
FLOSS Communities: Analyzing Evolvability

and Robustness from an Industrial Perspective∗

Daniel Izquierdo-Cortazar1, Jesus M. Gonzalez-Barahona1, Gregorio Robles1,
Jean-Christophe Deprez2, and Vincent Auvray3

1 GSyC/LibreSoft, Universidad Rey Juan Carlos, Mostoles, Madrid
{dizquierdo,jgb,grex}@libresoft.es

2 Centre of Excellence in Information and Communication Technologies, Charleroi,
Belgium jean-christophe.deprez@cetic.be

3 PEPITe, Liège, Belgium v.auvray@pepite.be

Abstract. Plenty of companies try to access Free/Libre/Open Source Software
(FLOSS) products, but they find a lack of documentation and responsiveness
from the libre software community. But not all of the communities have the
same capacity to answer questions. Even more, most of these communities are
driven by volunteers which in most of the cases work on their spare time. Thus,
how active and reliable is a community and how can we measure their risks
in terms of quality of the community is a main issue to be resolved. Trying
to determine how a community runs and look for their weaknesses is a way to
improve themselves and, also, a way to obtain trustworthiness from an enter-
prise point of view. In order to have a statistical basement, around 1400 FLOSS
projects have been studied to create thresholds which will help to determine a
project’s current status compared with this initial set of FLOSS communities.

Keywords. Libre software communities, quality models, data mining.

1 Introduction

QualOSS 2 (Quality of Open Source Software) is a research project focused
on the assessment of the quality of FLOSS (free, libre, open source software)
endeavor. A FLOSS endeavor is composed of a set of community members
(or contributors), a set of work products including code, a set of development
processes followed by the community to produce work products, and a set of
tools used to support the endeavor, to produce work products and to run the

∗ This work has been funded in part by the European Commission, under the FLOSS-
METRICS (FP6-IST-5-033547), QUALOSS (FP6-IST-5-033547) and QUALIPSO
(FP6-IST-034763) projects, and by the Spanish CICyT, project SobreSalto
(TIN2007-66172).

2 The QualOSS project is coordinated by CETIC, and includes also University of Na-
mur, Universidad Rey Juan Carlos, Fraunhofer IESE, Zea Partners, UNU-MERIT,
AdaCore and PEPITe. The work described in this paper has been performed, or
coordinated, mainly by the GSyC/LibreSoft group at Universidad Rey Juan Carlos.
More info about the project: http://qualoss.org/



2 Authors Suppressed Due to Excessive Length

FLOSS software component [2]. In other words, a FLOSS endeavor is really
like an enterprise working on FLOSS development projects. In turn, the exact
goal of QualOSS aims at assessing the robustness and evolvability of FLOSS
endeavors.

When acquiring software, enterprises are not only interested to know about
the product and its quality but also interested in who produced that product
and its reputability. For traditional enterprises, reputability can be check based
on financial strength of the software provider. However, for the FLOSS world,
we must find other ways to determine if a FLOSS endeavor (or a FLOSS project)
is serious. This can be done by studying the behavior of a FLOSS community.
In particular, a FLOSS community should behave in a manner to convince
potential FLOSS integrators from industry that it is dependable.

2 Related Research

In the area of FLOSS, several models have been proposed as well, such as Open-
BRR3 or QSoS4. They consider metrics in several realms relevant to FLOSS
development and maintenance, ranging from product to process or community
metrics. In addition, some of them lack the needed benchmarking to fine-tune
the methodologies proposed, and in some cases do not consider some important
aspects of FLOSS development or maintenance [1]. Finally it is necessary to
show that in the case of OpenBRR the number of metrics associated to the
community side are just two metrics. On the other hand, QSoS provides four
metrics related to activity over the source code.

QualOSS is aimed to fill this gap [6], and specifically in terms of commu-
nity assess to provide a methodology whose metrics and indicators are semi-
automatically retrieved and all based on a theoretical framework. Thus, results
are influenced by the existing methodologies and their lack of information re-
garding communities, what we think that it is a key factor to take into account
in software maintenance process, as well as interviews with FLOSS integrators.

3 Methodology

For achieving its aims, QualOSS started by applying a Goal-Question-Metric
methodology, from which relevant goals, questions, and finally metrics and indi-
cators were derived. The computation of metrics measurements and aggregation
for answering questions of the QualOSS quality model was partially automated
with several tools.

Interviews and GQM.

3 http://www.openbrr.org
4 http://www.qsos.org



FLOSS Communities: Analyzing Evolvability and Robustness 3

The first step of the QualOSS methodology consisted of gathering the cur-
rent state of the art on the topic, from a theoretical and empirical point of
view [3]. In addition, some companies were interviewed to know about their
needs, direct or indirect, regarding the quality of software. Those interviews
were held with the goal of identifying the needs from an industrial point of view.
Focusing on the community side, companies with a business model specifically-
based on FLOSS are usually not directly worried to use products still in their
preproduction state and with no stable releases. They highlighted the impor-
tance of the surrounding community and the support it may provide. Therefore
these companies do not hesitate to interact with the community, sharing tech-
nical and non-technical goals

Using the Goal-Question-metric approach, a goal is defined by an issue, a
context, a point of view and the object to analyze. In QualOSS, the issues consist
of identifying the risk to collaborate with a community. The context assumes
that an enterprise considers integrating a FLOSS component and collaborates
fully with the existing FLOSS community. The point of view represents the role
of people in the enterprise who are concerned about the community issue. And
finally, the object to analyze is the FLOSS endeavor itself.

Then, to polish the quality focus it was necessary to create a quality model
based on the ISO 9126 and merging it with the criteria proposed by the com-
panies. From the information above, it is then possible to refine a set of goals
related to community. For each goal, a set of questions determine how to verify
if the goal is fulfill. Those questions are: First: “how can we measure community
robustness?”. Second: “how can we measure community evolvability?”.

Both questions were further elaborated into several sub-questions, with the
aim of characterizing the object of measurement.

Size and Regeneration Adequacy:

– Definition: The degree to which the size evolution and regeneration of a
FLOSS community happens at an adequate rate to maintain a sustainable
community size.

– Questions:
– sra2- New code contributors evolution.
– sra3- New non-code contributors evolution.
– sra4- New core contributors evolution.
– sra5- Evolution of core members who stopped contributing.
– sra6- Balance between new core contributors and those who left the project.
– sra7- Average longevity of committers to the FLOSS endeavor

– sra9- Number of code contributors submitting changes in major releases.

Interactivity and Workload Adequacy:

– Definition: The degree to which the community interacts adequately and
partition the workload among FLOSS community members adequately to
maintain a community cohesion and motivation.

– Questions:



4 Authors Suppressed Due to Excessive Length

– iwa1- Is the number of events adequate (to show a lively community)?
– iwa2- Is the number of code commits adequate?
– iwa4- Are there sub-groups disconnected or are active community members serv-

ing as bridges between these sub groups?
– iwa5- Is there enough community supporting a FLOSS desired version?

– iwa7- Is the current team concerned about the entire source code?

It should be noticed that there are missing questions. Since this analysis is
focused on the source code management system (the most usual data source
found in FLOSSMetrics databases), those metrics related to other data sources
(and so, their questions) have been removed.

Indicators.

For each metric defined above (each metric answers one question), there is
a high-level risk indicator. This indicator measures one aspect of the risk taken
by a company engaging in a full FLOSS collaboration. The QualOSS project
has defined the following four color-coded risk levels, in order of decreasing
risk: black, red, yellow and green. However, it should be noticed that indicators
should not be trusted blindly. In particular, they should not be considered
separately, but rather jointly to form an overall risk picture associated to a
project.

In this paper, we adopt a data-driven approach to define indicators. Using
the notion of quantile, we search for a partition of a metric’s values into a given
number of intervals with equal probability.

To compute our metrics and estimate our indicators, we use data collected
by the FLOSSMetrics [5]5 project. Many of the open-source projects considered
by FLOSSMetrics appear to be very small and are thus not representative of
our population of interest. Indeed, we are assessing the risks associated to a
full FLOSS collaboration with projects. This precludes very small projects for
which, from a business perspective, a fork should be more appropriate.

4 Threats to Validity

As it was said, during the extraction data from the FLOSSMetrics databases,
it did not provide full of data regarding other data sources except for the source
code management system. Thus, what it is presented in this paper is just based
on those metrics which are retrieved specifically from that data source.

It is also necessary to deal with the fact that projects stored in FLOSSMet-
rics database do not represent the whole population of FLOSS projects.

Finally, depending on the policy, projects may have a small set of developers
who are in charge of committing all the changes. This will skew the results
produced by our methodology.

5 http://flossmetrics.org



FLOSS Communities: Analyzing Evolvability and Robustness 5

5 Results for Illustration

In first place, an approach using the slope as our metric and then defining the
indicators showed a lack of information since most of the slopes were pretty
similar. We used another approach based on the slope, but modifying the way
the indicator is calculated. In fact, those indicators are not dependable of a
given statistical approach and some other may be used to improve the indicator
accuracy. Projects presented for illustration are well known projects and even
when the Evince community is more active than the Nautilus’s or HTTPD1.3’s,
all of them show a similar activity in terms of commits per committer, handled
files and other metrics.

Pred. diff. evolution evince nautilus httpd1.3

sra7 8.6044 Y 5.0272 B 7.4484 R 15.7206 G
iwa4 0.3666 G 0.4216 G 0.3168 G 0.0923 G
iwa5 374772.4 B 48282.8 R 246991.9 B -
iwa7 0.145 G 0.1904 Y 0.0491 Y 6.0e-4 B

∆90 sra290 0 Y 0 Y 0 Y 0 Y
∆90 sra390 0 Y 0 Y 0 Y 0 Y
∆90 sra990 0 Y 0 Y 0 Y 0 Y
∆90 iwa190 -0.23327969 R -0.0312513 R -0.20157016 R -0.62113349 R
∆90 iwa290 -1.03448107 R 0.31998312 Y -1.60891953 R -0.76343814 R

∆ sra4 1 G 2 G 0 Y 0 Y
∆ sra5 1 B 1 B 2 B 0 R
∆ sra6 -1 R 0 Y -1 R 0 Y

Table 1: Illustration in some projects using a linear model

6 Conclusions and Further Work

We have presented a way to estimate ”quality” from an industrial perspective
based on statistical analysis of hundreds of FLOSS projects. FLOSS communi-
ties are key actors in the software evolution and maintenance process and better
understanding their behavior through their life will improve the make decision
process.

For instance, checking the tendency by means of the methodology explained
in this paper, we are able to know if a community is growing, or if the number
of core committers is decreasing over and over. Perhaps we are interested in a
specific product and we know that some of its weaknesses are motivated because
of a really high turnover of developers.

Thus, we can check how reliable are the FLOSS communities looking at
the values for the given set of metrics. As it was mentioned, indicators define



6 Authors Suppressed Due to Excessive Length

relative, and not absolute, risks. A low risk does not mean that the metric
value is good, this is just good compared to other projects. In this case, this is
useful if we are interested in guessing the activity of the community, the general
tendency and how it behaves compared to some other set of projects.

As further work, we should say that indicators must be polished by using
new data from FLOSSMetrics (current status of the Melquiades database 6

shows an increase of 600 projects since results were retrieved for this paper).
There are other publicly available data sources which may be checked in order
to add more accuracy to this analysis. Specifically OSSMole 7 or Ohloh 8 are
some examples which have been used for academic purposes. The FLOSSMetrics
project is currently adding data from bug tracking systems what means that
some other indicators will be added using the statistical approach defined here.

We also need to include advanced aspects of community behaviors and how
they can be integrated in the QualOSS methodology. For instance, community-
driven projects show interesting interactions among participants [8, 4, 7].

References

1. J.-C. Deprez and S. Alexandre. Comparing assessment methodologies for
free/open source software: OpenBRR & QSOS (to appear). In Proceedings of
the 9th International Conference on Product Focused Software Process Improve-
ment (PROFES 2008), June 2008.

2. J.-C. Deprez, F. Fleurial-Monfils, M. Ciolkowski, and M. Soto. Defining software
evolvability from a free/open-source software. In Proceedings of the Third In-
ternational IEEE Workshop on Software Evolvability, pages 29–35. IEEE Press,
October 2007.

3. J.-C. Deprez, J. Ruiz, and I. Herraiz. Evaluation report on existing tools and
existing f/oss repositories. Technical report, QualOSS Consortium, 2007.

4. J. M. González-Barahona, L. López-Fernández, and G. Robles. Community struc-
ture of modules in the apache project. In Proceedings of the 4th Workshop on
Open Source Software Engineering, Edinburg, Scotland, UK, 2004.

5. I. Herraiz, D. Izquierdo-Cortazar, and F. Rivas-Hernández. Flossmetrics:
Free/libre/open source software metrics. In CSMR, pages 281–284, 2009.

6. D. Izquierdo-Cortazar, G. Robles, J. M. González-Barahona, and J.-C. Deprez.
Assessing floss communities: An experience report from the qualoss project. In
OSS, page 364, 2009.

7. G. Madey, V. Freeh, and R. Tynan. Modeling the Free/Open Source software
community: A quantitative investigation. In S. Koch, editor, Free/Open Source
Software Development, pages 203–221. Idea Group Publishing, Hershey, Pennsyl-
vania, USA, 2004.

8. A. Mockus, R. T. Fielding, and J. D. Herbsleb. Two case studies of Open Source
software development: Apache and Mozilla. ACM Transactions on Software En-
gineering and Methodology, 11(3):309–346, 2002.

6 http://melquiades.flossmetrics.org
7 http://ossmole.sourceforge.net/
8 http://www.ohloh.net/


