
1

The impact of formal QA practices on
FLOSS communities – The case of Mozilla

Adina Barham
Hitotsubashi University, Graduate School of Social Sciences, 2-1 Naka,

Kunitachi, Tokyo, 186-8601, Japan
adina.barham@yahoo.com

Abstract. The number of FLOSS projects that include a QA step in the
development model is increasing which suggests that a new layer may be
emerging in the classic “onion model”. This change might affect the
information flow within projects and implicitly their sustainability.
Communities, the essential resource of FLOSS projects, have been extensively
studied but questions concerning QA remain. This paper takes a step towards
answering such questions by analyzing QA mailing lists and issue tracker data
for the Mozilla group of projects. Because the Bugzilla data set contains over
half a million bugs, data processing and analysis is a considerable challenge
for this research. The provisional conclusions are that QA activity may not be
increasing steadily over time but is dependent on other factors and that the QA
team and other groups of contributors form a highly connected network that
doesn’t contain isolates.

Keywords: quality assurance, test, Mozilla, social network analysis,
information flow

1 Introduction

In recent years open source software has become a viable choice for a wider range of
users, overcoming its initial status as a tool used only by experts and hackers. This
phenomenon has led to higher expectations from end-users which translates into a
greater need for responsible management, productivity over time, ease of
maintenance, availability of support, increased quality and other features that now
drive the success of FLOSS projects. This paper investigates whether and to what
extent this change is affecting the way FLOSS communities develop software.

It is no longer a surprise when an open source project's community decides to
adopt methodologies and policies that point more towards a hybrid development
model than towards the bazaar model. This hybrid model combines development
methodologies from traditional FLOSS development such as heavy community
involvement, with those from proprietary development such as a QA phase
comprising a series of elaborate steps taken to ensure a certain quality standard. Even

2

though QA practices are becoming more and more present in FLOSS projects, their
success or failure depends greatly on actual community development [7], in other
words on the project members. Furthermore, characteristics of the community such
as its size [15] are important factors influencing the quality of a software product.
We therefore need an up-to-date understanding of communities' structures and
dynamics.

2 Background and Motivation

Open source software development has evolved substantially to keep up with the
standards imposed by the continuously growing user base and the needs of the
market. This implies refining the development process and pushing it towards a more
sustainable model. But what does sustainability actually mean in this context? The
Brundtland Commission's report defines sustainable development as development
that “meets the needs of the present without compromising the ability of future
generations to meet their own needs” [21]. In the context of open source software,
this includes raising the quality standards of products by implementing more
complex processes and rigorous methodologies. For example, it is safe to assume
that as a project matures so does the testing process around it, which is a truism for
both open source and proprietary software [11].

The importance of quality in open source is recognized as an important issue that
needs to be further studied. This trend is illustrated by current research in the
academic world [1-5], [13], [20] as well as research programs funded by various
organizations and governments such as the Qualipso project [16] or Qualoss [10].

Another important trend in current research consists of analyzing the community
that drives FLOSS using social network analysis. Although these studies focus on
various aspects of the FLOSS community such as structure and dynamics [12], [14],
communication patterns between core and periphery [17],[18] or migration within
the hierarchy of FLOSS projects [9], none have sought to link QA with the rest of
the community. This paper starts to fill that gap.

By analyzing the QA teams within one of the most famous FLOSS organizations
(Mozilla) we can take a first step towards clarifying the position of QA within the
open source community and further develop these findings into QA guidelines that
can be applied to other FLOSS projects. Due to the particularities of each project
there will not be a single recipe for success, but a study of this kind should provide
important insights.

3 Research Questions

Q1: How does a QA contributor fit into the Mozilla community? Although recent
research has defined more than three layers in the onion model [6, 9] it is generally
accepted that a project's community can be split into: active users, co-developers and
core developers. This research aims to investigate the extent to which QA is a step
on the road from end-user to developer, or whether it has become established as a
separate category of contributor.
Q2: What are the characteristics of QA activities within Mozilla? Members of the
periphery also perform some QA tasks such as posting bugs on the issue tracker. It

3

has been noted that for the case of Firefox the percentage is 20 to 25% [18] and it
would be interesting to compare and see the percentage of periphery involvement for
other Mozilla products. Another aspect that should be investigated is how
participants' activities evolve over time considering that QA tasks can vary based on
technical difficulty. For example users may provide automated test tools, which
might suggest that QA may be divided into two subgroups based on activity type.
Q3: What are the characteristics of communication patterns between QA members
as well as with other project participants? The goal of analyzing the characteristics
of communication patterns between QA members is to find the central figures within
the community and observe their evolution over time as social networks have a
continuously changing structure [8]. As previous research has shown, information
access by community members correlates with productivity [19], and for this reason,
interaction of QA with other layers of the Mozilla organization should not be ignored.

4 Data and Research Method

Mozilla has a QA phase in its development in the sense that community members
form a layer that is responsible for the QA process and it is easily identifiable [22]
(meaning that information associated with the QA team such as web pages, wikis,
mailing lists, forums and so on can be easily found). For conducting this study, QA
mailing lists and the issue tracker were analyzed using quantitative techniques and
social network analysis (SNA).
 Mozilla QA has two dedicated mailing lists, Mozilla.dev-quality and Mozmill
developer, which is addressed to more technically aware users. A total of 3689
messages were exchanged (February 2006 – July 2011) between 327 distinct authors.
More specifically 2535 e-mails were exchanged by 293 authors on Mozilla.dev-
quality and 1155 e-mails were exchanged by 61 authors on Mozmill developer. As
expected, the traffic and number of users is higher on the Mozilla.dev-quality
mailing list due to the fact that it is less technical.

The issue tracker (Bugzilla) data set covers all Mozilla products since 1998
containing 687,221 bugs with 5,834,507 associated comments which brings up
processing challenges due to its size. Bug ids range from 0 to 724,339 making a total
of 724,339 where collected bugs represent 94.87% of the id range. The remaining
5.13% were not collected because they were not publicly available or due to bad
html that could not be parsed.

Approximately 4400 distinct project members were identified as assigned to fix
bugs. Without getting the data associated with code commits it is not safe to assume
that these members were also the members that posted the bug fix, but it is safe to
assume that they are code commiters. These users are also active when it comes to
posting bug comments as well as sending e-mails on the QA mailing lists. After
cross-referencing members active on the mailing lists and code commiters, 883 bugs
were found most of which belonging to Firefox.

An interesting detail that can be noticed after analyzing the data in Table 1 is that
most activity levels show a steady increase, which may indicate a growth in the
community as well as an improvement in the information flow between layers of the
community. This improvement is also suggested by the fact that members active on
the mailing lists have bugs assigned to them.

4

Table 1. Activity levels on a yearly basis

 2006 2007 2008 2009 2010 2011

Comments 328846 335323 467087 528199 658030 703857

Bugs 42015 41995 56785 60880 78089 78896

E-mails 343 361 556 1307 739 384

Dev bugs 119571 123234 174742 177776 227123 226555

Dev Comments 258458 271679 375729 449539 541707 561853

Dev e-mails 196 286 343 953 500 264

 If we consider that 11 e-mails (average number of e-mails sent) is the lower limit
for highly active users then Pareto’s principle is somewhat applicable in the sense
that only 16.8% of the users send more than 11 e-mails and 17.69% of users receive
more than 11 replies. Following the same principle, only 4.39% of users show a
higher than average activity posting more than 39 comments and 9.25% more than 6
bugs. From all the e-mails exchanged, 152 (4.12%) were sent by authors that had
sent only one e-mail throughout the period taken into consideration for this research.
On the other hand, 135466 bugs (19.70%) were posted by members that had posted
only one bug throughout the period taken into consideration. Firefox was the Mozilla
product with most of these “hit and run” bugs.
 In this phase of the research, due to the fact that data collection and cleaning took
longer than anticipated, social network analysis techniques could not be applied to
the whole data set. Instead interaction was analyzed between active members on the
mailing list (more than 10 e-mails sent – 55 users) and 10 members fairly active on
the issue tracker. The resulting network does not depict relations between all QA
members and its role is only to offer a sample of the interaction patterns within the
community. After eliminating loops (replies to themselves) this sub-network had a
number of 1433 participants with 2593 connections; 933 of these connections were
formed by more than one interaction. The average degree is 3.16, which means that
the average number of connections a member has is approximately 3.

5 Conclusions

Q1: How does a QA contributor fit into the Mozilla community? Considering the fact
that the Mozilla QA team has dedicated communication channels, one can draw the
conclusion that it represents a separate layer in the community model. Although, at
this point of the research a clear definition of the tasks performed by QA members
has not been made, evidence such as the existence of a QA mailing list oriented to
more technically aware users might suggest that there is more than one type of QA
task.
Q2: What are the characteristics of QA activities within Mozilla? As expected the
activity of members of the community that “hit and run” (open one bug and never
contribute again, send one e-mail and never contribute again) is higher on the Issue
Tracker than on the QA mailing list. This may suggest that QA mailing list members
have a more sustained activity in the Mozilla community. Another difference is that
issue tracker activity has shown an increase over time while mailing list data showed

5

a peak level. This might suggest that mailing list activity may not be related to time
progression but to other variables that need to be found. On the other hand, the
increase in activity on the issue tracker points out the community has grown over the
years.
Q3: What are the characteristics of communication patterns between QA members
as well as with other project participants? Data used for the social network analysis
section of this study was performed only on a sample due to time related issues and
thus a general conclusion regarding communication patterns can't be drawn at this
point. However, the sample shows no small groups of people working together but a
team spanning both mailing lists and issue tracker. In addition, judging by the
activity of QA members and code commiters on the issue tracker it is safe to say that
interaction with other community members has been increasing. This suggests that it
is unlikely that there will be participants that control the flow of information, or
bridges between the QA team and other layers of the community.

6 Limitations and Further research

The purpose of this study is to create a precedent for further research in this direction
in order to come up with general guidelines that can be applied on a wider scale. It is
logical to conclude that by analyzing the structure and behavior of only Mozilla QA,
one can't obtain a foolproof method to successfully implement QA practices due to
the variety and uniqueness of every FLOSS project. In addition, community
members might also use other communication channels that are not publicly
available. This is one reason why findings should be confirmed with a qualitative
follow-up. Another reason to go back to the community is to correlate data peaks and
other anomalies with actual situations.
 In the next phase, social network analysis will be applied to the whole data set
using time frames and with consideration to time decay affecting connections
between members of the community. Furthermore, in order to obtain an objective
categorization of community members it is necessary to integrate previously
acquired results with code comment data. It is essential to separate the QA members
from developers and track their evolution within the community by monitoring their
activity levels within different time frames and in different environments.
 Whether the quality of Mozilla products have improved or not after the
introduction of a formal QA step could represent a valuable assessment for other
growing FLOSS communities. For this reason further phases should also include
quality evaluation and measurement of Mozilla products as well as a classification
and definition of QA procedures within Mozilla.

7 References

1. Halloran, T. J., & Scherlis, W. L.: High quality and open source software
practices. In: 2nd Workshop on Open Source Software Engineering (2002)

2. Hedberg, H., Iivari, N., Rajanen, M., & Harjumaa, L.: Assuring Quality and
Usability in Open Source Software Development. In: First International
Workshop on Emerging Trends in FLOSS Research and Development,
FLOSS’07., pp. 2-2 (2007)

6

3. Michlmayr, M., Hunt, F., & Probert, D.: Quality practices and problems in free

software projects. In: Proceedings of the First International Conference on Open
Source Systems, pp. 24–28, (2005)

4. Schmidt, D. C., & Porter, A.: Leveraging open-source communities to improve
the quality & performance of open-source software. In: Proceedings of the 1st
Workshop on Open Source Software Engineering (2001)

5. Chengalur-Smith I., Sidorova A., Daniel S.: Sustainability of Free/Libre Open
Source Projects: A Longitudinal Study. In: JAIS 11 (2001)

6. Wiggins, A., Howison, J. & Crowston, K.: Social dynamics of FLOSS team
communication across channels. In: Proceedings of the Fourth International
Conference on Open Source Systems (2008)

7. Kilamo, T.: Essential Properties of Open Development Communities. In:
Proceedings of the OSS 2011 Doctoral Consortium (2011).

8. Watts, D. J., A.: Twenty-first century science. In: Nature, Vol. 445, No. 7127, pp.
489-489 (2007)

9. Jensen, C., & Scachi, W.: Role Migration and Advancement Processes in OSSD
Projects: A Comparative Case Study. In: Proceedings of the 29th international
conference on Software Engineering , pp.364-374 (2007).

10. Quality in Open Source Software, http: //www.qualoss.org/
11. DiBona C., Cooper D., Cooper M.: Open Sources 2.0: The Continuing Evolution.

O’Reilly, USA (2006)
12. Crowston K., Howison, J.: The social structure of Free and Open Source software.

In: First Monday, Vol. 10, No. 2 (2004)
13. Spinellis D., Gousios G., Karakoidas V., Louridas P., Adams P. J, Samoladas I.,

Stamelos I.: Evaluating the Quality of Open Source Software. In: Electronic
Notes in Theoretical Computer Science, Volume 233, Proceedings of the
International Workshop on Software Quality and Maintainability (2009)

14. Mockus A., Fielding R. T, and Herbsleb J. D.: Two Case Studies Of Open Source
Software Development: Apache And Mozilla. In: ACM Transactions on
Software Engineering and Methodology, volume 11, number 3, pp. 309–346
(2002).

15. Sowe S., Ghosh R., & Haaland K.: A Multi-Repository Approach to Study the
Topology of Open Source Bugs Communities: Implications for Software and
Code Quality. In: 3rd IEEE International Conference on Information
management and engineering, IEEE ICIME (2011).

16. Qualipso (Trust and Quality in Open Source Systems), http://www.qualipso.org/
17. Oezbek C., Prechelt, L. & Thiel F.: The Onion has Cancer: Some Social Network

Analysis Visualizations of Open Source Project Communication. In: Psychology,
Section 4, 4-9, (2010).

18. Masmoudi H., den Besten M. L., De Loupy C. and Dalle J. M.: 'Peeling the
Onion': The Words and Actions that Distinguish Core from Periphery in Bug
Reports and How Core and Periphery Interact Together. In: Fifth International
Conference on Open Source Systems (2009)

19. Aral, S., Brynjolfsson, E. & Van Alstyne, M.: Productivity Effects of Information
Diffusion in E-mail Networks. In: Proceedings of ICIS 2007 (2007)

20. Aberdour M.: Achieving Quality in Open Source Software. In: IEEE Software,
pp. 58-64 (2007)

21. Burtland Comission: The Bruntland Report. United Nations, (1987)
22. QMO, https://quality.mozilla.org/

