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Abstract. Proponents of Free Software have argued that some of the most es-
tablished software engineering principles do not fully apply when considered in
an open, distributed approach. Among these principles, “Brooks’ Law” has been
questioned in the Free Software context: large teams of developers, contrary to
the law, will not need an increasingly growing number of communication chan-
nels. As advocates claim, this is due to the internal characteristics of the Free
Software process: the high modularity of the code helps developers to work on
comparted sections, without the need to coordinate with all other contriutors.
This paper examines Brooks’ Law in a Free Software context, and it studies the
interaction of contributors to a large Free Software project, KDE. The network
of interactions is analyzed and a summary term, the “compaction”, is dynami-
cally evaluated to test how the coordination mechanism evolves over time in the
project. This paper argues that the claim of advocates holds true, but with limita-
tions: in the KDE project, the few initial developers needed a significant amount
of communication. The growth of KDE brought the need to break the number of
overall communication channels to a significant extent. Finally, an established
amount of 300 developers currently needs the same amount of communication
as when the developers were only 10. We interpret this result by arguing that
Brooks’ Law holds true among the core developers of any large Free Software
project.

1 Introduction and Related Work

In the last decade, the Free/Libre and Open Source Software (FLOSS) development
approach has attracted vast and diverse interested audiences, namely software practi-
tioners, software engineering researchers and, in the large, the end users of software
systems. Each of these cohorts has brought to attention one (or several) aspects of
this approach [26], criticized [10] or advocated it [22], and, at times, compared it with
established approaches [1, 30].

At first, the traditional, closed-source development has been questioned in light of
this new paradigm: specifically, it was studied whether FLOSS systems show higher
quality characteristics than closed source software [28]. Also, in terms of its evolu-
tionary patterns, research papers have reported on whether the average FLOSS project
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could be comparable to a traditional software system [5, 13, 11]. It has also been
argued that closed- and open-source paradigms represent just the extremes of the
software management spectrum, but several other flavors should be also considered
(e.g., commercial open-source, community open-source, among others, [7]), which
has then posed the basis for the comparison of these hybrid systems with traditional
software [21].

More recently, researchers have started analyzing the fundamentals differences be-
tween the established software engineering approaches and the FLOSS development
style, comparing it both with the traditional development style (i.e., composed of the
phases of requirements, design, implementation, testing and maintenance [23]), and
finding differences with the development cycles ([24, 6]), and finding similarities with
the Agile paradigm [17, 1].

As a further and one of the most serious challenges that the FLOSS approach still
has to face is the issue of trust among end-users: specifically, on one side, the inter-
nal product and process attributes of the FLOSS have been analyzed to establish its
dependability, reliability and overall quality as an alternative to commercial software,
both in research papers [33] and in pan-European projects1. On the other side, the
chance for end-users to benefit proper, centralized support for software created by the
community at large should be assessed [19, 3].

In all the above related works on the matter (but specifically for enabling the trust
by users), it is absolutely necessary that research studies on FLOSS systems are per-
formed rigorously, with a strong emphasis on the repeatability of experiments, on the
rigorous empirical approach in the collection of data, its parsing and the presenta-
tion of results, and finally by illustrating any threats to validity of which assumptions
were made throughout the experiment. Specifically, comparisons between the termed
closed- and open-source approaches should be based on sound empirical basis, avoid-
ing the pitfalls of personal opinions, strong advocacy and the such.

1.1 Brooks Law and FLOSS Systems

Among the comparisons between closed- and open-source processes, much attention
has lately been given to the applicability of the so-called Brooks’ Law to Free Soft-
ware projects. Within his famous work, “The Mythical Man Month”, Fred Brooks
introduced a simple premise, that, oversimplifying as he put it, states [4]:

Adding manpower to a late project makes it later

This is, by Brooks’ own admission, not a universally applicable premise: still, when
a comparison was to be made, emphasis should be given to the empirical analysis of
software artefacts, and the approach validated and pinned with validity threats, in order
to draw any conclusion.

On a theoretical – and logical – basis, several contributions have underpinned the
assumption that Brooks’ Law will not apply to FLOSS projects [25, 15, 14]. One of

1 SQO-OSS: Software Quality Observatory for Open Source Software, www.sqo-oss.eu
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the preferred arguments to justify this position is based on the concept of "egoless pro-
gramming": when developers are not territorial about their code, but instead they en-
courage others to improve the systems, improvement is much more likely, widespread
and faster [32].

Some research studies have used rather simplistic approaches to validate the above
assumption, by for instance using the number of developers and an operationalization
of a project’s status as a proxy of the complexity of interrelations [27]. One of these
studies has shown that in the Sourceforge2 dataset, the correlation between the “output
per person” and “number of active programmers” was very small, It was concluded
that, also given to the strict modularization, Brooks’ Law does not apply (at least) to
the SourceForge data set [18].

Other researchers have maintained a more careful profile: given the assumption
that Brooks’ Law can be hardly transcended, and will apply anyway to software (and
other) collaborating teams, a more appropriate research question is how to distinguish
between a core team (where the Brooks’ Law does and will definitely apply) and the
larger cohort of contributors. On these fringes, in fact, obscure bugs are tracked and
fixed, and, more importantly, radical experimentations are implemented and tested in
parallel with the main, more important features: in few words, the core team can focus
on the core work [12]. The real goal is therefore how to diminish the effects of Brooks
Law and have a small improvement of the overall software development process [31].

The paper is articulated as follows: section 2 will introduce the working hypothesis,
based on the formulation of Brooks’ Law, which has been restated in order to check
it empirically. Section 3 will summarize the empirical method and how the metrics
were collected and operationalized, while section 4 will show the results of the ex-
periment when applying Brooks’ Law to a large collection of related FLOSS projects.
Finally, section 5 will identify the main threats to the external and internal validity of
the proposed empirical experiment, and section 6 will conclude.

2 Working Hypothesis

Analyzing the thinking behind Brooks’ Law, two critical observations can be derived,
and potentially operationalized with research questions, metrics and verifiable tests:

• Issues of communication – The communication paths between newly joining and
existing software developers (hence, not specifically to FLOSS projects) become
increasingly complex, creating a bearing overhead; in fact, the number of commu-
nication links grows as a square of the number of developers in the project. For a
project of n developers, the total number of communication links between them will
be n2−n.

• Issues of early productivity – Within a generic software process (again, not specif-
ically to FLOSS projects), new developers, no matter how competent, are not able
to work fully productively when they join a new project. Factors such as a need to
get to know the team, the underlying process and its codebase all contribute to this.

2 http://sourceforge.net
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The focus of this research is on the first point, and it will be tested whether it
is generally true or not for FLOSS projects. In addition, the reasoning behind [12]
and [31] will be tested too: it will be in fact studied whether the communication paths
keep their weight among the core developers of a FLOSS project. For the purpose of
creating a strict bound on this research, the second of these points shall be disregarded
and proposed as further work, both for FLOSS and traditional software engineering
projects.

The reasons for a particular focus given to Free Software development in this re-
search are twofold. Firstly, the manner of Free Software development is often per-
ceived as being radically at odds with conventional wisdom in software engineering
practice [29]. Secondly, because of the open nature of Free Software development, a
wealth of development-related data is available with which empirical analysis of this
aspect of Brooks’ Law can be conducted.

3 Method and Operationalization

In the following, an overview of the definitions and the methods used to extract or
evaluate the metrics used throughout this paper is reported.

3.1 Source Code Management Systems

Free Software developers have many mediums of communication: email (direct and by
list), chat systems, comments in bug tracking systems and comments in source code
management systems, for example. Aggregating all of this data over the lifetime of any
particular project can be problematic, so this research focuses purely on source code
management (SCM).

SCM systems are used by developers to keep a revision history for the software
artefacts being produced. In particular, these systems also handle the merging of con-
tributions from different developers working concurrently on the same artefact. As
developers make contributions to these artefacts they are usually required by the SCM
to leave a short message describing the nature of and rationale behind their commit.
This is simply known as the “comment”.

In addition to the comment, the SCM will automatically record the developer’s
username, date and time of commit, the unique file path of the files being modified
and, for each path, a note of the nature of the amendment (file added, modified, moved
or removed). It is this data that is utilized within this research. The Subversion SCM
can expose this data in the form of XML and therefore ease the automation of log
processing.

3.2 Communication Paths

Given the total number of developers, potentially each one could share the work on
some artefact (code, or other) with several other developers. Each one-to-one inter-
action is here named a communication link: the maximum number of links, given a
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number n of developers, is n2 − n, as mentioned above. This value is clearly an up-
per bound, and summarizes a completely loose approach of collaboration, where each
node (i.e., developer) has an interaction with every other node. As it is unlikely that
each developer is linked to every other developer extra links may be required to conect
one developer to another, via intermediate contributors. A communication path is a set
of links connecting one developer to another. A communication path may only be one
link long; when two developers are directly linked.

3.3 Community Graphing

As previously mentioned, the number of potential communication links grows expo-
nentially as new developers join a team. It can be perceived, however, that only for
small teams working on small projects is it important that all of these links are uti-
lized. For larger projects with a larger number of developers it may not be required
to make use of all these communication linkss. The first stage of this research intro-
duces a method for graphing the communication links and paths exposed by the SCM
for a given project. The Community Graph is a simple, undirected, weighted graph in
which nodes represent accounts with the SCM system and edges represent a relation-
ship between the nodes where this relationship may be interpreted as “has worked on
the same artefact as”. The weight of the edge is the count of artefacts on which the pair
of SCM accounts has collaborated. A similar approach to community network analysis
was taken by Martinez-Romo et al [20].

Figure 1 shows the Community Graph for the KDE Marble3 project. The graph
has been laid out using the Kamada-Kawai algorithm [16]. Within this particular im-
plementation of that algorithm, edges of higher weight are made shorter. The result,
here, being that SCM accounts which have worked together frequently, will appear
closer together. One of the consequences of this is that the graph representation reveals
distinct, concentric “levels” of contribution. These are similar to the central levels of
contribution as hypothesized by Crowston et al [8].

3.4 Graph Processing

Having produced a graph representing all the utilized communication paths amongst
developers in a project, a method is required by which we can measure how com-
pact the communication is. In order to achieve this, a slightly modified version of the
Floyd–Warshall algorithm [9] for finding the shortest paths between all pairs of nodes
is utilized. As described above, the weight of edges within the graphs created as part of
this research increase as developers work more with each other on the same resource.
It is, therefore, important to establish the shortest path between nodes in order to mea-
sure how compact the communication within a project is. Of course, given that edge
weight denote how often two developers have worked together, higher path weights
are desirable.

3 KDE Marble: http://edu.kde.org/marble/
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Fig. 1. Community Graph for KDE Marble (edge weights removed)

In order to establish how growth within a project affects the communication com-
plexity, community graphs can be produced and, for each, it is possible to measure the
number of developers and mean weight of the longest paths. These two measurements
can then be plotted against each other in order to establish any trends. In order to do
so, the average weight of the path between nodes in the communication graph will be
defined here as the “compaction” of a community graph

3.5 Project Selection

In this research analysis was conducted for the entire KDE4 project. KDE was specifi-
cally chosen for this research as it has previously been shown to be a project with more
than 10 years of development, a very large and active community [2] producing good
quality code [1]. It is therefore reasonable to interpret KDE as a successful project.

4 KDE Project: http://www.kde.org/
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4 Results

For the whole KDE project, the number of developers within the project is plotted
against the average weight of path between nodes in the communication graph (known,
now, as the “compaction”) for each fortnight over the lifetime of the project. The higher
the compaction, the stronger the communication paths. Figure 2 shows the results ob-
tained for the KDE project. The results shown represent the 262 fortnights from 27
April, 1997 until the fortnight starting 29 April, 2007.

These results show us that whilst the number of active developers is relative small
(fewer than 10) some of the project’s higher compaction scores (values greater than 10)
are being achieved. This certainly follows Brooks’ Law and conventional wisdom in
both the process-driven and Agile communities. This confirms what reported by earlier
works [31, 12]: small FLOSS teams behave as traditional software engineering teams,
and the need for communication among core developers follows almost inevitably the
stated Brooks’ Law.
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Fig. 2. Communication Compaction in KDE

As the KDE project has grown it has, as expected, seen a dilution of its communi-
cation paths. Efficient management of the community and regular restructuring of the
project into teams has ensured that whilst KDE was between 50 and 230 developers in
size, communication was still half as compact as it was for around 10 developers.
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The most striking aspect of the KDE results is revealed as the project grows above
250 developers in size. At this point a critical mass is achieved allowing communi-
cation to become, at times, six times more compact as when the project had only 10
developers or fewer. The most likely explanation for this phenomenon is that certain
developers create strong links between teams within the KDE project by contributing
to more than one part of the overall project.

5 Threats To Validity

In assessing Brooks’ Law within the Free Software community the thoroughness of
this research may be challenged in two clear manners.

1. Internal validity – this research has not addressed the “ramp up” time for new
developers, as mentioned in Section 2. It is reasonable to assume that new devel-
opers, when joining a new project, will start with a lower productivity than more
established and skilled developers. Albeit this could minimally affect the above re-
sults in terms of evolving community graphs, one of the lemmas of Brooks’ Law
could be severely affected.

2. Construct validity – although this research has aimed to produce an accurate pic-
ture of the actual communication paths through a project, only one type of data
source has been used: email, chat and bug tracking have all been disregarded.
Again, this is a serious threat especially when dealing with the analysis of new
developers joining a project: it is arguable that their contribution starts at first by
being acquainted with the existing developers on the mailing lists, or by submitting
bug reports at first. The actual code contribution could be in some ways correlated
with the duration of this ramp-up period.

6 Conclusions and Further Work

This paper has proposed an empirical evaluation of a general principle of software en-
gineering (the so-called Brooks’ Law) in the context of Free Software. Several earlier
works have hindered the possibility that this principle, when applied in the distributed
and open approach as advocated by the FLOSS proponents, will not apply as in tradi-
tional software engineering. The contribution that this work aimed to establish was a
level of confidence in the conclusions by means of an empirical evaluation.

Using well known attributes of the graph theory (also applied by the earlier com-
munity network analysis [20]), this paper formulated a research hypothesis: the paths
of communication among developers in FLOSS projects will be less than the theoreti-
cal ones (n2−n, when n developers are present in the project). According to a previous
contribution [12], this paper refined the hypothesis, claiming that the communication
overheads apply to FLOSS projects too, but only within the core team of developers.

At first, the community graph of a large FLOSS system (the KDE project) was ex-
tracted both for the overall system, and for each subproject contained within it. A well
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known characteristics of graphs (i.e., the compaction, or the average weight of path
between nodes) was then studied for the overall system, and plotted in its evolutionary
trend. Three observations could be drawn from this visualization: at first, it is visible
that in the earlier inception of this project, few developers achieved a high compaction,
following the needs to interact more within the core team. It was established that teams
of around 10 FLOSS developers, similarly to any traditional or Agile software team,
will incur inevitably in the overheads of Brooks’ Law.

The second observation was based when the project started growing steadily: ef-
ficient restructuring of the code and modularization in several subprojects achieved a
sustainable lower compaction than its initial phase, to a minimum of one third of its
original value. The third observation was finally made in the latest stage: as a mature
project, the number of active developers has reached more than 300, but the com-
paction is still the same as when the developers were only 10. This is a further indica-
tion that was postulated in the past for FLOSS systems applies for the applicability of
Brooks’ law: larger FLOSS projects will not follow at large this law, but only a subset
of core developers will be in need of a constant communication.

Two main works will be conducted in the future: at first, these results will be com-
pared with another, less organised repository of FLOSS projects: a sample of projects
from SourceForge will be analyzed, its compaction evaluated and compared to the
KDE results. Our working hypothesis will state that large SourceForge projects will
display a compaction pattern similar to the found one. The second strand we’ll pur-
sue is the enlargement of this research to the second aspect of Brooks’ Law: it will
be therefore studied whether FLOSS developers have a “ramp-up” period, where their
contribution levels are lower but their individual compaction is relatively higher than
that of established developers.
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