

1 Introduction

The recently introduced legislation on data retention affects—at least in some
countries (e.g., Germany)— systems for anonymous communication on the In-
ternet such as AN.ON [BeFK00] or TOR [DiMS04]. These systems alter the
source IP-addresses of users and these alterations should be logged and accessi-
ble on request from legal authorities (cf., [BeBK08] for a description of the legal
obligations and the usefulness of the retained data).

Standard secure logging mechanisms such as [MaTs09] protect the logged
records sufficiently against unauthorised access (confidentiality), unauthorised
modification (integrity) and in some cases attempt to ensure availability of
records. But when applied to the needs of data retention logging on the log-
ging entity side, newly arising risks remain unsolved as the attacker model has
changed. Potentially sensitive data are present on logging entity side as a result
of compliance with data retention legislation. The logging entity can be forced
to reveal, delete or modify this data—threats that did not exist before as there
was no need to store such data in the first place. Specifically, threats related to
the data retention period must be addressed and mitigated.

Note that the risk for a user to be deanonymised, if the operators of the
chosen anonymity servers behave dishonestly, exists before the introduction of
data retention. But if the operators are honest, the attacker gains an additional
advantage of mounting a successful attack on the anonymity of a given user

292 S. Köpsell and P. Švenda

with the help of retained data. Moreover, it is now possible for the attacker
to start his attack after the fact (i.e. after the activity, the attacker wants to
deanonymise took place). This was not possible before, as the attacker had to
log the anonymised and encrypted traffic at the time of this activity in order to
analyze it later on.

Completely new risks arise from the fact that the logged data is used for
law enforcement. One such attack results in the risk of the attacker modifying
the logged data so that an innocuous user of the anonymity service becomes
suspicious. For an operator of an anonymisation server, the new risk is that an
attacker forces him to modify the logged data in such a way (or at least in a way
which hides the criminal activities of the attacker). So, our solution should not
only protect the users of the anonymity service but also its operators.

A demand for the practical implementation originates from the needs of the
AN.ON anonymity service. This anonymity service has been open to public since
2000 and has to fulfil the legal obligations given by the data retention legislation.
But the proposed logging scheme can be used for other services affected by the
data retention legislation as well. More generally, the scheme can be used for
any logging service where the logged records are accessible only for a limited
time period or where knowledge of cryptographic secrets might lead to personal
threats of the holder.

Our paper is organised as follows: the first section describes the requirements
for data retention logging and summarizes related work. The second section
describes the logging scheme and analyzes security of the scheme. This section
also provides an overview of the steps involved in logging and answering requests.
Selected properties of practical implementation and results of the performance
analysis are given in section three, followed by conclusions in section four.

1.1 Legal and operational requirements on logging of retained data
In this section, we summarize the requirements for the retained data and the
logging procedures. These are general requirements applicable to any service
which needs to be compliant with the EC data retention directive. They can
be derived from the legal obligations (R1–R4) and the operational needs (R5).
Moreover, they can be classified as functional requirements (R1; what the system
should do) and non-functional requirements (R2–R5; how the system should be).
R1: Logged data has to include all statutory categories of data. Article

5 of the data retention directive describes what types of services have to re-
tain which data categories. National implementations of the directive could
extend this. This functional requirement basically states that some mean-
ingful data has to be logged and that logging of (e.g.) random data would
not be sufficient.

R2: Logged data have to be deleted after a specific period of time. This
means that logged records cannot be accessed outside a given data retention
period. In the following text we use the term “outdated” to describe a prop-
erty of a given item (cryptographic key, log entry etc.) to which the access
should be prevented because the related retention period already expired.

Secure Logging of Retained Data for An Anonymity Service 293

R3: Logged data need to be accessible, so that requests from law enforce-
ment agencies can be answered without undue delay.

R4: Logged data have to be secure, so that no access to the logged data
by unauthorised person is possible. This requirement covers confidentiality
as well as integrity of the logged records. Note that in our case the integrity
means that the operator can detect if the logged data have been altered—it
is not necessary that the operator proves something to the third party.

R5: The cost of logging has to be reasonable. It includes the monetary costs
(e.g. initial necessary investments, operational costs) but also the degrada-
tion of the overall performance of the system as well as the organisational
overhead.

1.2 Related work

Mechanisms for secure logging were previously described in the literature, e.g.
[BeYe97,ScKe99,Acco05,Holt06,WSBL08,MaTs09]. One of the presented ideas
was the use forward-secure MACs to protect the integrity of log entries. The use
of hash chains ensures forward integrity, which means that any alterations of the
log entries stored before the system was compromised could be detected.

The common idea of all of the mentioned schemes is to divide the timeline
into several epochs. All log entries which belong to the same epoch are protected
by the corresponding epoch key. Once the epoch is over, the key of that epoch
is destroyed and a new one is generated for the next epoch. Usually the so-
called key evolution scheme is used to derive the next key from the current one.
Normally, one way function is used for key evolution. Thus, it is hard for an
attacker who knows the key of the current epoch to calculate a valid key of any
previous epoch.

But as analysed in [MaTs09] the systems described in [BeYe97, ScKe99,
Holt06] suffer from a so-called truncation attack—“a special kind of deletion
attack, whereby the attacker deletes a contiguous subset of tail-end log entries.”
The idea of using hash chains for log file protection (used in [ScKe99,Acco05,
Holt06,WSBL08]) is patented (US patent 5978475).

The solution presented in [MaTs09] is based on the Forward-Secure Sequen-
tial Aggregate (FssAgg) authentication techniques. The key component of the
FssAgg scheme is the sign-and-aggregate algorithm. This algorithm—which can
be seen as a substitution of the forward-secure MACs used in other secure log-
ging schemes—takes as an input the private key, certain data to be signed and
the aggregate signature generated so far. It computes a new aggregated signature
which covers the given input data and a new private key which is used for gener-
ation of the subsequent aggregate signature. The performance comparison of the
various FssAgg schemes given in [MaTs09] demonstrates that even the fastest
scheme still needs 5.55ms for signing a single log entry. This means that the
overall performance of our anonymity system would be significantly diminished.

294 S. Köpsell and P. Švenda

2 The proposed scheme for secure logging

The following roles are represented in the scheme:

1. Mix operator – is responsible for general maintenance of Mix server(s) and
logging required traffic data into protected log files. Mix operator does not
need to be able to access content of the log files afterwards.

2. Law enforcement agency officer – will issue the data retention request
backed up by court order. The usual procedure is to issue the order and
receive the response in the plaintext. One cannot assume that the law en-
forcement agencies can easily change such procedures e.g. integrate new cryp-
tographic mechanisms.

3. Data retention request responder – the entity responsible to collection and
accession of protected log files, search for entries relevant to particular data
retention request and responding to law enforcement officer. Serves as com-
munication party for an officer.

4. External storage(s) – responsible for the keeping of the log files with re-
dundancy required to provide the reliable backup and integrity protection.

5. Trusted time source(s) – responsible for providing the current date and
time for the decision process about data retention period validity.

As the responsibility of Mix operator is only to keep logging software running
and is usually the same person as the data retention requests responder, we will
refer to both simply as an operator in the following text.

2.1 General assumptions and settings

We have developed a secure logging scheme primarily for our anonymity service
called AN.ON. which is based on Mixes. A Mix [Chau81] is a server which for-
wards messages thereby ensuring that an outsider (e.g. an eavesdropper) cannot
link incoming and outgoing messages. This is accomplished by a combination
of several (cryptographic) mechanisms. In order to enhance the trustworthiness
of the anonymity system, several Mixes are chained together. The sender of a
given message can only be deanonymised if all Mixes along the path of his mes-
sage reveal the linkage between the appropriate incoming and outgoing messages.
Therefore, the use of multiple Mixes offers some protection against the dishonest
Mix operators.

One can imagine our anonymisation service described below as a simple proxy
which a user uses to hide its own IP-address, e.g. towards a Web-Server. There-
fore, the proxy exchanges the IP-address of the user (IPU) with its own IP-
address (IPP). This alteration of the source IP-address (together with a times-
tamp t) has to be retained (cf. requirement R1). For simplicity, we assume that
the IP-address of the proxy will change rarely so that it is not necessary to store
it with every log entry. Finally each log entry can be seen as a pair of IP-address
and timestamp (in our example: (IPU , t)). Multiple log entries are stored within
one log file.

Secure Logging of Retained Data for An Anonymity Service 295

In addition to the Mixes, which are the logging servers generating and storing
the logged data, two other parties are relevant to our setting: the Mix opera-
tors and law enforcement agencies. Mix operator is a legal or natural person
responsible for the operation of a given Mix, and for the implementation of data
retention, which include includes answering the requests for retained data by the
law enforcement agencies.

As IPP of the proxy will be visible in suspicious requests, the law enforcement
agencies ask questions in the form of: “Who was using IP-address IPP at time
tR”. In order to answer such questions we need to search through our log files
for all records with timestamps ti for which: tR − ε ≤ ti ≤ tR + ε. The need
for the parameter ε reflects the fact that we cannot assume that all clocks of all
servers are synchronised. The specific value of ε is usually given by law through
technical regulations.

In order to facilitate the search process, log entries are stored and organized
according to increasing timestamps ti. This is also the natural order they were
generated by the proxy.

We decided that not all log entries should be stored within a one single log
file but rather multiple log files should be generated. In our case we store one log
file per day. The reasons for this are twofold. On one hand, storing log entries in
multiple files would simplify the process of deleting of outdated log entries. On
the other hand, we propose that a dedicated machine, which has no connection
to any communication network should be used for the processing of the law
enforcement requests. Therefore the stored log file related to the timestamp in
question needs to be transferred to that machine. This in turn would result in
an overwhelming overhead if all log entries are stored within a single file.

The logged data has to be stored encrypted and integrity protected (cf. re-
quirement R4). The encryption ensures that the content of the logged data can
not be revealed without the knowledge of the secret key. Of course this is only
true, if the server which logged the data was not compromised at the time of
the data logging. The advantage of encrypting the logged data is that the data
can be protected using available (probably insecure) backup mechanisms. Note
that because of this backup, it is in generally not possible to (provably) delete
the retained data. So the “deletion” has to be accomplished by cryptographic
means (e.g., by destruction of a decryption key3).

2.2 Confidentiality

Confidentiality can be achieved by either symmetric or asymmetric encryption4.
Asymmetric encryption has the advantage that no secret key needs to be stored

3 Deletion of a single decryption key, which is not part of any backup, is much easier
compared to ensuring that every backup copy of a given log file is deleted. This is
especially true if the backup in place is not under full control of the operator of the
anonymisation server itself. This in turn is the usually setting in dedicated hosting
service scenarios.

4 Basically we could also use tamper resistant trusted devices. But as such devices
which are able to store large amount of logged data are not available for reasonable
price to the operators of our anonymity servers we do not consider them here.

296 S. Köpsell and P. Švenda

on the logging server but suffers from poor performance compared to the sym-
metric encryption. The use of symmetric cryptography leads to the problem
where the secret key used for the encryption becomes vulnerable to attack. If
the same key is used for the encryption of multiple log entries the attacker might
be able to decrypt log entries generated before gaining control over the logging
server.

As a compromise, we utilize a hybrid encryption scheme where the symmetric
encryption is used for the log entries itself. The corresponding symmetric key k
is stored within the log file using asymmetric encryption.

For efficiency reasons, we use an authenticated encryption scheme for sym-
metric encryption, AES-128 in Galois/Counter Mode (GCM). GCM [GrVi05] is a
combination of counter mode for confidentiality and universal hashing (based on
polynomial operation in the finite field GF(2n)) for integrity protection. GCM is
one of the NIST approved modes of operation [SP 800-38D] and is part of many
(Internet) network protocols. GCM offers very good performance and is believed
to be patent free.

We use the position of a log entry within a log file as initialisation vector
(counter) for GCM. This allows random access to log entries based on their
position within the log file. Thus, it is not necessary to decrypt the whole log
file while answering a request of a law enforcement agency.

The same symmetric key is used for all log entries of a given log file and for
every log file a new symmetric key is generated. Thus our “epoch” (cf. Section
1.2) is related to a single log file. As mentioned before, the key itself is encrypted
using an asymmetric algorithm. Only the operator of the proxy is in possession
of the private key. Of course, the keys for the asymmetric scheme change from
time to time—but they cannot be changed to often (e.g. on a daily basis) due
to the organisational overhead implied by the necessary key management.

Note that because we use the same symmetric key for a whole log file and
generate log files on a daily basis, an attacker which compromises the logging
server just before midnight might get the knowledge of the symmetric key for
that day and thus compromise the confidentiality and integrity of the related log
file. One way to mitigate such risk is to generate new log files more frequently.
But if the attacker is smart enough to compromise the system and read out
the symmetric key from the somewhat protected main memory, he is very likely
to be smart enough to hide his traces. Thus the fact that the machine was
compromised might be detected only after weeks or even months—making the
protective advantage of more frequently generated log files negligible.

We decided to store the private key on a trusted device. Here, trusted device
is a device able to control access to the private key. Note that we use this
trusted device not only to prevent unauthorised access of third parties to the
private key. Additionally, the access to outdated log files (cf. requirement R2)
is prevented and the risk that the operator is forced by the attacker to decrypt
outdated log files is mitigated by the use of trusted device usage. Therefore, an
important property of the access control to the private key implemented by the
trusted device is, that it not only depends on proper authorisation (e.g. password

Secure Logging of Retained Data for An Anonymity Service 297

of the operator) but on the current time. The idea is, that the trusted device
denies decryption of a symmetric key if the related log file is outdated. Basically
any device which has a TPM and fulfils the requirements on Sealed Storage of
the Trusted Computing Group could be used. But as they are not yet widely
deployed, we decided to use smart cards as a possible alternative.

In order to prevent access to outdated log files the date of the log file has to
be bound to the symmetric key used for that log file. This binding can be accom-
plished by three different mechanisms. The first one uses a key derivation func-
tion to calculate the symmetric key k from the date d of the related log file and
a random value kr. We use KDF3 as proposed in [Shou01] with SHA-512 as hash
function. Thus, the symmetric key k is calculate as: k = SHA-512

(
064|kr|d

)
. kr

is stored in asymmetrically encrypted form within the log file. If later a decryp-
tion of the log file is required, the encrypted value of kr is send together with
d to the smart card which, after proper authorisation and verification that d is
not outdated, outputs k.

Note that the key derivation function is a one-way function, i.e. calculating
k while knowing d and kr is straightforward. But calculating either d or kr from
the other two values ({k, kr} resp. {k, d}) is difficult. Thus, the key derivation
construction ensures that someone who knows k = KDF3 (kr, d) and d cannot
learn k′ = KDF3 (kr, d

′) for any value d′ 6= d. Otherwise an attacker who wants
to learn k′ of an outdated log file with date d′ and who has access to the smart
card can send a valid date d together with the encrypted version of kr to the
smart card.

The second line of defence is to include the date d within the asymmetric
encryption of kr. We use RSA-OAEP for that asymmetric encryption: Enc =
RSA-OAEP (kr, d). Derived from the non-malleability security property of RSA-
OAEP, one can conclude that it is hard for an attacker who knows only Enc
and the public RSA key used, to construct a valid Enc′ = RSA-OAEP (k′r, d′);
where d′ is a valid date, such that he can learn anything about kr from k′r.

The third and final line of defence is to include MAC over d using kr as a key
within the asymmetric encryption. Thus Enc = RSA-OAEP (kr, d,MACkr (d)).
For calculating the MAC we use AES-128-GCM. This construction should make
it even harder to construct valid Enc′ using valid date d′.

Note that the smart card needs to know the current date in order to check
if d is valid or not. How this can be achieved is described in section 2.5.

2.3 Integrity protection

So far we have described the mechanisms used to protect the confidentiality of
the log entries. Now, we want to explain how the integrity of a log file is pro-
tected. Note that the integrity of a single log entry can be verified through MAC
generated during the authenticated encryption (GCM) of that log entry. As al-
ready stated in section 2.2, we use the position of a log entry as initialisation
vector for GCM. Therefore, copying a log entry to another position could be
detected. Finally, we append a footer to the log file which consists of the en-
crypted and integrity protected number of log entries stored within the log file.
Thus deletion of log entries could be detected and as a result provides protection
against the truncation attack.

298 S. Köpsell and P. Švenda

The alternative attack on integrity is to delete a whole log file and create a
completely new one. This is possible, because knowledge of the public key alone,
used to encrypt kr (see above), is needed.

In order to prevent this attack it is sufficient to protect the integrity of the
pair (kr, d). We propose multiple mechanisms to achieve this kind of protection,
namely: digital signatures, distribution and trusted timestamping. As for every
single mechanism the security depends on different assumptions, we propose to
use all of them for enhanced protection.

The “digital signature” mechanism means that the logging server signs the
encryption of the pair (kr, d). Note that the private signature key used by the
logging server has to be changed frequently (in our case on a daily basis). Oth-
erwise an attacker might generate a valid signature even for a log file generated
before the logging server was compromised. In order to facilitate the key instal-
lation and management process, the digital signature key pairs can be generated
in advance (e.g. one for each day of the year). The date (d) for which a given
key pair is valid is encoded as the validity period of the public certificate of the
signature test key.

The “distribution” mechanism means that every artefact involved in the in-
tegrity verification process should be distributed in a way so that it is hard for
the attacker to manipulate all of the copies simultaneously. One way to achieve
this is to utilise censorship resistant P2P-networks such as FreeNet [CSWH00]
or Free Haven [DiFM00]. Another possibility is to send an artefact to a number
of people. In order to prevent denial of service attacks by compromising only
one copy, some form of threshold voting can be introduced. The set of artefacts
to be distributed should include at least a hash value of the encryption of the
pair (kr, d). If digital signatures are used, the public key certificates should be
distributed immediately after their generation.

The “trusted timestamping” mechanism means that every artefact mentioned
above should be timestamped. As mentioned in section 2.2 and further explained
in section 2.5, trusted timestamping servers are already used to prevent access
to outdated log entries. Thus, we can use the same set of servers with little
reorganization.

2.4 Searching for log entries

In order to answer requests of the law enforcement agencies (i.e. search for log
entries) it is not necessary to decrypt a whole log file nor to check the integrity
of a whole log file. It is sufficient to:

V1 verify the integrity of the encryption of the pair (kr, d) (depending on the
protection mechanisms chosen).

V2 verify the integrity of the number of log entries stored within the footer of
the log file. This includes checking if the stored number of log entries equals
the actual number of log entries found in the log file. This can be easily done,
because each log entry as well as the header and the footer of a log file is of
constant size.

Secure Logging of Retained Data for An Anonymity Service 299

V3 verify the integrity of every log entry “touched” during the search process.
We use a binary search to find the first entry i for which ti ≥ tR − ε and
ti−1 < tR−ε. Starting from this entry, we sequentially decrypt the individual
entries until we find the last entry i′ for which ti′ ≤ tR + ε.

The need for of V1–V3 follows directly from the considerations in section 2.3.
V1 ensures that the whole log file is not generated by the attacker, whereas V2
ensures that any deletion of records from the end of the log file can be detected.

The fact that V1–V3 are sufficient derives basically from the observation that
data, which is not input to the search algorithm cannot influence the result of
that search algorithm. Therefore, it does not matter if log entries not “touched”
during the execution of the search algorithm are manipulated by the attacker.
Also, the integrity verification of a given log entry ensures that this log entry is
in the correct position within the log file, as this position is used as initialization
vector.

2.5 Trusted timestamping servers as reliable time source
For the enforcement of data retention period, the smart card needs to know the
current date. Smart cards usually do not have an internal clock. Therefore, the
current date has to be set from the outside. An operator can set the current
date, but this introduces the risk of operator being forced to set an expired date,
enabling the attacker to get access to outdated log entries.

In order to mitigate this risk, we decided that the only the source of time
for the smart card should be (external) trusted timestamping servers (TTS).
Therefore, an additional logical step is introduced in the process of answering
data retention requests, which is activated during every key recovery process.
When a key recovery from the smart card is requested, the smart card creates
its own unique nonce, sends it to the PC application which then creates a time
stamp request according to the “Internet X.509 Public Key Infrastructure Time-
Stamp Protocol (TSP)” [RFC 3161] for every TTS with this nonce included. The
TSP requests are then sent to the trusted time servers5. The smart card verifies
the signed TTS responses, including its own challenge nonces and eventually
updates the internal time according to the time stamps provided (i.e. by means
of some majority decision algorithm). The irrelevant parts of TTS response (e.g.,
chain of TTS certificates) outside digitally signed part with time and nonce can
be stripped off on the PC console to speed up the processing on the smart card.
Note, that the public certificates of the trusted time servers can be installed
immutably on the smart card during initialisation.

2.6 Overall overview
The overall process of initialisation, generation of log entries and answering law
enforcement requests is depicted in figure 1 and figure 2.
5 As the smart card itself has no ability to directly communicate with time servers
we use the PC console as a transparent proxy, with no possibility to undetectably
modify TTS response.

300 S. Köpsell and P. Švenda

Logging
Server TTS Log Processing Machine Smart Card

1. store immutably the public
certificates of the time servers

2. generate key pair

3. retrieve public key c

c

4. set public key c

InitialisationInitialisation

start data retention
5. generate log entries

Retain Data LoopRetain Data Loop

Fig. 1. Logical steps of the data retention compliant logging—initialisation and logging.

The following steps are executed only once during smart card initialisation:

1. The public certificates of the signature keys of the trusted timestamping
servers are immutably stored on the smart card,

2. A unique RSA-2048 key pair is generated on-card (the private key never
leaves the card),

3., 4. The public key c is exported to the logging server.

After this initialisation, the logging server can generate encrypted and integrity-
protected log files (step 5) as described in section 2.

Finally, a request for the retained data is answered by executing the following
steps:

Secure Logging of Retained Data for An Anonymity Service 301

Logging
Server TTS Log Processing Machine Smart Card

6. retrieve log files

log files

7. basic integrity verification (V1, V2)

8. start authorisation
9. request authorisation (PIN)

PIN

10. compute k from RSA-OAEP (kr, d, MACkr (d))

11. nonces for TSP requests12. TSP
requests

TSP timestamps

TSP timestamps 13. decrypt
kr and check
validity of d

k

14. search for matching log entries

decrypted log entries

Process RequestProcess Request

Fig. 2. Logical steps of the data retention compliant logging (continued)—processing
requests.

6. The log files in question (according to the date) are transferred to a dedicated
machine used for a processing of data retention requests.

7. After initialization of the log file processing tool, the basic log file integrity
is verified according to V1 and V2 of section 2.3.

8., 9. The smart card is inserted into the reader connected to the dedicated ma-
chine. The user authenticates himself with his user PIN. Note, that in the
case that the smart card reader has its own display and keypad, the PIN is

302 S. Köpsell and P. Švenda

entered directly on the smart card reader and not on the dedicated machine
as shown in figure 2 step 9.

10. The encryption of kr stored in the log file is sent to the smart card.
11.,12. The smart card generates the nonces used for the requests to the remote

trusted timestamping servers. These requests are generated by the log pro-
cessing tool and sent to the trusted timestamping servers (step 12). The
responses from the trusted timestamping servers are received and relayed by
the log processing tool to the smart card. The smart card verifies the validity
of the received timestamps.

13. The smart card decrypts the encrypted value of kr. If the enclosed value d
is still valid, the smart card calculates k and returns k to the log processing
tool.

14. The log processing tool searches for the requested records and generates a
report which can be sent to the law enforcement agency.

3 Remarks on the practical implementation

3.1 Smart card

We used the smart card with JavaCard platform for our implementation.
We use RSA-2048 as a basic asymmetric encryption primitive, which is im-
plemented in hardware on the smart cards we used (JCOP-4.1 with JavaCard
v2.2.1, SmartMX cryptographic processor). The key generation and the basic
decryption functions are fast. The OAEP mode and SHA-512 hash function are
not available on our platform6 so it was necessary to implemented it on the soft-
ware level with significant performance impact on decryption of kr. The time
required for retrieval of one key was approximately 90 seconds with the current
setup. Nevertheless this time period is still practically useful, provided that the
law enforcement agencies do not request hundreds of files per day. Significant
performance improvement can be obtained with 32-bit smart cards, which might
increase the speed more than twice due to the faster execution of arithmetic op-
erations with larger operand. Smart cards with hardware support for SHA-512
algorithm will provide key recovery process with less than ten seconds. Although
such smart card chips already exist, they were not available to us for our imple-
mentation. But driven by the new JavaCard 3.0 specification, it is anticipated
that more powerful smart cards will be available for end users in the near future.

Note that the GCM mode is not supported by the current JavaCard spec-
ification as well as TSP timestamping requests. Both need to be implemented
in the software. Fortunately, TSP uses only standard cryptographic primitives
(RSA, SHA-1) which are part of the hardware in current smart cards.

6 In fact, these functions are not available on most of the currently available smart
cards.

Secure Logging of Retained Data for An Anonymity Service 303

3.2 Logging performance

So far we assumed that for every log entry a separate authenticated encryption
using AES-128-GCM is performed. Given that the size of a log entry is rela-
tively small compared to the AES-128-GCM block size this would lead to poor
encryption performance and significant storage overhead. Therefore, we decided
to group multiple log entries into a single block. As a consequence, the authen-
ticated encryption carried out in blocks. According to [GrVi05], the block sizes
between 256 and 1024 bytes lead to good performance results. Moreover, the
block size should be a multiple of the AES-128 block size. On the other side
not too many log entries should be grouped together within a single block as
this could negatively impact the possibility of random access to an arbitrary log
entry. Given these constraints and the actual size of a log entry, the number of
log entries per block are calculated automatically by the logging server.

It is important to mention that we use this vector size as it requires no
pre-processing of the initialization vector.

For our implementation of the cryptographic operations on the logging server
we used the “Zork GCM 0.9.5” code (http://www.cryptobarn.com/gcm/). With-
out any extensive optimisations, we measured a speed of more than 85 MByte/s
for block sizes ranging from 256 to 4096 bytes. The measurements were per-
formed using an Intel Core 2 DUO T7700 2.4 GHz CPU. In case of our AN.ON
system a single log entry requires less than 20 bytes with the cryptographic over-
head for a single log entry being less than 0.25 µs. This is notably faster than
the 5.55 ms previously reported by [MaTs09] for an Intel dual-core 1.73 GHz.

Given that every log entry is related to an asymmetric decryption operation
of the anonymisation algorithm, which takes roughly 1 ms, the computational
overhead introduced by the data retention is negligible (cf. requirement R5).

3.3 Search performance

Our dedicated search tool is written in Java utilizing the “Bouncy Castle” cryp-
tographic library (http://www.bouncycastle.org/). The mostly used servers of
our AN.ON system generated log files with speed of roughly 85000 blocks per
day. Because each block contained 128 log entries, the whole log file contains
more than 10 million log entries.

Processing of the whole log file (i.e. decrypting and checking the integrity
of every single block) required about 630 seconds (measured using SUN Java
1.6 and an Intel Core 2 DUO T7700 2.4 GHz CPU). Thus, we needed approx.
7.5 ms per block. Altogether the processing time needed by our tool (e.g. less
than 30 seconds for the search leading to roughly 2800 log entries (ε = 10 s)) is
negligible compared to the overall time need for answering a request by the law
enforcement agency (i.e. checking the validity of the request itself, transferring
the right log files to the dedicated machine, obtaining the decryption key from
the smart card etc.). In summary, we conclude that our logging scheme fulfils
the requirement R3.

304 S. Köpsell and P. Švenda

4 Conclusions

The compliance with the new data retention directive introduces not only bene-
fits for the law enforcement agencies, but also additional risks for the users and
operators of the communication service need to be mitigated. We have proposed,
implemented and start into the practical usage a secure logging service based on
a combination of log file encryption, key recovery with smart cards and data re-
tention period enforcement via trusted timestamping servers. Several categories
of attackers with different capabilities and levels of access to the system were
analyzed.

The main contribution lies in the design and implementation of a practical
system that allows logging required data with only modest impact on perfor-
mance of our anonymity service, which complies with the legal requirements
and does provide additional protection for the holder of cryptographic secrets
necessary to access the logged records. The records can be accessed only if a
cryptographic smart card and its owner are present and the retained data is not
outdated. An operator cannot be forced to reveal logged records outside the data
retention period, because the period is enforced directly on the smart card with
the help of trusted timestamping servers.

The log data of selected German AN.ON servers are protected with the pro-
posed mechanism since 1st January 2009. So far, we did not receive any valid re-
quest for retained data from the law enforcement agencies. Therefore, at present,
we can not evaluate how efficiently will the large number of log entries be han-
dled, and we hope to provide further practical details in the near future.

Future work will focus on the problem of receipt creation. These receipts will
contain provable information on all of the retained data that were released to
the law enforcement agencies and serve as a official record (e.g., based on digi-
tal signatures and fair exchange protocols). While a seemingly straightforward
task, the solution to this problem will have to avoid introduction of new risks
for an operator (caused by possession of additional sensitive data on his side).
Additional requirement that complicates the problem further is a need for a pro-
tection of the AN.ON users’ privacy. The official record itself must not reveal
any sensitive information (e.g. content of the retained data) to an outsider.

The authors would like to thank all anonymous reviewers, Jan Camenisch
and Jakub Švenda for their valuable comments and Microsoft Research for the
generous support which allowed the presentation of this work.

References

[Acco05] Rafael Accorsi: Towards a secure logging mechanism for dynamic systems; in
Proc. of the 7th IT Security Symposium, São José dos Campos, Brasilien, November
2005.

[BeBK08] Stefan Berthold, Rainer Böhme, Stefan Köpsell: Data Retention and
Anonymity Services; Proc. The Future of Identity in the Information Society - Chal-
lenges for Privacy and Security, FIDIS/IFIP Internet Security & Privacy Fourth

Secure Logging of Retained Data for An Anonymity Service 305

International Summer School, Springer, Boston, IFIP Advances in Information and
Communication Technology, volume 298, 2009, 92–106.

[BeFK00] Oliver Berthold, Hannes Federrath, Stefan Köpsell: Web MIXes: A System
for Anonymous and Unobservable Internet Access; Proc. of Privacy Enhancing Tech-
nologies Workshop (PET 2000), Springer, Berlin / Heidelberg, LNCS 2009, July 2000,
115–129.

[BeYe97] Mihir Bellare, Bennet S. Yee: Forward integrity for secure audit logs; Tech-
nical Report, University of California at San Diego, Dept. of Computer Science &
Engineering, 1997.

[Chau81] David Chaum: Untraceable Electronic Mail, Return Addresses, and Digital
Pseudonyms. Communications of the ACM 24/2, 1981, 84–88.

[CSWH00] Ian Clarke, Oskar Sandberg, Brandon Wiley, Theodore W. Hong: Freenet:
A Distributed Anonymous Information Storage and Retrieval System; Proc. of
the Workshop on Design Issues in Anonymity and Unobservability, Berkeley, CA,
Springer, Berlin / Heidelberg, LNCS 2009, July 2000.

[DiFM00] Roger Dingledine, Michael J. Freedman, David Molnar: The Free Haven
Project: Distributed Anonymous Storage Service; Proc. of the Workshop on Design
Issues in Anonymity and Unobservability, Berkeley, CA, Springer, Berlin / Heidel-
berg, LNCS 2009, July 2000.

[DiMS04] Roger Dingledine, Nick Mathewson, Paul F. Syverson: Tor: The Second-
Generation Onion Router ; Proc. of the 13th USENIX Security Symposium, August
2004, 303–320.

[GrVi05] David A. McGrew, John Viega: The Security and Performance of the Ga-
lois/Counter Mode (GCM) of Operation; Proc. of Progress in Cryptology – IN-
DOCRYPT 2004, Springer, Berlin / Heidelberg, LNCS 3348, 2005, 343–355.

[Guer09] Shay Gueron: Intel’s New AES Instructions for Enhanced Performance and
Security; Proc. Fast Software Encryption, Springer Berlin / Heidelberg, LNCS 5665,
2009, 51–66.

[Holt06] Jason E. Holt: Logcrypt: forward security and public verification for secure
audit logs; Proc. of the 2006 Australasian Workshops on Grid Computing and E-
Research, January 2006, 203–211.

[MaTs09] Di Ma, Gene Tsudik: A new approach to secure logging; ACM Transactions
on Storage (TOS), vol. 5, issue 1, ACM, New York, March 2009.

[RFC 3161] C. Adams, P. Cain, D. Pinkas, R. Zuccherato: Internet X.509 Public
Key Infrastructure Time-Stamp Protocol (TSP); August 2001, Proposed Standard,
http://www.rfc-editor.org/rfc/rfc3161.txt.

[ScKe99] Bruce Schneier, John Kelsey: Secure Audit Logs to Support Computer Foren-
sics; ACM Transactions on Information and System Security (TISSEC), vol. 2, Nr. 2,
1999, 159–176.

[Shou01] Victor Shoup: A proposal for an ISO standard for public key encryption;
Version 2.1, 20th December 2001, http://www.shoup.net/papers/iso-2_1.pdf, last
accessed Juli, 28th, 2009.

[SP 800-38D] Morris Dworkin: Recommendation for Block Cipher Modes of Operation:
Galois/Counter Mode (GCM) and GMAC ; U.S. Department of Commerce, National
Institute of Standards and Technology (NIST), Information Technology Laboratory
(ITL), November 2007, http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-
38D.pdf, last access on December, 1st 2008.

[WSBL08] Karel Wouters, Koen Simoens, Danny Lathouwers, Bart Preneel: Secure
and Privacy-Friendly Logging for eGovernment Services; in Proc. of the 2008 Third
International Conference on Availability, Reliability and Security, IEEE Computer
Society, 2008, 1091–1096.

