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Abstract. The quantitative analysis of software projects can provide insights 
that let us better understand open source and other software development 
projects. An important variable used in the analysis of software projects is the 
amount of work being contributed, the commit size. Unfortunately, post-facto, 
the commit size can only be estimated, not measured. This paper presents 
several algorithms for estimating the commit size. Our performance evaluation 
shows that simple, straightforward heuristics are superior to the more complex 
text-analysis-based algorithms. Not only are the heuristics significantly faster 
to compute, they also deliver more accurate results when estimating commit 
sizes. Based on this experience, we design and present an algorithm that 
improves on the heuristics, can be computed equally fast, and is more accurate 
than any of the prior approaches. 

 

1 Introduction 

The quantitative analysis of source code, in particular of open source software code, 
is becoming increasingly important. Such analysis can provide us with relevant and 
empirically validated insights into how and why software development works and 
subsequently, how we can improve open source and corporate software development 
further. 

An important independent variable and the input of many models is the amount of 
work that went into a code contribution, typically measured by the source code lines 
affected by a code contribution, also known as the commit size. The commit size is 
defined as the sum of the number of source code lines added, removed, or changed in 
a given commit. 

There are at least three problems with using the commit size in the analyses of 
software projects: 
1. The commit size can only be estimated, not measured. Once a developer 

contributed a piece of code, all we can reliably count is the number of lines 
added and removed. Of these, some lines may be changed lines, but we have no 
way of knowing for certain, short of asking the original developer. 

2. Using diff algorithms, we can make informed guesses about changed lines of 
code, but such algorithms need to go back to the original source code; this makes 
large-scale aggregate analyses infeasible, as we would have to work through the 
potentially large revision histories of many projects. 
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3. Large-scale aggregate analyses of open source projects are typically based on 

project information repositories like FLOSSmole [8] [14], FLOSSmetrics [7] or 
Ohloh [16]. These repositories provide only partial information, if any. 
Typically, they provide the number of lines added or removed. 
 
The best reliable information that today’s tools can generate is the number of 

source code lines added and removed. Project information repositories like Ohloh 
provide this minimal information. However, using this information to determine 
commit sizes in a naïve way, for example by adding the number of lines added and 
removed, leads to inaccurate results. Thus, we need to take additional steps to more 
precisely estimate commit sizes. 

This paper presents a simple statistical algorithm (based on linear regression) to 
determine first diff and then commit sizes of code contributions to software projects. 
The contributions of the paper are the following: 
• It makes prior informally used approaches of estimating commit sizes explicit 

and discusses their strengths and weaknesses; 
• It presents a new and more accurate approach to estimating commit sizes than 

has been available before and applies it to open source software projects. 
 
 The paper is organized as follows. Section 2 discusses the problem situation and 
prepares the ground with some basic definitions. Section 3 compares existing 
approaches with each other and discusses their limitations. Section 4 presents a new 
algorithm and evaluates its correctness and efficiency. Section 5 discusses the 
limitations of the algorithm and Section 6 presents some final conclusions. 

2 Commits and Diffs 

2.1 Commit size definition 

A commit is the atomic contribution of source code to a code repository. Source code 
typically contains program code lines, comment lines, and empty lines. The size of a 
commit, or commit size, is defined as the sum of the number of source code lines (or 
source lines of code, SLoC) added, removed, or changed. The commit size is a good 
approximation of the amount of work that went into the commit. 

There are many uses of the commit size in modeling software development 
processes, practices, and metrics. Typically, it is used to compute models using the 
revision history of the projects’ code repository.  

For example, Godfrey et al. have used the commit size as a measure for 
determining the change speed of software systems [9]. Weißgerber et al. correlate the 
commit size of patches with their likelihood of getting accepted into an open source 
project’s code base and find that small patches have the highest chances of getting in 
[17]. Neither Godfrey et al. nor Weißgerber et al. explain how they estimate commit 
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sizes. Hindle et al. provide a classification of large commits and define a large 
commit as a commit that “includes a large number of files” [13]. 

We have used the commit size as a dependent variable in the analysis of the 
adoption of the agile methods’ practice of continuous integration in open source 
projects [6]. We have also interpreted the commit size as an independent variable in 
the correlation analysis of metrics of interest, for example, comment density in open 
source software code [2]. Finally, we have used it to analyze the overall commit size 
distribution of open source and the total code growth of open source [1]. 

2.2 Estimating the commit size 

It is impossible, post-facto, to determine the size of a commit with certainty, simply 
because without further knowledge we cannot know whether a changed line was 
really just changed, counting as one line for the commit size, or whether it was re-
moved and then independently added, counting as two lines of work. 

A commit consists of several diffs, one for each file (compilation unit). A diff 
captures the changes made between two consecutive versions of the same file [15] 
[12]. The diff size is the sum of the lines added, removed, or changed in the diff. The 
commit size is defined as the sum of the sizes of the constituting diffs. 

The computation of a diff is typically performed by a utility of the same name. All 
a diff utility tool can reliably measure is the number of lines added and removed in a 
file. An equal number of added and removed lines may actually be changed lines; 
however, the diff utility cannot determine this with certainty. 

We call this measure a diff data pair (a, r) of source code lines added (a) and re-
moved (r). A diff data pair represents one or more different diff events, all with their 
own diff size. A diff event is a triple (a, r, c) of actual source code lines added, re-
moved, or changed. However, given a diff data pair (a, r) we do not know which diff 
event actually happened.  

Table 1 shows an example of a diff data pair, where the diff utility reports that 
five source code lines were added and three were removed. As can be seen in Table 
1, the pair (5, 3) can signify any one of the four different diff events (5, 3, 0), (4, 2, 
1), (3, 1, 2), and (2, 0, 3). 
 
Table 1. Example diff data pair and its interpretation 

(5, 3) 
Number of 

SLoC added 
Number of 

SLoC removed 
Number of 

SLoC changed 
Diff Size 

Event 1 5 3 0 8 
Event 2 4 2 1 7 
Event 3 3 1 2 6 
Event 4 2 0 3 5 

 
As stated, the diff size is the sum of the lines added, removed, or changed in the 

diff. 
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diff_size(a, r, c) = a + r + c // size of diff event (1) 

In Table 1, each of the diff events has a unique size of 8, 7, 6, or 5 source code 
lines.  

Let (a, r) be a diff data pair, that is, let a be the number of source code lines 
added in a given commit, and r be the number of lines removed under the assumption 
that no lines where changed. Then: 

lower_bound(a, r) = max(a, r) // lower bound of diff size (2) 

upper_bound(a, r) = a + r // upper bound of diff size (3) 

range(a, r) = [lower_bound(a, r), upper_bound(a, r)] // diff size range (4) 

cardinality(a, r) = upper_bound(a, r) – lower_bound(a, r) + 1 // # events (5) 

Since a diff data pair (a, r) can stand for several possible diff events, each with 
their own different size, we don’t know the size of the underlying diff event. We can 
only estimate. The next Section discusses current approaches to estimating the diff 
size. 

A diff data pair can be computed from a given diff event by adding the changed 
lines back to both the added and removed lines. Effectively, one changed line is a 
line added and a line removed and thus needs to be added to both. DDP stands for 
diff data pair, and DE stands for diff event. 

aDDP = aDE + cDE (6) 

rDDP = rDE + cDE (7) 

The commit size, again, is the sum of the sizes of the constituting diffs. Once we 
estimated the diff sizes, computing the commit size becomes a simple summation. 

3 Efficacy of Current Approaches 

3.1 Current approaches to estimating diff sizes 

We know of the following six approaches having been used in estimating diff sizes: 
• Lower Bound. Starting with a diff data pair (a, r), the lower bound (Equation (2)) 

is used to estimate the diff size; 
• Upper Bound. Starting with a diff data pair (a, r), the upper bound (Equation (3)) 

is used to estimate the diff size; 
• Bounds Mean. Starting with a diff data pair (a, r), the diff size is calculated as 

the mean value of the lower and upper bound; 
• GNU diff. Starting with the original source code, the GNU diff utility is used to 

estimate changed lines and then diff size (based on solving the common longest 
subsequence problem) [10]; 
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• GNU diff -d. Like GNU diff, with the option –d set, which is frequently used but 

poorly defined. The man page explains the –d option by stating: “Try hard to find 
a smaller set of changes” [11]. 

• Ldiff. Starting with the original source code, the ldiff utility is used to estimate 
changed lines and then diff size (ldiff is based on calculating the Levenshtein edit 
distance between two text blocks) [3]. 

 
The diff data pair (a, r) used in the Lower Bound, Upper Bound, and Bounds 

Mean approaches represents the number of lines added and removed under the 
assumption that no lines were changed. 

GNU diff and ldiff both provide a diff event triple (a, r, c) which they consider to 
be the most likely event to have happened. Using Equation (1), the diff size is 
computed by summing up a, r, and c. We chose GNU diff because it is the most 
widespread implementation of diff and ldiff because of its superior performance in 
recognizing changed source code lines. 

Figure 1 illustrates how well approaches 1 - 6 do when measured against a 
ground truth [4]. It also shows the performance of a new algorithm called “linear 
estimation” described in the next section. The ground truth consists of 229 diffs that 
have been validated by hand for accurate accounting of changed lines. 

The x-axis of Figure 1 provides the true commit size as provided by the ground 
truth by summing up a, r, and c. The y-axis provides the commit size as estimated by 
Algorithms 1 - 6 as defined above. The closer an algorithm’s curve is to the diagonal 
curve, the better it performs. The color-coded dots are the individual estimates 
provided by an algorithm, and the correspondingly colored curve represents a linear 
approximation of the algorithm. 

Curve 1 represents the lower bound and curve 2 represents the upper bound. 
Together they define a corridor of possible commit sizes. Curve 3 represents the 
mean of the upper and lower bound. Curve 4 represents the algorithm based on GNU 
diff, curve 5 represents the algorithm based on GNU diff –d, and curve 6 represents 
the algorithm based on ldiff. Despite its superior performance in recognizing 
changed code lines (but not added or removed lines) [3] [4], ldiff provides 
impossible values and performs poorly in this task. We have not been able to further 
determine a reason for this behavior. 

The curves used to represent these algorithms are based on linear regressions for 
the given data set. (There is no simple curve, because multiple different diff events 
can have the same commit size.) Curve 7 is our own solution discussed below. 
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Fig. 1. Comparison of diff size estimation approaches 

Figure 2 zooms in on the diff size range of 30 - 50 SLoC to illustrate how the 
different approaches diverge as diff sizes get larger. 

From the visual illustration in Figures 1 and 2, and statistically supported in the 
next subsection, we can see that all text-analysis-based algorithms (GNU diff, ldiff) 
perform worse than the simple Bounds Mean algorithm. (This is not a statement 
about the performance of the diff tools themselves; rather, it is a statement about 
their suitability for estimating diff sizes.) Thus, the best performing simple heuristic 
is the Bounds Mean algorithm. 
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Fig. 2. Actual diff size range 30 - 50 for the illustrated algorithms 

3.2 Evaluation of current approaches 

The error of an estimate provided by any of the algorithms is the difference between 
the true value, as provided by the ground truth, and the estimated value. The 
occurrence of diff sizes can be considered a random variable. Hence, the error of any 
of the algorithms is a random variable as well.  

Table 2 shows the mean of the error and its standard deviation under the 
assumption that the error random variable follows a normal distribution. 

The perfect algorithm would not only have an error mean of zero SLoC but also 
an error standard deviation of zero SLoC. As can be seen, the best performing 
algorithm is Algorithm (7), based on linear regression of the ground truth, which will 
be discussed in the next section. 
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Table 2. Statistical evaluation of Algorithms 1 - 6 and the new approach 

 Approach 
Error 
Mean 

Error  
Standard Deviation 

1 Lower Bound 3.86 16.64 
2 Upper Bound -4.41 6.39 
3 Bounds Mean -0.27 7.68 
4 GNU diff -1.96 19.55 
5 GNU diff –d -3.06 30.87 
6 Ldiff -5.95 40.35 
7 Linear Estimation 0 5.44 

3.3 Performance of computation 

Algorithms 1 - 3 above are fast if the diff data pair is known. The main 
computational expense is determining the diff; to this the algorithms add only 
constant time. 

Algorithms 4 - 6 require scanning (though not necessarily parsing) the source 
code, which already puts the computation of metrics based on a large number of 
projects out of reach, in particular if the complete revision history of a project is 
involved. The original ldiff implementation from [5] performs much worse than 
GNU diff in terms of runtime; we measured a 1,000 times slower execution. (It 
should be noted that this is mostly due to the tool chain, not the actual algorithmic 
complexity.) 

Many of the metrics and models based on the commit sizes of software projects 
work on large data sets. Computing the average commit size for a given successful 
open source project may mean estimating the sizes of tens of thousands of commits. 
Our database contains over 8 million commits in total [1]. 

Also, software development firms like SAP or Google or well-known services 
like SourceForge experience tens of commits per second. Tracking the sizes of such 
commits requires well-performing implementations. Thus, we developed an 
algorithm that can efficiently estimate commit sizes and handle large data sets fast. 

4 An Improved Solution Based on Linear Regression 

4.1 The general solution 

We are looking for an algorithm that given a diff data pair (a, r) estimates a single 
scalar value, the diff size: 

diff_size ← (a, r) (8) 
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Assuming linear behavior, such an algorithm needs to take the following form: 

diff_size(a, r) = ca × a + cr × r + b (9) 

In Equation (9), a and r represent the diff data pair of code lines added and 
removed, coefficients ca and cr represent the percentage that a respectively r 
contribute to the diff size, and b represents the y-axis (diff size) intercept. 

The coefficients ca, cr, and b can be calculated using linear regression of a sample 
population (ground truth) that is representative for the projects of which we intend to 
estimate commit sizes. 

Using (9) to estimate diff sizes is fast: The only input needed is a diff data pair 
(a, r) and each diff size can be computed in constant time, equally fast to the 
heuristics discussed in the previous Section. Thus, the algorithm works well when 
estimating diff sizes and then commit sizes in large data sets. 

The algorithm for estimating commit sizes sums up the diff sizes in each of the 
diffs that belong to the commit. 

[ ]∑
∈∀

+×+×=
diffsd

b  r  c a  ce(diffs) commit_siz drda
 

(10)

In Equation (10), ad refers to the code lines added in the given diff data pair and 
rd refers to the code lines removed. 

Unfortunately, these coefficients might depend on the software under 
investigation. The most coarse-grain distinction is between open and closed source 
software. We cannot assume that open source programmers exhibit the same commit 
behavior as closed source programmers. But even within open source one might 
think that not all projects are alike and that other factors like project size and age 
have an influence on commit behavior. 

4.2 A solution for open source 

The ground truth introduced earlier provides us with sufficient data to perform a 
linear regression that is representative of the underlying project, PostgreSQL, and as 
we suggest below, also representative of most of open source. 

The linear regression over the ground truth provides us with the coefficients and 
the intercept value. Table 3 shows the results of the regression. 

 
Table 3. Linear regression over ground truth for estimating diff sizes 

 ca [SLoC] cr [SLoC] b [SLoC] 
Coefficients and 

Intercept 0.9497 0.9744 -2.9965 

Standard Error for 
the Coefficients 0.0065 0.0082 0.3954 

R-square: 0.9951 Standard Error: 5.4677 
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Thus, part of the algorithm for estimating diff sizes of projects represented by the 
ground truth consists of computing the following equation for a given diff data pair: 

diff_size(a, r) = 0.9497 × a + 0.9744 × r – 2.9965 (11) 

Curve 7 in Figures 1 and 2 were computed using this equation. The high R-
square value in Table 3 suggests a high goodness of fit. Hence, the superior 
performance of the algorithm as shown in Table 2 comes as no surprise. 

For the diff event pair (1, 1), Equation (11) estimates a diff size below zero. To 
better cope with this situation, Table 4 presents a linear regression over the ground 
truth where we enforce b = 0, that is, fixed the y-axis intercept at zero.  

 
Table 4. Linear regression over ground truth fixed at y-axis intercept zero 

 ca [SLoC] cr [SLoC] b [SLoC] 
Coefficients and 

Intercept 0.9370 0.9590 0 

Standard Error for 
the Coefficients 0.0089 0.0067 0.3954 

R-square: 0.9947 Standard Error: 6.1099 
 

For small commits, Table 4 provides a superior regression. Hence, we use 
Equation (12), resulting from the regression in Table 4, for small diffs. 

diff_size(a, r) = 0.9370 × a + 0.9590 × r  (12) 

By equating the diff size of Equation (11) with the one of Equation (12) we can 
determine the switch-over condition where, with increasing diff sizes, we switch 
from using Equation (12) to Equation (11).  

0.01269 × a + 0.01540 × r > 2.9965 (13) 

Thus, the complete algorithm is a conditional computation (13) of either 
Equation (11) or (12), provided as pseudo code (14) below. 

function real diff_size(int a, int r) (14) 
 if (0.01269 × a + 0.01540 × r > 2.9965) 
  return 0.9497 × a + 0.9744 × r – 2.9965 
 else 
  return 0.9370 × a + 0.9590 × r 
 end 
end 

In prior work [1], we used a different and substantially more complex algorithm. 
We computed a probability distribution for diff sizes mapped into the range [0, 1] by 
applying the heuristics of Section 3 to a set of open source projects representative of 
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all of open source. The projects were of different programming languages, ages, 
sizes, etc. 

The distribution provides us with the probabilities of each possible diff event for 
a diff data pair. This probability distribution, which was derived using a completely 
different data source, provides the same results as Equation (11) above. For this 
reason, we consider (11) as representative of open source, not just PostgreSQL. 

5 Limitations of Approach 

As described, the algorithm is more accurate than prior algorithms and equally fast to 
the heuristics of Section 3. Here we discuss limitations and possible threats to 
validity of the presented work: 
• Linearity assumption. One may argue that diff sizes are not a linear function of a 

diff data pair but follow some other function. We have not found any indication 
of what other function this might be. Any solution has to fit into the linear-
growth lower/upper bounds corridor; this constraint excludes most other simple 
solutions like polynomial functions. Hence we have stuck with the simplest 
assumption, a linear function. The high R-square value of 0.99 from the linear 
regression supports this assumption.  

• Sample size. Naturally, a larger sample could lead to a more accurate regression 
and hence algorithm for estimating diff sizes. We feel that 229 diffs can be 
improved upon but are already sizeable enough to deliver a useful result, as our 
evaluation in Section 3 showed. 

• Sample bias. We did not determine the sample ourselves but rather received it 
from a different research group [4]. Cerulo confirmed that the sample was 
randomly picked from the set of available diffs in the PostgreSQL revision 
history. Thus, the main bias may be that PostgreSQL is not representative of all 
software development projects. As discussed above, we believe that it is 
representative of open source software projects. However, it is unclear whether it 
is representative of closed source software projects. We cannot tell and intend to 
improve our ground truth in future work to more comprehensively represent 
software development projects. Also, we are currently undertaking a large-scale 
investigation of the comparability of open source with closed source. 

• Granularity error. The granularity of a diff is on the level of files. However, 
programmers change files in chunks rather than randomly. Thus, we could 
improve accuracy by breaking files into sections. However, this argument applies 
to the diff algorithms and not to the commit size estimation algorithms. Thus, we 
don’t think this applies to our work. 
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6 Conclusions 

In this paper we present several algorithms for estimating the size of code 
contributions (commits) to software projects. Our performance evaluation shows that 
simple straightforward heuristics are superior to the more complex text-analysis-
based algorithms. Not only are the heuristics significantly faster to compute, they 
also deliver more accurate results when estimating commit sizes. Based on this 
experience, we design and present an algorithm that improves on the heuristics, can 
be computed in constant time given some diff input, and is the most accurate 
algorithm known today. 

Acknowledgements 

We are indebted to Luigi Cerulo and his colleagues Gerardo Canfora and 
Massimiliano Di Penta for providing us with the ground truth that this paper builds 
on. Their generosity saved us time and effort that we could spent on the actual 
algorithms and their evaluation. 

References 

1. Oliver Arafat, Dirk Riehle. “The Commit Size Distribution of Open Source Software.” In 
Proceedings of the 42nd Hawaiian International Conference on System Sciences (HICSS 
42). IEEE Press, 2009. Forthcoming. 

2. Oliver Arafat, Dirk Riehle. “The Comment Density of Open Source Software Code.” In 
Companion to the Proceedings of the 31st International Conference on Software 
Engineering (ICSE 2009). 4 pages. 

3. Gerardo Canfora, Luigi Cerulo, Massimiliano Di Penta. “Identifying Changed Source Code 
Lines from Version Repositories.” In Proceedings of the Fourth International Workshop 
on Mining Software Repositories. IEEE Press, 2007. Pages 14pp. 

4. Luigi Cerulo. Private communication, 2008. 
5. Carlo Daffara. “How Many Stable and Active Libre Software Projects?” Retrieved on Sept 

13, 2007, from http://flossmetrics.org/news/11 
6. Amit Deshpande, Dirk Riehle. “Continuous Integration in Open Source Software 

Development.” In Proceedings of the Fourth Conference on Open Source Systems (OSS 
2008). Springer Verlag, 2008. Page 273-280. 

7. FLOSSmetrics. See http://flossmetrics.org/ 
8. FLOSSmole. See http://ossmole.sourceforge.net/ 
9. Michael Godfrey, Xinyi Dong, Cory Kapser, Lijie Zou. “Four Interesting Ways in Which 

History Can Teach Us About Software” In Proceedings of the First International 
Workshop on Mining Software Repositories. IEEE Press, 2004. Pages 58pp. 

10. GNU diff. See http://www.gnu.org/software/diffutils/diffutils.html 
11. GNU diff –d. See man page to [10] 



Estimating Commit Sizes Efficiently 125
 
12. Paul Heckel. “A Technique for Isolating Differences Between Files.” Communications of 

the ACM, Volume 21, Number 4 (April 1978). Pages 264-268.  
13. Abram Hindle, Daniel M. German, Ric Holt. “What Do Large Commits Tell Us? A 

taxonomical study of large commits.” In Proceedings of the Fifth International Workshop 
on Mining Software Repositories. IEEE Press, 2008. Pages 99pp. 

14. James Howison, Megan Conklin, Kevin Crowston. “FLOSSmole: A Collaborative 
Repository for FLOSS Research Data and Analyses.” International Journal of Information 
Technology and Web Engineering, Vol. 1, Issue 3. 

15. J. W. Hunt and M. Douglas McIlroy. An Algorithm for Differential File Comparison. Bell 
Telephone Laboratories CSTR #41, 1976. 

16. Ohloh.net. See http://ohloh.net/ 
17. Peter Weißgerber, Daniel Neu, Stephan Diehl. “Small Patches Get In!” In Proceedings of 

the Fifth International Workshop on Mining Software Repositories. IEEE Press, 2008. 
Pages 67pp. 


