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Abstract. Free/Libre/Open Source Software (FLOSS) practitioners and devel-
opers are typically also users of their own systems: as a result, traditional soft-
ware engineering (SE) processes (e.g., the requirements and design phases), take
less time to articulate and negotiate among FLOSS developers. Design and re-
quirements are kept more as informal knowledge, rather than formally described
and assessed. This paper attempts to recover the SE concepts of software design
and architectures from three FLOSS case studies, sharing the same application
domain (i.e., Instant Messaging). Its first objective is to determine whether a
common architecture emerges from the three systems, which can be used as
shared knowledge for future applications. The second objective is to determine
whether these architectures evolve or decay during the evolution of these sys-
tems. The results of this study are encouraging: albeit no explicit effort was
done by FLOSS developers to define a high-level view of the architecture, a
common shared architecture could be distilled for the Instant Messaging appli-
cation domain. It was also found that, for two of the three systems, the architec-
ture becomes better organised, and the components better specified, as long as
the system evolves in time.

1 Introduction and Related Work

During the last years Free/Libre/Open Source Software (FLOSS) has gained much
attention in the SE research community. This is due to various reasons, ranging from
the availability of the software products, to the archival of past software and non-
software artifacts in versioning repositories (bug tracking systems and mailing lists,
among others). Two main types of FLOSS literature have been observed since, one
termed external and the other internal to the FLOSS phenomenon [6]. Based on the
availability of FLOSS data, the former has traditionally used FLOSS artefacts in order
to propose models [17], test existing or new frameworks [9, 20], or build theories [3] to
provide advances in the more general SE field. The latter instead includes several other
studies that have analyzed the FLOSS phenomenon per se [10, 14, 16, 26], with their
results aiming at both building a theory of FLOSS, and characterizing the results and
their validity specifically as inherent to this type of software and style of development.
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While much empirical research has used FLOSS as case studies where data and
experience can be easily obtained, FLOSS-specific issues have also been identified.
Generically, it should be established whether well-established approaches, techniques,
frameworks and tools from the traditional SE knowledge apply to FLOSS practitioners
and developers [2]. Specifically, FLOSS systems and their architectures have attracted
significant attention among researchers due to the distributed constraints, modularity
and the issue of collaboration. Developers sporadically joining FLOSS projects do not
always have a clear understanding of the underlying architecture, and may break the
overall conceptual structure by several small changes to the code base [27].

Also, it has been suggested that core FLOSS developers might hinder improve-
ments to the software architecture to protect their privileged positions, thus precluding
the system’s future development [7]. In other words, the system’s architecture could
either be lost or decay over time.

Past SE literature has firmly established that software architectures and the asso-
ciated code decay over time [13], and that the pressure on software systems to evolve
in order not to become obsolete plays a major role [19]. As a result, software systems
have the progressive tendency to loose their original structure, which makes it difficult
to understand and further maintain them [24]. Architectural recovery is one of the rec-
ognized counter-measures to this decay [12]. Several earlier works have been focused
on the architectural recovery of proprietary [12], closed academic [1], COTS [5] and
FLOSS [8, 15, 27] systems; in all of these studies, systems were selected in a specific
state of evolution, and their internal structures analyzed for discrepancies between the
conceptual and concrete architectures [27]. Repair actions have been formulated as
frameworks [23], methodologies [18] or guidelines and concrete advice to develop-
ers [27].

From these previous empirical reports and from specific calls for research on
FLOSS architectures and their decay [4], the following open research questions have
been formulated for the research reported in this paper:

1. Even if not specifically imposed by FLOSS developers, does any common system
architecture emerge from FLOSS projects sharing the same application domain?

2. Is it possible to assess whether this architecture decays or improves during the
evolution of a FLOSS project?

In order to tackle these questions, this research evaluates three FLOSS systems
(Ayttm1, Miranda2 and Pidgin3), sharing the same application domain (Instant Mes-
saging – IM), and compares the evolution of their conceptual, hierarchical views [25]
with the architectural view based on the common coupling among components. As
stated above, the objective is two-fold; at first, a common architecture will be sought,
encompassing the three case studies. This could help other FLOSS developers within
the same application domain to comply with the design notion and the shared (tacit)
knowledge of the domain of other FLOSS developers. The second objective will study

1 http://ayttm.sourceforge.net/
2 http://www.miranda-im.org/
3 http://www.pidgin.im/
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whether the architecture of these systems decays or not in their evolution and mainte-
nance.

This paper is articulated as follows: Section 2 introduces the case studies, the two
visualisations used throughout the paper, and how they were extracted, and presents the
case for the architectural decays of FLOSS systems. Section 3 summarises the main
findings on the empirical analysis of the three projects, and determine a threshold for
architectural decay, visualising the point where each system broke it, while Section 4
concludes and pinpoints future works.

2 Empirical approach

This section details the empirical approach used throughout this research. At first, the
rationale for the selection of the three systems will be given, next an overview of the
extraction of the raw data into results will be outlined. In particular, attention will be
given to the hierarchical [25] and concrete [27] architectures.

The selected FLOSS projects were chosen for the following reasons:

• there are similarities in their basic functions, since they all are “multi protocol instant
messaging clients”: no previous empirical study has tried before to detect the shared
architecture of similar-scoped FLOSS systems;
• there are similarities in the underlying programming languages (Ayttm and Pidgin

are implemented in C, and Miranda in C++);
• they are long-lived, established FLOSS projects (hence all their software is avail-

able), with an established community of developers and users: as visible in Table 1,
Ayttm is an ongoing project since 2002, Miranda since 2000, and Pidgin since 1999.

2.1 Hierarchical and common coupling

A posssible method of examing the architecture of the software is through the nest-
ing of folders, and their relations of “contained-in” results in the so-called treestruc-
ture [25]. Observing the disposition of source code within folders (i.e., source folders)
can give potential developers the initial insight of how code is organised within fold-
ers [22]. The tree structures have been extracted for the three temporal points of each
system (first available, latest available and middle releases), and the number of “nodes”
(i.e., the source folders) of the corresponding tree has been recorded in Table 1. One
such example, for the Pidgin system, is given in Figure 1: the dashed lines represent
the hierarchical structure of folders contained in higher level folders.

On the other hand, in order to produce an accurate description of the concrete
architecture suggested by [27], each project has been parsed using Doxygen4. The
following notation was used:

• Coupling: this is the union of all the includes, dependencies and functions calls (i.e.,
the common coupling) of all source files as extracted through the Doxygen source

4 http://www.doxygen.org/
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code documentation generator tool. The file-to-file couplings were converted into
folder-to-folder couplings, considering the folder that each of the above files belongs
to; coupling among functions and/or methods was also converted into folder-to-
folder coupling. A stronger coupling link between folder A and B would be found
when many items within A call items of folder B (or viceversa). Couplings are
depicted in Figure 1 as directed arrows, the amount of actual calls being summarised
by the number on the arrow.
• Connection: distilling the couplings as defined above, one could say, in a boolean

manner, whether two folders are linked by a connection or not, despite the strength
of the link itself. The overall number of these connections is recorded in Table 1:
the connections of a folder to itself are not counted (for the encapsulation principle),
while the two-way connection A→ B and B→ A is counted just once (since we are
only interested in which folders are involved in a connection). In Figure 1 it is pos-
sible to count 5 connections (src→ irc, src→msn, src→ oscar, src→ napster and
msn→ oscar). Connections to the external libraries (“EXT_LIB”) are not counted,
since only the internal architectural properties of these systems are studied.

Fig. 1. Pidgin – tree structure, couplings and connections

2.2 Methods of Metrics Extraction

Source code for each case study was extracted and Doxgen was used on each version
of the software. DOT 5 files (mapping the connections between files) are generated by

5 http://www.graphviz.org/
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Table 1. Summary of metrics
Ayttm Miranda Pidgin

Active since 2002 2000 1999
Releases studied 21 35 114

Nodes (initial) 21 4 1
Nodes (middle) 32 44 33
Nodes (final) 32 72 50

SLOCs (initial) 70,493 3,692 5,679
SLOCs (middle) 103,044 118,641 152,370
SLOCs (final) 99,572 383,146 297,471

Connections (initial) 47 3 1
Connections (middle) 125 168 90
Connections (final) 122 390 223

Doxygen and several PERL scripts were applied to DOT files to extract the couplings
and connections of each file/module. Using the data regarding the connections between
files a hierarchical map of the software was possible as seen in figures 1 - 5.

3 Results

3.1 Common Instant Messaging (IM) architecture

During the analysis of the evolution of the studied systems, recurring patterns have
been observed in the naming of folders containing source code, and the directions and
frequency of connections among them.

1. Core – The first set of folders comprises the core function of an IM client. Con-
nection to IM networks, handling of IM contacts, drawing of the underlying GUI
are all examples of the “core” functions of an IM system. Most of its connections
are handled from and to elements (files, functions) contained within it, while links
to other components see this component acting as a“server” of functions, rather
than a receiver [11].

2. Protocols – The second observed cluster of folders, attracting a considerable
amount of couplings, deals with the supported IM protocols (e.g., Yahoo, Jabber,
etc.). Since the very early releases of each system, several calls are directed from
and to folders named after each protocol. A container “protocol” folder, keeping
source code shared by several protocols, is also commonly found, while some
protocols can be further expanded in other exportable folders (e.g., libyahoo, lib-
jabber, etc.).

3. Plugins – The third component comprises the plugins handled by the IM client,
ranging from GUI skins managers to connectors to email clients. A “plugin” um-
brella folder is also used for the same purposes as the “protocol” above. The main
purpose of this component is to hold those functionalities which are not consid-
ered as fundamental for an IM client. In terms of connectors, each plugin can be
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considered as a stand-alone system, typically linked with few couplings to other
plugins and other parts of the IM system.

In summary, a common architecture of IM systems has emerged, as visible in Fig-
ure 2r. The three basic components (core, plugins and protocols) appear as primitives in
the early releases of the observed systems, and get better refined and modularized dur-
ing the system’s lifetime, meaning that the refined components send most of their calls
to elements within themselves. Each component exists as a cluster of several source
folders; the hierarchical structure [25] comprises umbrella folders (“core”, “plugins”,
“protocols”) containing other folders, typically at the same level of nesting, acting as
placeholder for source files of specific modules (“aycryption”, “ticker”, “yahoo”, can
be seen as an example module contained in each component).

IM - Shared  Architecture

System/CoreSystem/ProtocolsSystem/Plugins

Core

GUI ...

Protocols

pr_1 pr_2

Plugins

pl_1 pl_2

Fig. 2. Shared IM architecture

3.2 Evolution and architectural decay

The very early releases of the studied systems show on average few folders (see
Table 1) with the exception of Ayttm, which appears well modularized already in
the first available release (21 folders). On the other hand, the latest studied releases
show projects which have been extensively decomposed into folders and subfolders.
Throughout their evolution, as new folders get connected into the system, new cou-
plings are introduced, in part within the components of the three-tier architecture de-
scribed above, and in part connecting the components among each other. This second
type of couplings taints the desirable independence of an architectural component,
making it a requester or a server of services from other components.

In this Section, the architecture of the three systems, as proposed above, is observed
in three temporal points, namely the earliest and the latest available releases, and the
release in between the first two. The objective of this analysis is to observe how the
systems have evolved with respect to their architectural components and connectors,
and to draw instructive conclusions and guidelines for FLOSS developers. The overall
evolution in number of source folders has also been studied. The number of nodes
containing source code have been compared with the number of connections among
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them to give an insight into on how FLOSS developers counteract the increasing decay
of their systems.

Ayttm The top left part of Figure 3 shows the evolution in the number of source folders
for the Ayttm project. Its initial state was already quite formed and structured, then a
steep growth brought it to its current size and structure. These lasted up to the recent,
scattered releases, which did not change significantly the internals of the project. In
terms of the connections among different source folders, a new source folder added
to the system brought 7 new connections with existing folders. This is evaluated ex-
cluding the connections tying elements within the same folder, and counting a single
connection even when two folders are linked forward and backward (i.e. both act as
server and requester of services to each other).

In Figure 3 the remaining graphs (in order, top right, bottom left and bottom right)
show the evolution of the basic architecture (the components, and their connectors) in
the three selected releases: only two components are detectable (“Core” and “Proto-
cols”) in this system, while the hierarchical structure does not suggest the presence of
the third component. Even so, the overall structure, and the balance of the couplings
remains quasi-constant in the three points: there is still a severe dependency between
the two components, each acting both as requester and server of services from the
other.

Miranda Similarly to what has been seen for the Ayttm system above, the top left part
of Figure 4 shows how the number of source folders grew in Miranda: very few fold-
ers formed the initial releases of the system, which also counted on very few couplings
among them. The 5th available release had a steep increase of functionalities, adding
26 new source folders, 111 new connections, but a decrease of 2,000 SLOCs, qualify-
ing as a restructure of the system. As also visible in the plot, there are several releases
which act as refinement of the current architecture, where decreases in the number of
source folders are often paired to decrease in the couplings between folders. Every new
source folder added to the system on average 6 new connections.

The other graphs of Figure 4 show the percentage of couplings among the com-
ponents of the Miranda system in the three selected evolutionary points. As visible on
the top right part, the Miranda system at its inception was just encapsulating the ba-
sic functionalities (“Core”) and handling a selected number of IM protocols. Overall,
the principle of independence permitted to have around 90% of the couplings within
the same component, but the “Core” acted as a requester of services in 10% of the
couplings (35 out of 345). In the bottom left and right graphs, the Miranda system de-
veloped a “Plugin” component, and the “Core” component reduced its requests to just
3% of the overall amount of couplings (358 calls), while the latest available release is
even more modularized, having just 1,12% of the couplings being outward.

Pidgin Finally, the top left part of Figure 5 shows the growth of source folders in
Pidgin. Initially just one folder contained the source code of the first release. Unlike
Ayttm, this system had a steady pace in its public releases, apart from a long hiatus
during 2005 and 2006, when the original name of the project (Gaim) was changed
due to copyright issues. Unlike Miranda, no major restructuring has taken places yet,
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Ayttm --- v0.2.2 --- 03/03/2003

Core

Protocols

Core 42.57

Protocols

1.449.42

46.85

Ayttm --- v0.4.6 --- 21/01/2004

Core

Protocols

Core 29.47

Protocols

3.798.77

57.93

Ayttm --- v0.5.0-45 --- 04/06/2008

Core

Protocols

Core 27.27

Protocols

3.759.05

59.99

Fig. 3. Results (Ayttm) – Evolution of nodes, connections and architecture
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Miranda -- v01 --- 07/02/2000

Core

Protocols

Core 19.13

Protocols

10.14

70.72

Miranda --- v0.4 --- 07/04/2005

Core

Plugins

Protocols

Modules 6.45

Core

3.18

Plugins

2.981.10

1.50
3.11

11.44

Protocols

8.70 4.31

55.56

Miranda -- v0.7.7 --- 01/06/2008

Core

Plugins

Protocols

Modules 4.78

Core

2.85

Plugins

1.12

2.02
1.89

33.06

Protocols

5.21 3.82

44.05

Fig. 4. Results (Miranda) – Evolution of nodes, connections and architecture
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but several small and medium decreases in both the number of folders and couplings
between them have been observed. This continual maintenance effort has an effect also
on the new folders being added; for each new folder, around 4 new connections have
to be made on average with existing folders.

As done above, the three remaining graphs of Figure 5 show the architecture of this
system and its components and connectors. Since its inception this system (although
with just one folder containing the source code) already provided the three basic com-
ponents which appear in each subsequent release. These primitives still have serious
dependencies with each other which are later corrected and ultimately resolved in the
latest available release (bottom right of Figure 5). The same component appears fur-
ther decomposed into three subsystems, namely the “pidgin” graphical environment,
the “libpurple” set of core functions, and the “finch” text-based version of the IM
client.

From the reuse perspective, the approach described above is particularly relevant
and conclusive for this system: the reuse of its components (or modules) within other
systems is further simplified by how the connections have been designed and simpli-
fied throughout the lifecycle of this application. As reported above, the “core” of this
system, in its latest release, shows three modules (“Finch”, “Libpurple” and “Pidgin”)
which are independent from both the protocols and the plugins components: when in
need of recreating a new IM client, developers could safely extract the “libpurple”
module (responsible for the vast majority of the basic functionalities of an IM sys-
tem) and reuse it as the basis of a new IM system. In fact, this module acts as a pure
server, and does not rely on any other components or modules of the system in which
it belongs.

4 Conclusions

This paper has attempted to make use of established Software Engineering concepts
(software design and architectures) within the FLOSS development paradigm. It has
been reported in the literature that established processes as the software requirements
or the designs are written down or formalised by FLOSS developers, but instead those
are tacitly understood by both developers and users.

Software architectures of FLOSS projects represent an active and open research
field, since the distributed style of development of the FLOSS approach makes it eas-
ier for occasional developers to break the underlying assumptions of components and
connectors, and their desirable independence. Past literature has already studied the ar-
chitectures of FLOSS systems, but no longitudinal study has been performed yet, nor
has the common architecture of several FLOSS projects, sharing the same application
domain, been extracted.

This paper has presented the empirical observation of three FLOSS systems im-
plementing the same functionalities and domain, with the aim of both extracting their
tacitly agreed architectures, if any, and checking whether a common architecture could
be formalised for the domain “Instant Messaging”. A longitudinal approach was used
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Gaim --- v0.8.0 --- 30/04/1999

Core 45.08

Protocols

26.41

Plugins 1.52

15.50

1.20

9.49

Pidgin -- v1.0.0 --- 17/09/2004

Core

PluginsProtocols

Core 34.47

Plugins

5.17

2.91Protocols

18.35

37.81

Pidgin -- v2.4.3 --- 01/07/2008

Core

Plugins

Protocols

Libpurple 14.46

Pidgin

5.90

8.91Finch

3.30

2.08 Libpurple_Plugins

1.41

Pidgin_Plugins

1.45

8.91

1.32

Protocols

20.20

33.95

Fig. 5. Results (Pidgin) – Evolution of nodes, connections and architecture
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to show the evolution of nodes and connectors in the three systems, and recurring
components were sought.

It was found that a common architecture is currently at the base of the three stud-
ied systems, based on three components: a “core” component encompassing the ba-
sic functionalities of an IM client (managing network connections, handling contacts,
drawing of the graphical interface, etc); a “protocol” component, managing the diverse
protocols an IM client can support (AIM, Jabber, Yahoo, etc.); and finally a “plugin”
component, whose objective is to enhance the basic functions with widgets not con-
sidered as core, similar to what is found in the “plugin” package of other systems (e.g.,
Sun’s Eclipse).

It was also shown that these systems decay in terms of the underlying structure,
since it was found that the addition of new folders and functionalities typically adds
more than one connections to existing folders, making the overall understanding of
the components more complicated. In two of three systems, though, these decay did
not affect the overall architecture: in Pidgin and Miranda the three main components
appear better and better defined, with a decreasing trend of connections outside the
boundaries of the components themselves.

5 Threats to Validity

The use of the 2000 Holt paper for extracting the architectures of the software systems
using the coupling method may be seen as out-dated in comparison to other newer
techniques such as the Focus Method[21]. Additionally using one method to extract
all of the architectures may also limit the variation of results.

Due to the domain of the software (IM), particular functionality (protocols) of
the software are developed and structured in an exogenous manner in comparison to
other modules. Protocols such as MSN, AOL or Yahoo must function and interact in
a standardised way, which affect how other modules of the software are designed and
developed. Due to this common and standardised functionality shared between all case
studies, each of the systems may inherit architectures in regards to protocols used. The
source code for each case study was extracted and Doxgen were used on each ver-
sion of the software. Using the DOT files (mapping the connections between files)
generated by Doxygen several PERL scripts were applied to DOT files to gather the
statistics of the interactions of each of the files. Using the data regarding the connec-
tions between files a hierarchical mapping of the software is possible as seen in figures
one through five.

6 Future Work

The future works we are planning are essentially two-fold: on one hand, it should be
studied how developers contribute to the decay of the architectures, by enabling con-
nections among elements which belong to separate components. On the other hand,
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other application domains should be studied: the analysis of several multi-media sys-
tems, for instance, should reveal internal and reused libraries (codec, demux, conver-
sion of formats) which form clear-cut components; an analysis of several web-server
should highlight the presence of modular components (e.g., “logging”, “access con-
trol” and others). We are planning to study how diverse systems in both achieved the
same functionalities, and how these are mirrored in the architecture. Also, these studies
(and all the ones making use of public data) should be made available to the developers
of the studied systems, to try and bridge the gap between traditional Software Engi-
neering and Open Source Software Engineering.
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