

Using FLOSS Project Metadata in the
Undergraduate Classroom

Megan Squire1 and Shannon Duvall2
1 Elon University, Elon, NC, USA megan@elon.edu,
WWW home page: http://facstaff.elon.edu/mconklin

2 Elon University, Elon, NC, USA sduvall2@elon.edu,
WWW home page: http://facstaff.elon.edu/sduvall2

Abstract. This paper describes our efforts to use the large amounts of data
available from public repositories of free, libre, and open source software
(FLOSS) in our undergraduate classrooms to teach concepts that would have
previously been taught using other types of data from other sources.

1 Introduction

This brief paper describes our efforts to use the large amounts of data available from
public repositories of free, libre, and open source software in our undergraduate
classrooms to teach concepts that would have previously been taught using other
types of data from other sources.

We will first present the brief history of the FLOSSmole community data
repository, and then we will outline the ways in which we have used this publicly-
available data about open source software in our classes to teach standard computer
science and information systems concepts. We conclude with recommendations for
future work in the area of applying FLOSS data in the undergraduate classroom.

2 Background of FLOSS Data

The courses and applications described in this paper use data provided by the
FLOSSmole1 project [4]. FLOSSmole is a collection of datasets about free, libre, and
open source software (FLOSS) development. This project was started in 2004 and is
still active, with approximately 30 gigabytes of data added each month. The
FLOSSmole project team acquires most of the data in the collection, but the project
also accepts data donations from related project teams, and works collaboratively
with teams that collect related data. Most of the data in FLOSSmole now is metadata
describing FLOSS development projects. FLOSS development teams often use
centralized code repositories, sometimes called forges, to help manage the
programming and communication efforts for each software project. Examples of

1 FLOSSmole. http://ossmole.sf.net

364 Megan Squire and Shannon Duvall

public code forges are Sourceforge2, Rubyforge3, or Google Code4. In addition to
providing a centralized place for finding and downloading FLOSS software, code
forges provide services such as mailing lists for discussion among programmers,
version control systems for releasing software, and bug tracking for defects and
feature requests. There are also numerous directories of FLOSS software (such as
Freshmeat5 and the Free Software Foundation6 directories) that attempt to index
FLOSS projects and basic metadata about these projects.

Repositories and directories provide a valuable resource for the software user
community to find and download relevant software, but they also provide a wealth of
data that can help researchers answer questions about the current state of FLOSS
development: how many projects are there, how many people have downloaded the
software, what are the programming languages or operating systems that are most
popular, how are the teams organized, what types of problems are being solved with
open source software, how effective is open source as a development methodology?

FLOSSmole currently collects data from Sourceforge, Freshmeat, Rubyforge,
ObjectWeb7, and the Free Software Foundation, as well as data from the Debian8
project (Debian is a Linux distribution that includes thousands of packages of
FLOSS software). Data is collected from the public web sites of these
forges/directories on a monthly or bimonthly basis, depending on the forge in
question, and this data is re-released through the FLOSSmole web site in a variety of
formats: downloadable text files (tab-delimited for import into Excel or other
software), downloadable SQL files (CREATE and INSERT statements suitable for
import into a favorite database application), and through a live query tool (free
registration required to obtain a username and password).

The data available in the FLOSSmole project is varied and plentiful. There are
over 200GB of data in the database now, all of it available for download or live
query. Each dataset is given a unique number indicating which forge the data came
from, and date on which the data was collected. There are currently 150 datasets in
FLOSSmole, spanning over four years. It is possible to track the evolution of a
project over time by identifying the name of a project and tracing it through the four
years of datasets. It is also possible to analyze the rate of growth in new projects and
the death or waning of existing projects. The next section will address the specifics
of how this database of FLOSS projects can be used to meet various course goals.

2 Sourceforge. http://www.sf.net
3 Rubyforge. http://rubyforge.org
4 Google Code Hosting. http://code.google.com/hosting
5 Freshmeat. http://freshmeat.net
6 Free Software Foundation Directory. http://directory.fsf.org
7 ObjectWeb. http://www.objectweb.org
8 Debian Project. http://www.debian.org

Using FLOSS Project Metadata in the Undergraduate Classroom 365

3 Courses and Goals

There are two main ways that this FLOSS metadata has been used in our courses
here at Elon University: in undergraduate coursework (specifically in the database
administration course), and in undergraduate research experiences (students
conducting individual research projects with faculty mentors).

Other researchers have written about the use of open source software in
undergraduate classes, mostly in reference to the cost savings of using software that
doesn’t require payment [6], of the benefits of having students work on projects that
they may find particularly relevant or advantageous in terms of “real-world”
applications [5, 7], or which might be interesting from an open source culture point
of view [1]. Here we focus on the ready application of a large (and growing),
conveniently located, heterogeneous data set that happens to be about open source
software development. As such, using the data set effectively in classes will
necessarily involve some measure of curiosity on the students’ part about the open
source software development culture and the history of this movement.

3.1 Database Administration

This course is a typical, one-semester introduction to database management and
administration targeted to sophomore-junior level students. The course covers design
of databases, the relational model, structured query language (SQL), and basic
administration of database systems. With a typical enrollment of 20 students, the
course is taught in a computer lab, and serves as an introduction to design and
implementation in both Oracle and MySQL environments. FLOSSmole data is used
in two main ways in this course: first, because the FLOSSmole datasets are so large,
the students have an opportunity to "play with" an extremely large amount of data,
and second, students are given the chance to design new solutions to data integration
issues. We will describe both of these avenues of inquiry here.

3.1.1 Querying Large Data Sets
To learn how to construct queries in SQL, students in the database administration
course are typically given "toy" datasets to manipulate. These datasets can come with
a textbook or are given from the instructor. Typical textbook databases [2,8] may
include a health care application, an online electronic commerce site for a company,
or a university student-course management system. As the students learn design
skills, they are typically asked to use these sample databases until they are able to
create their own databases and populate these databases with sample data. In some
cases, students may learn to load data into their databases with the help of XML files
or bulk upload routines. These are all useful skills and do reflect real-world tasks and
real-world applications. However, students remain unchallenged in contemplating
how to approach a database of this size. Students with experiences consisting solely
of manipulating sample databases that can be easily downloaded or that can fit on a
CD-ROM remain unconvinced about the need for "efficient" queries. Students who

366 Megan Squire and Shannon Duvall

have dutifully learned that it is right and proper to normalize their databases may be
resistant to the idea of de-normalizing. Exposure to ultra-large databases such as
FLOSSmole can make these lessons more effective.

We found that motivating students to consider efficiency in their queries and
designs required databases with dozens of tables, each with millions - and in some
cases billions - of rows. Running queries in this sort of environment is a wholly
different animal than running queries in a sample textbook database. Indexing
becomes necessary, not just a nicety. Using query optimization techniques is
required. Students learn how to kill long queries and how to change server
parameters to limit their exposure to the “bad” queries of other students. Most
important, students are able to comprehend the difference between an un-normalized
database and a de-normalized database. The intentional de-normalization of a
database is a strange idea to students at first, but they quickly see the need to reduce
query-processing time. The concepts behind data marts and data warehousing now
flow naturally as obvious solutions to problems inherent in large data stores.

Yet, we can make the argument that any extremely large dataset could have
presented similar work environment for students. In addition to our bias in favor of
using a dataset with which we are so familiar, the FLOSSmole dataset has some
distinct advantages over other large datasets. First, it is growing at a rapid rate. This
ensures that students will have slightly different experiences with the data from
month to month and from semester to semester, which is good for keeping the course
fresh and relevant. Second, working with FLOSS data gives ample opportunity for
the instructor to field questions and provoke discussion about the philosophy of free,
libre, and open source projects. Students might not get this exposure in other courses
that use proprietary technologies. Finally, there are numerous open questions about
open source software development that these students can actually participate in
answering. Because FLOSSmole is a community resource, many of the researchers
who use FLOSSmole data discuss their findings on the public mailing lists and on
the project wikis. This means that students can try their hand at answering real
research questions using the data in the FLOSSmole system, or they can replicate
findings of other researchers.

Appendix A of this paper lists several questions that students in this course
(spring 2007 and spring 2008) came up with to answer about open source software
development using the FLOSSmole data. Students were first briefed on the goals of
the FLOSSmole project, and they reviewed with the instructor the type of data that
was included in the project database. They then brainstormed lists of “interesting
questions” in small groups. These questions were aggregated by the instructor, and
then the students were sent to a local version of the FLOSSmole database (created
using the publicly-available data dumps) to write the SQL queries that would answer
these questions.

3.1.2 Data Integration
One of the open questions that FLOSSmole researchers grapple with is determining
whether a given project in Repository A is the same as a project listed in Repository
B. There is, of course, no limit on the number of repositories or directories with

Using FLOSS Project Metadata in the Undergraduate Classroom 367

which a project is listed. This means it can be challenging to determine which
projects are the same across these many repositories and directories. For example, is
the project called octopus on Sourceforge the same as a project called octopus on
Freshmeat? How can we be sure? With hundreds of thousands of projects and dozens
of code forges, it is next to impossible to manually match all projects. Common
project names, a highly mobile developer base, and ever-changing web addresses
exacerbate this problem. In practice and in the database literature this broad class of
data integration problems is called entity matching.

After working with the FLOSSmole database for the semester, and reading
background work on this subject [10], students in the database course were able to
propose various heuristics as solutions to this problem. For instance, they recognized
that FLOSS projects lacked a good unique identifier, but they proposed that there
might be a series of other attributes that could be used to identify the projects
instead. For example, most students recognized that some combination of web
address, project name, descriptive keywords, and other attributes like programming
languages or license type could be used to ascertain a match. Students then proposed
various weighting mechanisms for the confidence they felt in using these other
attributes. Finally, students were then able to implement data storage solutions
(including ERD and SQL) for these newly weighted “possible match pairs” in their
own MySQL instances.

After students became familiar with the data in the FLOSSmole database, they
were able to answer questions such as the ones shown in Appendix A in this paper.
Questions 3 and 5 in the Appendix are especially relevant to the entity matching
problem since they deal with cross-matching projects from different forges using the
attributes of those projects. A similar set of questions that more directly address the
entity matching problem is shown in Appendix B.

3.2 Undergraduate Research, I

At our institution we are fortunate that there is ample opportunity for undergraduate
research with faculty mentors. One student has been working with the FLOSSmole
project as a developer for two academic years. He joined the project after first being
introduced to FLOSSmole data in the database administration course described
above in his second year at Elon. The main contribution of this student was to write
and maintain a framework application for the data collection tasks at the largest
forge, Sourceforge. The student used the Python programming language and the
background knowledge gained from a separate parallel processing and distributed
computing course to implement a distributed job queueing system. This student has
subsequently expanded the job queueing system to handle additional important
forges (such as Eclipse9 and Debian) and to handle additional tasks, such as
collection of public mailing list data. He is currently working to expand the job

9 Eclipse.org. http://eclipse.org

368 Megan Squire and Shannon Duvall

queueing system to run on a grid architecture with workload management features,
such as Sun Grid Engine.

3.3 Undergraduate Research, II

Another student in her third year of study has been involved in the FLOSSmole
project from the perspective of studying information architecture. She has been
documenting the database schema and creating a wiki for end-users to understand
what data is available and how to better interact with the FLOSSmole database. As
part of this project, this student has used skills from previous courses including
database administration (described above) and web development. She has also begun
a long-term analysis of community-based data archives from other fields, such as
biology [3], to compare what features from these other resources could be used in
FLOSSmole.

3.4 Undergraduate Research, III

Finally, a fourth-year student has been working more extensively on the entity
matching problem described in 3.1.2 using techniques learned from our Artificial
Intelligence course (further discussed in 4.1.2 below). In particular, he is using the
ID3 algorithm [9] to automatically learn a decision tree for deciding if two entities
are a match. The original algorithm uses attribute-value pairs (such as “Name fields
match - yes, no, or somewhat”) and results in a decision tree which makes a binary
decision of whether or not the entities match, optimizing the tree to utilize the fewest
attributes possible. The student is extending the ID3 algorithm to incorporate a
probabilistic “belief” measure indicating how sure the value for the attribute is. The
algorithm builds the tree not according to minimizing number of attributes but to
maximizing the belief measure of the outcome. The new algorithm better fits the
problem of entity matching where values are not rigidly defined.

4 Results and Future Work

We would like to be able to extend our work using FLOSSmole to other areas of the
Computing Sciences curriculum. Two curricular areas that seem the most promising
are the introductory management information systems course and an upper-division
course on artificial intelligence. Both of these courses would benefit from using the
FLOSSmole data to provide the same sort of relevance and challenge that students in
the database administration courses have experienced. In some cases the work
performed by students in the undergraduate research projects described in Section 3
could be precursors to generally-applicable assignments for these other classes.

Using FLOSS Project Metadata in the Undergraduate Classroom 369

4.1.1 Management Information Systems

In the MIS course (typically a course taught to first- or second-year students in
information systems and the School of Business), students investigate the application
of information systems to solve business problems and to make business decisions.
Systems development and the build-versus-buy decision are obviously parts of such
a course, and so open source software is already part of any current and updated MIS
curriculum. It would be interesting to have students study the FLOSSmole data and
business-friendly reports about open source such as the Open Business Readiness
Rating10 [11] to understand the issues around using FLOSS in business. The
OpenBRR is an attempt to standardize the ratings of open source products as “ready”
for use in business. The OpenBRR uses and extends FLOSSmole data to make some
of its conclusions about the relative maturity levels of various FLOSS products.

4.1.2 Artificial Intelligence

The Artificial Intelligence course teaches concepts such as intelligent search,
machine learning, probabilistic reasoning, and natural language processing, and the
FLOSSmole data can be used as a real-world application for these techniques.
Section 3.4 describes one student's use of probabilistic reasoning and machine
learning techniques to study the entity matching problem. Another possible project
is the automatic collection of new data straight from the individual websites of the
FLOSS projects. Students can use natural language processing techniques to “read”
the sites and parse out the desired data that augments the project data already in the
forge. As for the database class, using the FLOSSmole data would motivate using
efficient and intelligent algorithms for dealing with large amounts of real-world data.

5 Concluding Remarks

Our use of FLOSSmole data in several undergraduate courses was initially spurred
by our university’s mission to focus on engaged learning for undergraduate students,
and by its adoption of a teacher-scholar model11 for achieving greater integration
between a faculty member’s teaching and research interests. We found that using
real-world data sets and real-world business problems brings disciplinary problems
into sharper focus for students, and we felt that if the data sets had further integration
with our own research interests, this would be even more relevant and interesting to
the students. What we found was that in the regular classroom, the use of the
FLOSSmole data sets did provide a low-stakes but interesting problem domain for
students to practice their skills. In the undergraduate research milieu, FLOSSmole

10 Open Business Readiness Rating. http://openbrr.org
11 Elon Teacher Scholar Model. http://www.elon.edu/e-web/academics/teacsch.xhtml

370 Megan Squire and Shannon Duvall

problems were of a reasonable size and difficulty level for our students to tackle
effectively. With minimal background coursework, students were able to contribute
new features to the project, or were able to provide effective solutions to real
research problems.

6 References

1. Dionisio, J. D., Dickson, C. L., August, S. E., Dorin, P. M., and Toal, R. (2007). An open
source software culture in the undergraduate computer science curriculum. SIGCSE
Bulletin. 39, 2 (Jun. 2007), 70-74.

2. Elmasri, R. and Navathe, S.B. (2004). Fundamentals of Database Systems (4 ed). Addison-
Wesley.

3. Howe, D., Costanzo, M., Fey, P., Gojobori, T., Hannick, L., Hide, W., Hill, D.P., Kania,
R., Schaeffer, M., St. Pierre, S., Twigger, S., White, O., & Rhee, S.Y. (2008). Big data:
The future of biocuration. Nature, 455. 47-50, 4 September, 2008.

4. Howison, J., Conklin, M., & Crowston, K. (2006). FLOSSmole: A collaborative repository
for FLOSS research data and analyses. International Journal of Information Technology
and Web Engineering, 1(3), 17–26.

5. Meneely, A., Williams, L., and Gehringer, E. F. (2008). ROSE: a repository of education-
friendly open-source projects. In Proceedings of the 13th Annual Conference on Innovation
and Technology in Computer Science Education (Madrid, Spain, June 30 - July 02, 2008).
ITiCSE '08. ACM, New York, NY, 7-11.

6. O’Hara, K. J. and Kay, J. S. 2003. Open source software and computer science education.
Journal of Computing Sciences in Colleges. 18, 3 (Feb. 2003), 1-7.

7. Patterson, D. A. (2006). Computer science education in the 21st century. Communications
of the ACM 49, 3 (Mar. 2006), 27-30.

8. Ramakrishnan, R. and Gehrke, J. (2002). Database Management Systems (3 ed). McGraw-
Hill.

9. Russell, S. and Norvig, P. (2003). Artificial Intelligence: A Modern Approach (2 ed).
Prentice Hall.

10. Squire, M. (2009). Integrating projects from multiple open source code forges.
International Journal of Open Source Software and Processes, 1(1), 46-57. January-
March, 2009.

11. Wasserman, A., Pal, M., and C. Chan (2006). The Business Readiness Rating Model: an
Evaluation Framework for Open Source. In Proceedings of the EFOSS Workshop, June 8-
10, 2006. Como, Italy.

Using FLOSS Project Metadata in the Undergraduate Classroom 371

Appendix A

Here are five sample queries for students in the Database Administration course to
work out using the FLOSSmole database. The goals of this course are discussed in
this paper in section 3.1.1.
1. What are the most popular programming languages used on Sourceforge? In your

query, list most popular first, least popular last. Construct a graph or chart to
display these values visually.

2. Gather the data to show the change over time in using the terms ‘free’ and ‘open’
to name new projects on Sourceforge. Construct a line chart showing the relative
popularity of these terms over time.

3. How many projects on each forge share a name with a project on another forge?
In other words, how many projects on Freshmeat share a name with a project on
Rubyforge? How many Rubyforge projects share a name with a project on
Sourceforge? Write queries to determine these values, then design a diagram to
show all pair-wise forge comparisons and their numbers of shared project names.

4. Compare team sizes on Rubyforge, Sourceforge, and ObjectWeb. Each
development project has a size, from single-person projects all the way up to
hundreds of developers working on a project. Collect the number of projects in
each size category for each of these forges, then show these various sizes on a
graph for each forge.

5. Write the code to determine the following, then construct a table summarizing
the answers: number of Sourceforge (SF) projects listing at least one
programming language, number of SF projects listing zero languages, number of
SF projects listing at least one operating system, number of SF projects listing
zero operating systems, number of SF projects listing a license type, number of
projects listing zero license types. Does your table look similar to Table 2 in
[10]? Why might your table look different?

372 Megan Squire and Shannon Duvall

Appendix B

Here is a question that prepares students to discuss the concept of entity matching,
described in this paper in section 3.1.2.
1. Using the FLOSSmole data mart (“small collection of data”) on the Elon

database server, write the SQL that would generate the information shown in the
figures below. In other words, what sort of queries would you have to run in
order to be able to have the data to draw a graphic like the ones in Figure 1 and
Figure 2 below?

The students do not know this at the time they are given the question, but these
figures are taken directly from [10]. After working with this data, the students are
given this research paper to read and discuss. In a subsequent assignment, the
students are challenged come up with alternatives to the entity matching heuristics
given in this paper.

Using FLOSS Project Metadata in the Undergraduate Classroom 373

