
Opening Industrial Software:
Planting an Onion

Petri Sirkkala, Timo Aaltonen, and Imed Hammouda
Tampere University of Technology

{petri.sirkkala, timo.aaltonen, imed.hammouda}@tut.fi

Abstract. This paper studies the problem of building open source communi-
ties for industrial software that was originally developed as closed source. We
present a conceptual framework for planning the early stages of the release pro-
cess highlighting the main stakeholders and concerns involved. The framework
is illustrated by means of three industrial software platforms reporting first expe-
riences of the community building process. In order to measure the effectiveness
of the approach, the use of a quantitative and qualitative evaluation framework
is advocated.

1 Introduction

Open Source Software (OSS) is gaining momentum in several forms. In addition to
the huge increase in the number of open source projects started and the remarkable
rise of OSS adoption by companies, new models of participation in the movement are
emerging rapidly [7]. For instance, companies are increasingly releasing some of their
proprietary software systems as open source on one hand and acquiring open source
software on the other hand. For all these forms of involvement, a central question is
how to build and maintain a sustainable community of users and developers around the
open source projects.

Research findings show that developing and maintaining online communities in
general is a complex activity [14]. In the case of open source communities, the situa-
tion is worsened as the problem is multi-facet bringing own kinds of challenges. For
instance, this can be viewed as a social question: OSS communities typically come
with own kinds of social structures [6, 12] that should be tolerated by existing organi-
zational patterns in companies. From a legality viewpoint, the selected licensing type
and scheme, for example, can affect the way the open source project is perceived by
the community [18]. On the technological and technical side, influential factors include
the quality of the software and the availability of support infrastructure [8].

Existing research work on open source communities focuses mainly on studying
and analyzing various properties of communities (e.g. [13]). There is, however, little
work done in the area of building new communities and sustaining exiting ones in the
context of the new rising models of open source software.

In this paper, we study the problem of open source community building in the
context of opening industrial software that has originally been developed and used
as closed source. In particular, we study the requirements of the community building
process and the important issues that should be addressed for preparing a release plan.



60 Petri Sirkkala, Timo Aaltonen, and Imed Hammouda

For the purpose a conceptual framework, which is based on the widely recognized
onion structure of open source communities [12], is introduced.

In order to evaluate our approach, the conceptual framework has been applied in
the context of three industrial software platforms provided by three Finnish compa-
nies. The key findings of the case studies are based on interviews and questionnaires
conducted with the companies in addition to our role in the projects as external tutors.

We proceed as follows. In Section 2, we present a general framework for open
source community building. In Section 3, we study the problem in the context of three
case studies. Section 4 presents an evaluation framework to be used for measuring the
success of our example communities. In Section 5, we study related approaches and
works. Finally, we conclude with final discussion in Section 6.

2 Framework for Releasing Industrial Software

Building a viable open source community for an industrial software is a complex ac-
tivity that has to be carefully planned. Prior to the actual release of a software as open
source, the publishing company should address a number of important issues which
represent essential ingredients to the release plan where actual resources and action
points are identified. These issues can be grouped into three categories: the organiza-
tional entities involved in the release process, the objectives of the different parties, and
the nature of the new born community. We will address each of these three concerns
in the following subsections.

2.1 Elements of Release Process

Releasing an industrial software as open source involves multiple stakeholders with
possibly different objectives and conflicting interests. It is vital that the building pro-
cess balances the forces of the stakeholders so that a least minimal satisfaction level
is reached by all parties. Also issues like societal norms and legal matters should be
considered. Any action not considering these forces could compromise the success and
viability of the community.

Figure 1 depicts the main stakeholders involved during the early phases of the
building process. There are three main groups of stakeholders: the publishing entity
with its allocated resources for the project, the industrial partners and theirs develop-
ers, and finally existing open source communities and other individuals. As discussed
earlier, OSS communities tend to take the shape of an onion with the inner layers tak-
ing more leading and contributing roles than the outer layers. The position of each of
three groups of stakeholders in the onion structure is determinant by factors like fa-
miliarity with the project, objectives, and availability of skilled resources. Compared
to the other two groups, the publishing entity is most familiar with the software to be
released and most willing to invest in the building process. Thus, the role of this entity
is essential and can in fact be viewed as multi-fold.

In addition to the software to be released, a number of skilled developers from
the original development team should be allocated to form the core of the new-born



Opening Industrial Software: Planting an Onion 61

Developers

Publishing entity
(software, 

infrastructure, 
legality, process)

Open Source Communities &
 individuals

Developers & 
Observers

Core

Industrial 
Partners

Fig. 1. Elements of OSS Community Building

community. The role of the developers is to lead the development of the software and
to interface with the rest of the community members as they join.

Furthermore, the entity should provide a proper infrastructure for the project to fa-
cilitate the planning, coordination, and communication between the community mem-
bers. The infrastructure should be established according to the principles and work
mode of open source communities, thus it may differ from the proprietary model. For
the development community to contribute to the project, efficient mechanisms and
tools are needed to facilitate the access and management of the project repository. Ex-
amples of enabling technologies and tools include website, version control system,
defect tracking system, Wiki, mailing list, blog, Frequently Asked Questions, etc.

From a legality viewpoint, a license type (e.g. GPL versus LGPL) and a licensing
scheme (e.g. single or multi licensing) should be decided as this may affect the way
the open source project is perceived by the community. The license decision should
take into considerations issues like popularity of the license, compatibility with other
licenses, business restrictions. Also, the source code should be legally cleared before
being released. This includes copyright and IPR issues. Furthermore, the availability
of trademarks and names should be checked. Often, names given for software projects
and products are not problematic as long as they are used internally but may conflict
with existing same names as soon as they become public.

The publishing entity should also define a process through which the elements of
the infrastructure are coordinated to guarantee access to the open source project includ-
ing access to source code, contributing to the project (patches, wish lists, bug reports,
bug fixes, documentation, and developer support) and reaching other community mem-
bers. Finally, the publishing entity should be aware of the dynamics of open source
communities. It is important that the existing bureaucracy and organization structures
do not conflict with the "‘ release early, release often"’ principle of open source.



62 Petri Sirkkala, Timo Aaltonen, and Imed Hammouda

In case the publishing entity has industrial partners associated with the software to
be released, those partners might also be interested to get involved in the community.
Typically, there are two kinds of partners: enthusiastic and conservative. Enthusiastic
partners are in favor of releasing the software as they see it as an opportunity for their
business. Betting on the success of the community, these partners usually participate
with developers to contribute to the development of the software and stay close with
its evolution. Therefore, those developers are closer to the core team and might have
key roles in the community.

Conservative partners however are reluctant for the software to go open source as
this may change their mode of operations and business. Still, those kinds of partners
would like to observe the evolution of the software and the outcome of the community
by having own members in the community. Though familiar with the software, those
observers are closer to outer layers of the onion structure as they don’t assume any key
development role in the early phases. It is of course possible that there are no industrial
partners involved when releasing a software. In this case, the publishing entity should
replace the void in the middle layer(s) of the onion structure by allocating more of their
own resources and get other companies interested to the project.

The other vital element in the community building process is the existing open
source communities and other individuals. The individuals could as well represent the
interests of companies that are not partnering with the publishing entity. The software
to be released should be carefully introduced to this group because existing communi-
ties and other individuals represent a pool of potential contributors who could join the
project if they get interested and motivated. It is possible that individuals joining the
new-born community do not have any earlier experience with open source projects. In
any case, the new comers typically join the community as passive users and then may
take key roles as they show commitment and value, thus penetrating the onion struc-
ture inward from outer layers. For this to happen, a well-defined developer promotion
policy needs to be in place.

2.2 Objectives for Releasing Software

Objectives in industrial open-source setting has been studied for example in [4]. Tra-
ditionally the motivations of the stakeholders can be divided to intrinsic and extrinsic
ones [4]. The former include motives like hedonic, political issues, altruism and peer
recognition. Examples of the latter are direct payment, learning, user needs and repu-
tation.

According to [4] the highest-ranking incentive for companies is that “[OSS] allows
small enterprices to afford innovation”, getting feedback is the second, and quality is
the third one. For more information we refer to [4].

Based on our initial work, we have divided the objectives into three categories:
Marketing, Business Models and Shared cost. Another classification could be quanti-
tative and qualitative.



Opening Industrial Software: Planting an Onion 63

Marketing:

Boosting the field. The company wants to foster the business around their field of
operations or to improve the technology in their business area.
Marketing. Releasing a software as open source makes the product familiar to people,
which may facilitate the marketing and sales process.
Recruiting. The community built around the released products provides a pool of
potential employees with a technical knowhow of the company’s field. The company
seeks to recruit skilled members of the community.
Reputation. The company wants to send a message about their involvement in Open
Source hoping to gain reputation.
Promotion of the system. The objective is close to marketing.

Business Models:

Software As A Service (SAAS). The company wants to build business model around
hosting the released product. The company might also provide services based on the
product.
Internal usage. The released product is used in house to support company operations.
The goal of the release is to improve and evolve the product by the community.
Networking. The company wants to build a network of companies and communities
in the field. The company may exploit the network for operational needs.
Knowledge. Company is interested in learning about the OS ecosystem, the release
process, and how the OS will affect their business and operating models.
Consulting. The company wants to build business based on giving consultancy about
the released product.
Codevelopment. The company wants to develop infrastructure with other parties, so
that everyone can benefit.

Software:

Functionality. The company aims at adding new fuctionality or features to the soft-
ware through community participation.
Quality. The company’s goal is to collaborate with the community to improve the
overall quality of the product such as stability, usability, and documentation.

In addition, the publishing company should spell out the objectives, expectations,
and concerns of industrial partners and open source communities involved in the re-
lease process, reflecting on the reasons why those should get interested in the project.
The objectives of the other parties should be regarded as essential factors for the suc-
cess of the project.



64 Petri Sirkkala, Timo Aaltonen, and Imed Hammouda

2.3 Nature of the New-born Community

A central question when releasing a software as open source is the kind of community
to be built for that software. For instance, the publishing entity needs to characterize the
new born community with respect to its type (company-based, volunteer, or mixed),
the dynamics of its onion structure, and the way the community should evolve.

In the case of volunteer communities, developers are contributing to the project
for free and are driven by a hacker attitude. In contrast, company-based communities
are more tied to company objectives and most of the developers get paid for their
contributions. Communities that mix both volunteers and developers working for a
salary are referred to as mixed communities.

The publishing entity should also think about the dynamics of the onion model
structure. For example, it is important to decide on how close or open the core group
would be. In the case of a closed core, developers cannot make it to the core as this
will be controlled by the company. In an open core model, developers may be pro-
moted to leading roles based on on their merits, i.e. their contributions, capabilities,
and reputation.

Furthermore, the publishing entity should have vision or expectation on the topol-
ogy of the new born community in the long run and its relation with existing open
source communities. For example, the new born community could be part of an exist-
ing community or totally independent. Depending on the nature of the software to be
released, the new born community may be planned and built as an ecosystem of related
smaller communities. In this case, each small community could focus on a specific part
of the project. In the next chapter we discuss three cases of community building for
industrial software.

3 Case Studies

In order to evaluate our approach we have applied our conceptual framework to three
industrial case studies. Two of the cases are in early state of opening and one has
been opened before our study. We have queried the companies about the details of the
release framework. The answers to our queries have been collected in tables below.
Finally the NoTA case is presented in more detail.

3.1 Contextual Framework for the Cases

We applied the framework to the three industry cases that were releasing a software as
open source. The cases are introduced here in alphabetical order. Then we present the
entities, objectives and nature of the community for each case.

ITMill Toolkit is a web user interface framework for developing Ajax web appli-
cations. It was originally developed by a company ITMill. The software was released
into open source late 2007. ITMill Toolkit 5 uses Google Web Toolkit and comes with
Apache 2.0 open source license. Our second case is Network on Terminal Archi-
tecture, or NoTA. It is a modular service-based architecture framework for embedded



Opening Industrial Software: Planting an Onion 65

devices. NoTA was first developed in Nokia. The software was opened in summer
2008. NoTA 3.0 is dual licenced under GNU GPL v2 or with a commercial royalty
free licence. Finally Wringer is an User Interface scripting engine for embedded de-
vices. Wringer was originally developed by Sesca Embedded Solutions and it is to be
released under GPL license in 2009.

The entities depicted in Figure 1 are listed in Table 1 within each case context. The
stakeholder objectives given by the companies are shown in Table 2. Objectives are
listed as prioritized list and refer to section 2.2. The intended nature of the community
of each case is shown in Table 3. These tables are based on our queries to the releasing
companies.

Table 1. Entities of OSS Communities
Software Industrial partners Targeted open source communi-

ties
NoTA Semiconductor manufactur-

ers, Other mobile device
manufacturers

Embedded and distributed systems,
Device architectures, Open stan-
dards

ITMill
Toolkit

Customers using product,
Consulting clients

Web development, Java (Java EE),
Google Widget Toolset

Wringer - Embedded systems, Software engi-
neers targeting mobile devices, UI
applications, Operational displays,
ICT Automation, Javascript

Table 2. Objectives for Open Sourcing the Product
Software Objectives
NoTA 1. Networking 2. Knowledge 3. Boosting the field
ITMill
Toolkit

1. Marketing 2. Consulting 3. Networking 4. Reputation 5. Re-
cruiting

Wringer 1. Recruiting 2. Consulting 3. Knowledge 4. Networking 5. Rep-
utation 6. Boosting the field

Our key findings suggest that networking, recruiting and consulting are the most
important objectives. On the the other hand SAAS, internal usage and reputation are
the least ones. As for the nature the intended community it seems that the diversity is
high.

3.2 NoTA Case in Detail

Nokia has released NoTA software from the cathedral of the corporation into the
bazaar of a new open source community [15]. Figure 2 illustrates the elements in



66 Petri Sirkkala, Timo Aaltonen, and Imed Hammouda

Table 3. The Nature of the Intended Community
Software Community type Core group Intended future
NoTA Company based Closed Ecosystem of related

communities
ITMill
Toolkit

Mixed Closed Independent commu-
nity

Wringer Volunteer Open Closely connected
with GTK+ bindings
community

this case. The solid elements represent the state before release or the cathedral state,
and the dashed elements stand for the released or bazaar state.

Open Source communities
& individuals

Open Source communities
& individuals

Open Source communities
& individuals

Industrial
partnersPublishing

entity

Nokia 
Corporation

Legal dept.
Public 

Relations

NoTA Product 
& Developers

Enthusiastic 
Industrial 
Partners

Publishing 
entity

NoTA 
Community

Open Source 
Communities

1.2 
willingness

decision

part of
1.1 

part of

success

success

Conservative 
Industrial 
Partners

no success
business

business

2.2 
existence

2.1 
participation

2.3 
success

part of funding

Fig. 2. Elements of the NoTA OSS Community Building Process

In the figure the squares are the instances of entities discussed earlier in section 2.1.
The hatched areas are the generalized entity groups. The Publishing entity is part of
Nokia, in this case a project team. Enthusiastic Industrial Partners, including Semicon-
ductor manufacturers, are doing business with Nokia and they also are keen to see the
NoTA Product to succeed. The Conservative Industrial Partners would prefer to keep
the current business as usual and, therefore, they would rather see NoTA not to suc-
ceed. The targeted open source communities were enumerated in Table 1. The NoTA
Community in Figure 2 refers to the onion in Figure 1.

The steps to initialize the community were described in the release plan of NoTA.
Let’s focus now in the dashed portion of Figure 2. The first step, (1.1) in the process
of opening NoTA, was to fill the Public Relations position. The Public Relations per-
son needed to be in close co-operation with the developers to ensure the insight of the



Opening Industrial Software: Planting an Onion 67

product was properly channeled to Open Source Communities. The Public Relations
depends on the willingness of the Open Source Communities (1.2). The Public Rela-
tions needs to motivate the Open Source Communities by making positive perception
of NoTA and Nokia. This requires transparency to make clear that the they have no
hidden objectives [9, p. 164]. Any monetizing attempts need to be carefully thought to
avoid bashing the community [9, p. 164]. The methods include sending positive tone
messages. Also it requires being prompt in answering any queries.

The next step (2.1) is to have the members of open source communities to partici-
pate in Community. This yields to networking of developers which in turn strengthens
the Platform Community and achieves Nokia’s objective of networking. The develop-
ers that belong into multiple communities act as bridges between projects [19] and
might influence other communities into joining efforts. Participation can be endorsed
by building community infrastructure for communication, bug reporting, downloads
etc. Defining the processes to incubate other projects and policies to penetrate the
onion model will also help members to participate [19]. Core developers must com-
municate with the community through the infrastructure [9, p.164]. Participation can
also be promoted by contests and academic projects. Existence in (2.2) can be strength-
ened by having organized structure in community and stating clearly the goals and ob-
jectives of the community. Success of NoTA (2.3) can be endorsed by Nokia showing
keen interest in it and organizing conferences, competitions and academic publications
around the product.

4 Evaluation

Subsection 2.2 enumerated possible objectives the company may have for the open-
ing the software product. In this section the conseptual framework is augmented with
evaluation of the success of the opening. First a number of low-level measures is enu-
merated, and the we sketch a model for refining the measures for assessing whether
the company is reaching it’s objectives or is it moving to wrong direction.

4.1 Measures

The measures presented here are abstract, and they must be instantiated to concrete
projects manually. They can be divided into two categories: community and software.
The former are related to the growth and sustainability of the developing community
and the latter measures deal with actual product.



68 Petri Sirkkala, Timo Aaltonen, and Imed Hammouda

Community-related measures:

The number of contributors measures the number of people close to the core of the
onion.
The number of users subscribed to the mailing list measures the number of devel-
opers who closer to the core of the onion, or are willing to penetrate towards the core.
The amount of requests, feedback or inquiries received tells about the number of
interested people at the different layers of the onion model.
The geographical distribution of the community members is high if the marketing
of the project has been successful, and the project can be considered as a sustainable
one.
The web-site access is related to the number of people in the onion.
The number of media hits measures the success of marketing.
The number of people participating in project events and meetings is about the
activity and sustainability of the project. Developers who are active enough to travel to
events are loyal to the project.
The number of views for the social media, like FaceBook or Youtube, tells about the
success of viral marketing.
The number of scientific publications describes the academic interest to the project.

Software-related measures:

The number of downloads of the software tells about the overall interest to the prod-
uct and community. The measure includes both first-time downloads and updates of an
older version.
The number of reported bugs and feature requests indicates how interesting is the
product.
The number of projects built on top of the platform is big when the project is part
of a larger network of projects.
The number and the impact of contributions received measures the software engi-
neering activity in the developing community. For example, the impact is large when
the contribution (i.e. patch) touches a large number of modules, or big portion of the
codebase.
The kind of contributions received The kind of contribution might be corrective,
adaptive, perfective or preventive, for instance.

4.2 Using the Measures

Naturally, some low-level measures are trivially tied to some objectives. For example,
web-site access or number of views for the social media are close to the objective
reputation.

Some measures are temporally related. For example, one expects a high rate of
downloads before receiving bug reports and feature requests. Similarly, the number of
users subscribed to the mailing list could be related to the number of views of social



Opening Industrial Software: Planting an Onion 69

media. Furthermore, one could hypothesize that a set of temporally related measures
can be used to analyze the achievement of the same objective.

5 Existing Work

Open source communities have been under heavy research during the last few years.
In this paper a few studies and incubation programs are highlighted, and their position
is compared to our study.

Works like the book Producing Open Source Software [8] contains a practical
cookbook style guide for starting and running an OSS community. The book discusses
open source development from many aspects ranging from technical infrastructure to
political issues of open source. It has a very low-level and detailed view to the phe-
nomenon. For example, everything starts with “choosing a good name” to the project.
Due to the fact, that OSS is a fuzzy phenomenon, the book must be taken as an position
of the writer. Despite that, it is (to our knowledge) the most throughout review to the
subject.

In this paper we have much narrower view angle to the issue. Where [8] has a holis-
tic view to open source, we are concentrating only to an industrial setting. Moreover,
our time frame consists only the very beginning of the life cycle of the OS project.

Incubation Programs: Many large industrial open source projects have incubation
programs. The programs are used to establish fully functioning well organized sub-
projects to the metaproject. For example Eclipse platform project and Apache Server
Project have both their own incubation programs [3, 2].

Apache Incubator[2] is a hatchery for projects that are intended to become actual
Apache Foundation’s [1] projects. The incubation process is depicted in the Figure 3.
First, the process being incubated is established as a candidate, then the candidate pro-
cess is either accepted or rejected. An accepted project is set to state Podling during
which the project is prepared for the review, whose outcome can be termination, con-
tinuation or graduation. The last meaning that the project is accepted top ASF project.
The Eclipse Project Lifecycle is very much like the Apache Incubator.

Candidate Podling Project
establishment

rejection

acceptance

termination

engagement

continuation

Fig. 3. Apache Incubation process

Referring to the setting in this paper, there is something familiar in the incubation
programs. Both are aiming at acceptance of the candidate project. In our case it is
accepted (or rejected) by the members of the community, without any formal process.
Therefore, the states of the project and the state changes are not clearly visible, but
some measurement must be developed.



70 Petri Sirkkala, Timo Aaltonen, and Imed Hammouda

Open Source Community Building: An inclusive review to OS community build-
ing is given in [17]. The licentiate thesis describes a qualitative research of eight suc-
cessful open source projects. The study is based on interviews with a representative of
each project. The interviews go through the life cycles of the projects from the begin-
ning to the current state. The main contribution of the thesis is in describing how to
initialize an OS project and how the project is promoted.

The subject of the thesis is pretty close to our work. Both deal with industrial
OS project building. The main difference is that we do not base our study to afterward
interviews, but participate the actual release process from the beginning. Moreover, we
are not passive observers, but we attempt to impact the project building with various
ways.

OSS Research: Studying open source projects has been popular lately. However,
to our knowledge only one few studies have concentrated on establishing a commu-
nity [10]. Most of the research, like [5, 13, 11, 16] are different kind of observations
and measurements of existing communities. Therefore, our work is a forerunner in the
field.

6 Conclusions

This paper studied the problem of releasing industrial closed source software as open
source. The problem was formulated as a community building challenge around the
software. We presented an onion-model-based approach which addresses the main
stakeholders and concerns involved.

In order to validate our approach, we applied the proposed framework to three
industrial cases. The opened products varied from from an open architecture standard
with reference implementation to a small software prototype. The target communities
varied from closed core and company-based community to open core, volunteer one.

We organized interviews and questionnaires to contextualize the framework and
prepare a release plan for each of the cases. Taking into consideration the objectives
of the companies, we sketched an evaluation framework that is based on a number of
measures in relation to the objectives. The measures are used to observe the achieve-
ment of those objectives.

Our results are preliminary in the sense that we are in the early phase of the study.
Our early experiences with releasing one of the case studies have been promising. We
were able to successfully adapt the framework to the organizational structure of the
company, industrial partners and the target community.

In this paper we did not study some issues in detail. For example, laws, cultural
issues and the original business motives were out of scope of this study. This is left
as a future work. In order to collect actual measurements, companies will be periodi-
cally queried for the required data. We plan to organize questionnaires to the industrial
partners and new-born open source communities in order to understand better their
viewpoint.



Opening Industrial Software: Planting an Onion 71

References

1. Apache foundation. At http://www.apache.org/ on the www (last visited Oct 2008)
2. Apache incubator. At http://incubator.apache.org/ on the www (last visited

Oct 2008)
3. Eclipse incubation phase. At http://wiki.eclipse.org/Development_

Resources/HOWTO/Incubation_Phase/ on the www (last visited Oct 2008)
4. Bonaccorsi, A., Rossi, C.: Altruistic individuals, selfish firms? the structure of motivation

in open source software. First Monday (1 – 5) (2004)
5. Capra, E., Wasserman, A.I.: A framework for evaluating managerial style in open source

projects. In: B. Russo, E. Damiani, S. Hissan, B. Lundell, G. Succi (eds.) Proceedings of
the fourth International Conference on Open Source Systems, pp. 1–14 (2008)

6. Crowston, K., Howison, J.: The social structure of free and open source software de-
velopment. First Monday 10(2), 1–100 (2005). URL http://firstmonday.org/
issues/issue10_2/crowston/index.html

7. Fitzgerald, B.: The transformation of open source software. MIS Quarterly 30(3), 587–598
(2006)

8. Fogel, K.: Producing Open Source Software: How to Run a Successful Free Software
Project. O’Reilly Media, Inc. (2005). URL http://www.amazon.fr/exec/
obidos/ASIN/0596007590/citeulike04-21

9. Goldman, R., Gabriel, R.: Innovation Happens Elsewhere: How and Why a Company
Should Participate in Open Source. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA (2004)

10. Järvensivu, J., Mikkonen, T.: Forging a Community – Not: Experiences on Establishing
an Open Source Project. In: Proceedings of the fourth International Conference on Open
Source Systems, pp. 15–27 (2008)

11. Kamei, Y., Matsumoto, S., Maeshima, H., Onishi, Y., Ohira, M., itci Matsumoto, K.: Analy-
sis of coordination between developers and users in the apache community. In: Proceedings
of the fourth International Conference on Open Source Systems, pp. 81–92 (2008)

12. Nakakoji, K., Yamamoto, Y., Nishinaka, Y., Kishida, K., Ye, Y.: Evolution patterns of open-
source software systems and communities. In: Proceedings of the International Workshop
on Principles of Software Evolution 2002, pp. 76–85 (2002)

13. Petrinja, E., Sillitti, A., Succi, G.: Overview on trust in large floss communities. In: Pro-
ceedings of the fourth International Conference on Open Source Systems, pp. 47–56 (2008)

14. Preece, J.: Online Communities: Designing Usability, Supporting Sociability. Wiley (2000)
15. Raymond, E.S.: The Cathedral and the Bazaar. O’Reilly & Associates, Inc., Sebastopol,

CA, USA (1999)
16. Studer, M.: Community Structure, Individual Participation and the Social Construction of

Merit. In: J. Feller, B. Fitzgerald, W. Scacchi, A. Sillitti (eds.) Proceedings of the third
International Conference on Open Source Systems, IFIP, vol. 234, pp. 161–172. Springer
(2007). DOI 10.1007/978-0-387-72486-7_13

17. Stürmer, M.: Open Source Community Building, licentiate thesis (2005)
18. Välimäki, M.: The Rise of Open Source Licensing: A Challenge to the Use of Intellectual

Property in the Software Industry. Turre Publishing (2005)
19. Weiss, M., Moroiu, G., Zhao, P.: Evolution of open source communities. In: Proceedings

of the second International Conference on Open Source Systems, pp. 21–32 (2006). DOI
10.1007/0-387-34226-5_3


