
Requirements Acquisition in Open Source
Development: Firefox 2.0

John Noll

Computer Engineering Department
Santa Clara University

500 El Camino Real, Santa Clara, CA 95053 USA
jhnoll@gmail.com

Abstract. Open Source Software Development appears to depart radically from
conventional notions of software engineering. In particular, requirements for
Open Source projects seem to be asserted rather than elicited.
This paper examines features of the latest major release of the Firefox web
browser in attempt to understand how prevalent this phenomenon is. Using
archives of mailing lists and issue tracking databases, these features were traced
from first mention to release, to determine the process by which requirements
are proposed, adopted, and implemented in Firefox. The results confirm the im-
portance of user participation as developers of open source products.

Key words: Innovation, Open Source, Requirements Elicitation, Software Develop-
ment

1 Introduction

Open source products have garnered significant interest in the popular as well as re-
search literature. Banner projects like Linux, Mozilla, and Apache seem to represent
a radical departure from conventional ideas of software engineering, harnessing the
labor of numerous volunteers who are distributed throughout the world, contribute ac-
cording to their desires and abilities, and are motivated apparently only by the joy
of creating software, to produce high quality products that dominate their respective
markets.

In his essay “The Cathedral and the Bazaar,” Eric Raymond captured this popular
conception of the differences between open source and conventional software devel-
opment, arguing that open source project organization emerges from a marketplace of
developers, who gradually take on increasing leadership responsibilities as their con-
tributions to the project are recognised by their peers (the “Bazaar”). This is in contrast
to the traditional top-down approach where managers set schedules and assign tasks
(like priests in a “Cathedral”) [43].

Research has shown that the perceived differences between open source and con-
ventional software development projects are only partially true, at least for the highly
visible projects. For example, the most successful open source software projects em-



70 John Noll

ploy substantial numbers of paid programmers [25]. The Mozilla project has regular
face-to-face meetings (augmented by teleconferencing) to review project status [35].

One area where open source software development does appear to differ is in re-
quirements acquisition. Requirements for open source products are often asserted by
developers, rather than elicited from users, in contrast to the conventional approach in
which user needs are discovered through focus groups, interviews, and other means.
This phenomenon has been observed by several researchers studying open source soft-
ware development [13, 45].

How frequently are requirements asserted in an open source project? This paper
presents results of a study of one open source product: the Firefox web browser pro-
duced by the Mozilla foundation [30]. The study attempted to determine how many
features in the third major release (2.0) of Firefox were actually asserted by develop-
ers, rather than derived from user input or other sources.

Of fifteen new features in the Firefox 2 release, nine were determined to be asserted
by developers, three were derived from user input, and two features had origins in
“extensions” implemented by third parties using Firefox’s extension mechanism.

The rest of this paper is organized as follows: the next section describes the method
used to study the product’s features; following that, the study results are presented. The
paper concludes with a survey of related work, and conclusions.

2 Method

The Firefox project is interesting for a number of reasons. It has a large user com-
munity and is considered to be among the best web browsers available, with superior
functionality and security [19]. The Firefox development organization is large and ma-
ture, so the processes used for the current release are well established and therefore
represent a “typical” way of doing things for a project of this size.

As an open source project, Firefox is unusual in that it incorporates some aspects
of more conventional software development organizations: regular (weekly) in-person
status meetings are held (although remote participants can contribute via conference
calling) [35]; a formal requirements document for Firefox 2 was written [33] and
updated periodically [34]; project schedules are created and posted for review [32]. As
such, one would expect to see elements of conventional software engineering practices
in Firefox development processes, including requirements engineering.

The method employed for this research involved three steps:

1. Identify the set of features comprising the current (2.0) Firefox release.
2. Examine Internet resources related to Firefox, such as archives of discussion

groups, web logs, issue databases, and other online forums, to discover when the
feature was first proposed, and what role the person proposing the feature played
(such as user or developer).

3. Determine the initial implementation of the feature (prototype by a developer,
Firefox extension, or enhancement to the core codebase).

4. Categorize the requirement as asserted by a developer, either from his or her per-
sonal experience or knowledge of user needs; derived from user contribution, for



Requirements Acquisition in Open Source Development: Firefox 2.0 71

example by filing a bug report or “Request for Enhancement” in the Bugzilla issue
database; or derived from competition.

The release notes for Firefox 2 (code named “Bon Echo”) list fifteen new features,
or enhancements to existing features, for this release:

1. “Visual Refresh” (enhancement).
2. Phishing protection (new).
3. “Enhanced search capabilities” (new).
4. “Improved” tabbed-browsing (enhancement).
5. Resumption of previous browsing session (new).
6. Web feed (RSS) preview and subscription (enhancement).
7. Spell checking (new).
8. “Live Titles” (new).
9. “Improved Add-ons manager” (enhancement).

10. Update to JavaScript version 1.7 (enhancement).
11. Search engine “plugins” in Sherlock or OpenSearch format (new).
12. Updated extension mechanism (enhancement).
13. Support for SVG text (bug fix).
14. New installer for Microsoft Windows c©systems, based on the Nullsoft Scriptable

Install System (enhancement) [31].

Some of these (phishing protection, session resumption, RSS subscription, spell
checking, and “live titles”) represent new features that were not present in previous
releases. For these, the first expression of the need for the new feature was used to
establish the source of the feature. Other features, such as tabbed-browsing improve-
ments and updated extension mechanism, are modifications to existing features. In
these cases, the first expression of need for enhancement (or fix) was used to establish
the source of the requirement.

Some “features” listed in the release notes are really collections of enhancements
to some category of Firefox behavior or appearance. For example, the “visual refresh”
involves changes to icons, colors, and the shapes of buttons and panels. Likewise, the
updated extension mechanism involves several changes to the way Firefox incorporates
extensions developed by third parties (for example, MultiZilla [42] and Zotero [56]).
In such cases, an attempt was made to establish whether the initial need was expressed
as a collection, or whether separate needs were later collected under a single category.

3 Results

The results of the analysis are summarized in Table 3. The second column identi-
fies the artifact where the first expression of the requirement was found. In two cases
(Enhanced Search and JavaScript 1.7), no mention of the requirement appears before
the Firefox Product Requirements Document was published; the source document for
these is identified as ‘PRD.’



72 John Noll

Table 1: Source and classification of Firefox 2 Requirements

Feature Requirement Source Initial Implementation Classification

Visual Re-
fresh

discussion forum[8, 10] core asserted, from knowledge of
user needs

Phishing
Protection

Bugzilla[48], Internet
Explorer[49]

extension (Google Safe
Browsing[17])

asserted, from knowledge of
user needs and competition

Enhanced
Search

PRD[33] extension (Google search
toolbar[18])

derived from extension

Improved
Tabbed
Browsing

Mozilla Wiki[3, 16],
Bugzilla[14]

prototype asserted and formally vali-
dated

Session
Resume

extensions
(SessionSaver[4],
Tabbedbrowser
Extensions[21]), Opera

extensions derived from extension;
competition[12]

Web Feed
Preview

Bugzilla[2, 28] extensions (RSS Reader
Panel[22], Sage[42])

asserted, from personal ex-
perience

Spell
Checking

Bugzilla[5, 9] extensions (SpellBound[51],
Torisugari[53])

user contributed

Live Titles discussion forum[26],
developer web log[27]

prototype[26] asserted, from personal ex-
perience

Improved
Add-ons
Manager

Mozilla wiki[15] core asserted, from personal ex-
perience

Javascript 1.7 PRD[33] core asserted, from personal
experience[6]

Search
Plugins

Safari[24],
Mycroft[36],
Sherlock[50],
Opera[40]

core competition

Updated
Extension
Mechanism

Bugzilla[39] core user contributed

SVG Text
Support

Bugzilla[41] core user contributed (bug)

Windows
Installer

Bugzilla[1, 38, 52] prototype[7] asserted, from knowledge of
user needs



Requirements Acquisition in Open Source Development: Firefox 2.0 73

The third column identifies where the first implementation of the behavior ap-
peared in Firefox; ‘core’ refers to the Firefox core codebase; ‘extension(s)’ to a pack-
age implemented using Firefox’s extension mechanism that allows third parties to en-
hance Firefox’s features with substantial functionality; and ‘prototype’ to a developer’s
prototype distributed for evaluation by the community.

The last column categorizes how the requirement was proposed; there are five cat-
egories:

1. asserted by a developer, from his or her own personal experience;
2. asserted by a developer, based on his or her personal knowledge of what users

need;
3. contributed by a user who is not a developer, by posting a bug report or request for

enhancement to the Bugzilla issue database;
4. derived from the success of an extension;
5. motivated by appearance of the feature in a competing product.

The majority of requirements (seven total) were asserted by developers, based on
either their personal experience or knowledge of user needs.

Three features were influenced, at least in part, by competition from other browsers:
Search Plugins are supported by Opera [40] and Safari [24], and are defined by the
open-source search plugin efforts Mycroft [36] and Sherlock [50]; Phishing Protection
was rumored to be part of an upcoming release of Internet Explorer [49]; and, Session
Resume was implemented by Opera [12].

Two features (Phishing Protection and Enhanced Search) were derived directly
from successful extension implementations (Google Safe Browsing [17] and Google
Search toolbar [18], respectively).

Three features were derived from user contributed bug reports or requests for en-
hancement: Spell Checking [5, 9], Updated Extension Mechanism [39], and SVG Text
Support [41].

The distinction between requirements asserted by developers, and requirements
elicited from users in the textbook manner, is not as extreme as it might appear. In
the case of Firefox, developers are users as well, so the difference is more one of
how requirements are validated than from where they originate: in the Firefox project,
requirements asserted by developers are rarely validated by a formal process; in only
one case – Improved Tabbed Browsing – was any formal validation process undertaken
to confirm that users did indeed need the feature [16].

Rather, requirements are typically posted to discussion forums for informal valida-
tion through feedback from other developers, and any dedicated users that participate
in the forums. As a consequence, it appears that an open source project like Firefox
must have a certain number of developers who are also users, in order to provide accu-
rate requirements: since developers are the source of requirements, enough developers
must be in touch with the larger user community to keep the feature set relevant to the
bulk of users.

In a few cases, features were initially implemented as extensions, rather than as part
of the Firefox core codebase; these extensions proved popular enough, by virtue of the
number of people who installed and used them, to be considered for incorporation



74 John Noll

into the core. Similarly, some features are influenced by the same functionality being
present in a competing product. Both cases, in effect, represent requirements that are
implicitly validated by the market.

However, most other requirements, including those originating with user contribu-
tions, are informally validated by consensus of the core developers.

Since web browsers are a ubiquitous tool, one would expect that the majority of
Firefox developers are also Firefox users with needs that are the same as the larger
user community, and so this process of informal validation could be expected to work
well. This may not be the case for other open source products with more focused user
communities, such as ERP or health care applications.

4 Related Work

Studies of open source software development projects address a wide range of topics
from economics [55] to maintainability [47].

A number of case studies have examined open source development processes, in-
cluding those employed by Apache and Mozilla [29, 44, 46]. In particular, Reis and
de Mattos Fortes, in their study of Mozilla development processes, report that high
level requirements are specified by the Mozilla Foundation management, but all de-
velopment on the Mozilla code base originates with a “bug” report, which might be
submitted by another developer, tester, or end user [44]. These reports may document
some product failure, or a request for enhancement.

Feller and Fitzgerald note that users are a “critical feature” [11, 10] of open source
projects, as the source of new requirements. Scacchi has made several studies of re-
quirements acquisition in open source software development; he observes that require-
ments “emerge” from on-line discussions which are usually open forums, rather than
through traditional requirements elicitation processes, but that this emergent process,
though less formal, is also effective [45, 46]. He also notes that requirements are “as-
serted” after the fact; other researchers have echoed this observation. In particular,
German reports a similar situation in the Gnome project [13]. This seems to contradict
conventional understanding that cites failure to understand requirements as a major
source of software project failure.

But Trudelle observes, in his discussion of lessons learned from experience work-
ing on Mozilla, that this approach led to rework of some of the Mozilla implementa-
tion in response to user-submitted bug reports; his view is that this rework could have
been avoided with traditional up-front requirements analysis and design activities [54].
Henderson echoes this view, claiming that open source projects do not employ “re-
quirements elicitation,” but that this could (and should) be easily added to open source
processes [20]. Further, Nichols and Twidale observe that usability requirements are
not captured well by open source projects, due to the mismatch between developers
and users; their view is that the open source approach of “coding as early as possible”
violates “good interface design [37].”

These observations run counter to the prevailing open source view that de-emphasizes
formal design and requirements gathering, yet also hint at the possible evolution of



Requirements Acquisition in Open Source Development: Firefox 2.0 75

mature projects like Firefox. One the one hand, Trudelle’s view – that open source
software projects need an overarching UI design and design function – seems to con-
tradict the current success of Firefox, which is widely recognized as among the most
innovative web browsers. In particular, Nichols and Twidale’s assertion that “commer-
cial software establishes the state of the art” [37] seems to be contradicted by Opera
and Firefox, both of which included UI features (tabbed browsing, for example) well
before Internet Explorer. Yet, the results of this study of Firefox 2 show that some for-
mal user experience design is being undertaken; and, at least three features did follow
the lead of competing commercial products.

5 Conclusions

Most Firefox requirements are asserted by developers. The Firefox project does, how-
ever, occasionally resort to more rigorous requirements validation, as in the case of the
“Visual Refresh” where usability studies were conducted at Google on behalf of the
Firefox effort. This confirms the views of Trudelle [54] and Henderson [20], that open
source software projects could benefit from more formal requirements analysis.

Firefox is not a “pure” open source project in the spirit of Raymond’s community
of volunteers scratching an “itch [43].” The Firefox project incorporates some aspects
of “traditional” software engineering such as requirements documents and usability
studies; it also inherits face-to-face meetings, paid developers, and a formal corporate
infrastructure from the Mozilla Foundation. At the same time, the Firefox project has
the key aspects of an open source project that distinguish this kind of software devel-
opment from conventional commercial development: transparency through publicly
accessible documents and discussion forums, and direct participation by enthusiastic
users.

This philosophy seems to be summed up nicely by the following comment to a
usability issue in the Mozilla issue database:

As an average user I would think: how many clicks does it need to get there?
But there are many different average users :)
What people really find convenient you can only know when you make a test
browser with the new feature, let a thousand users use it for some weeks and
then ask the right questions [23].

References

[1] alanjstr: Bug 231062 provide Firefox MSI package. https://bugzilla.
mozilla.org/show_bug.cgi?id=231062 (2004). Issue posted to Fire-
fox issue database, accessed December 12, 2007.

[2] aldo-public: Comment on bug 270541. https://bugzilla.mozilla.
org/show_bug.cgi?id=270541c3 (2005). Comment on request for en-
hancement posted to Mozilla issue database, accessed October 29, 2007.



76 John Noll

[3] Beltzner, M.: Firefox/feature brainstorming. http://wiki.mozilla.org/
index.php?title=Firefox/Feature_Brainstorming&oldid=
16495 (2006). Entry in Mozilla Wiki, accessed December 4, 2007.

[4] Burnett, G.: Firefox 1.5 session saver extension. http://www.yista.com/
gburnett/firefox-15-session-saver-extension/ (2005). Entry
posted to the Yah, I Saw That Already web log, accessed December 15, 2007.

[5] Cassin, R.: Bug 56301 (spellchecker) connect a spellchecker engine for
Mozilla. https://bugzilla.mozilla.org/show_bug.cgi?id=
56301 (2000). Issue posted to the Mozilla issue database describing a need
for spell checking in Mozilla Composer, accessed December 14, 2007.

[6] Champeon, S.: JavaScript: How did we get here? http://www.
oreillynet.com/pub/a/javascript/2001/04/06/js_
history.html (2001). Web page, accessed December 18, 2007.

[7] Delahaye, S.: Firebird installer. http://seb.mozdev.org/firebird/
(2003). Web page, accessed December 12, 2007.

[8] Dotzler, A.: Reply to ‘complete support of XP visual style?’. http://
forums.mozillazine.org/viewtopic.php?p=2668 (2002). Reply
to comment posted to Mozilla Themes Development forum, accessed October 3,
2007.

[9] Epperson, B.: Bug 16409 invoke spell check in browser window (multiple
form fields). https://bugzilla.mozilla.org/show_bug.cgi?id=
16409 (1999). Issue posted to the Mozilla issue database describing a need for
spell checking in the Mozilla web browser, accessed December 14, 2007.

[10] ExNihilo: Complete support of XP visual style? http://forums.
mozillazine.org/viewtopic.php?t=452 (2002). Comment posted to
Mozilla Themes Development forum, accessed October 3, 2007.

[11] Feller, J., Fitzgerald, B.: A framework analysis of the open source software de-
velopment paradigm. In: Proceedings of the International Conference on Infor-
mation Systems, pp. 58–69. Association for Information Systems (2000)

[12] Ganesh, V.: Top 10 usability features I would like in a browser.
http://geekswithblogs.net/vganesh/archive/2005/09/
22/54669.aspx (2005). Web log entry, accessed December 18, 2007.

[13] German, D.M.: GNOME, a case of open source global software development. In:
Proceedings of the 6th International Workshop on Global Software Development.
Portland, OR USA (2003)

[14] Goodger, B.: Bug 308396 - UE fixes for tabbed browsing. https://
bugzilla.mozilla.org/show_bug.cgi?id=308396 (2005). Issue
posted to Firefox issue database, accessed December 5, 2007.

[15] Goodger, B.: Firefox:extension manager UI. http://wiki.mozilla.org/
Firefox:Extension_Manager_UI (2005). Entry posted to Mozilla Wiki
describing problems and possible solutions with the Firefox extension manager
user interface, accessed November 20, 2007.

[16] Goodger, B.: Link targeting. http://wiki.mozilla.org/Link_
Targeting (2006). Entry in Mozilla Wiki, accessed December 4, 2007.



Requirements Acquisition in Open Source Development: Firefox 2.0 77

[17] Goodger, B.: Phishing protection. http://wiki.mozilla.org/
Phishing_Protection (2006). Mozilla wiki entry describing history and
design of Firefox Phishing Protection feature.

[18] Google, Inc.: Google toolbar for Firefox. http://www.google.com/
tools/firefox/toolbar/FT3/intl/en/ (2007). Web page for Google
Toolbar, accessed December 12, 2007.

[19] Hamm, S.: A Firefox in IE’s henhouse. Business Week (2004)
[20] Henderson, L.G.R.: Requirements elicitation in open-source programs.

CrossTalk - The Journal of Defense Software Engineering 13(7), 28–30
(2000). http://www.stsc.hill.af.mil/crosstalk/2000/07/
henderson.html

[21] Hiroshi, H.: Tabbrowser extensions. http://piro.sakura.ne.jp/xul/
tabextensions/old_index.html.en (2007). Web home page for (now
obsolete) Tabbedbrowser Extensions, accessed December 15, 2007.

[22] jacob667: Using the RSS reader panel [tip 28]. http://jacob667.
livejournal.com/9948.html (2004). Entry posted to “Jacob’s Mozilla
Tips” web log, accessed October 25, 2007.

[23] Klassen, R.: Comment on bug 335781. https://bugzilla.mozilla.
org/show_bug.cgi?id=335781#c2 (2006). Comment to issue posted to
Mozilla issue database, accessed November 19, 2007.

[24] Kottke, J.: Why are Safari and Sherlock two different applications? http:
//www.kottke.org/03/01/safari-sherlock-different (2003).
Entry posted to kottke.org web log, accessed November 12, 2007.

[25] Lakhani, K.R., Wolf, R.G.: Perspectives on Free and Open Source Software,
chap. Why Hackers Do What They Do: Understanding Motivation and Effort
in Free/Open Source Software Projects. MIT Press (2005)

[26] Melez, M.: Microsummaries in Firefox 2.0. http://groups.
google.com/group/mozilla.dev.apps.firefox/tree/
browse_frm/thread/e6b47d5f7af7d77d/670a06e452b63b9d?
rnum=1&_done=%2Fgroup%2Fmozilla.dev.apps.
firefox%2Fbrowse_frm%2Fthread%2Fe6b47d5f7af7d77d%
2F670a06e452b63b9d%3F#doc_670a06e452b63b9d (2006). Post to
mozilla.dev.apps.firefox discussion group, accessed December 10,
2007.

[27] Melez, M.: son of live bookmarks. http://www.melez.com/mykzilla/
2006/01/son-of-live-bookmarks.html (2006). Web log entry, ac-
cessed December 10, 2007.

[28] Milford, D.: Bug 270541 - support drag-and-drop of RSS feed (icon)
from Firefox. https://bugzilla.mozilla.org/show_bug.cgi?
id=270541 (2004). Request for enhancement posted to Mozilla issue database,
accessed October 29, 2007.

[29] Mockus, A., Fielding, R.T., Herbsleb, J.: A case study of open source software
development: The Apache server. In: Proceedings of the 22nd International Con-
ference on Software Engineering, pp. 263–272. Limerick, Ireland (2000)



78 John Noll

[30] Mozilla Corporation: Firefox 2. http://www.mozilla.com/en-US/
firefox/ (2007). Web page about the Firefox web browser, accessed De-
cember 12, 2007.

[31] Mozilla Development Team: Firefox 2 release notes. http://en.www.
mozilla.com/en/firefox/2.0/releasenotes/ (2007). Web page,
accessed October 26, 2007.

[32] Mozilla Foundation: Firefox2/HistoricalSchedule. http://wiki.mozilla.
org/Firefox2/HistoricalSchedule (2006). Web page describing the
Firefox 2 release schedule, accessed December 12, 2007.

[33] Mozilla Foundation: Firefox2/PRD. http://wiki.mozilla.org/
Firefox2/PRD (2006). Web page containing Mozilla Firefox 2 Product Re-
quirements Document, accessed August 24, 2007

[34] Mozilla Foundation: Firefox2/Requirements. http://wiki.mozilla.
org/Firefox2/Requirements (2006). Entry in Mozilla Wiki describing
Firefox 2 requirements.

[35] Mozilla Foundation: Firefox2/StatusMeetings. http://wiki.mozilla.
org/Firefox2/StatusMeetings (2006). Web page indexing Mozilla
Firefox 2 status meeting notes, accessed October 2, 2007.

[36] Mycroft Project: Mycroft project: Sherlock & OpenSearch search engine plu-
gins. http://mycroft.mozdev.org/index.html (2007). Web page
describing the Mycroft search engine plugin collection project, accessed Novem-
ber 4, 2007. The “Mycroft” name comes from the name of Sherlock Holmes’s
brother, Mycroft, from the novels of Arthur Conan Doyle.

[37] Nichols, D.M., Twidale, M.B.: The usability of open source software. First Mon-
day 8(1) (2003)

[38] Nicholson, G.: Bug 238212 Firefox should have a net installer, like Sea-
monkey. https://bugzilla.mozilla.org/show_bug.cgi?id=
238212 (2004). Issue posted to Firefox issue database, accessed December
11, 2007.

[39] Nicolas: Bug 285848 - extension manager should be able to manage the lan-
guage of the extensions. https://bugzilla.mozilla.org/show_
bug.cgi?id=285848 (2005). Request for enhancement posted to Firefox
issue database, accessed November 21, 2007.

[40] Opera Software ASA: Changelog for Opera 6.1 beta 1 for Linux. http:
//www.opera.com/docs/changelogs/linux/610b1/index.dml
(2001). Web page, accessed November 5, 2007.

[41] Ortyl, P.: Bug 282579 - implement <svg:textPath>. https://bugzilla.
mozilla.org/show_bug.cgi?id=282579 (2005). Issue database entry
describing Firefox deficiency handling <svg:textPath> tag.

[42] van Rantwijk, H.J.: MultiZilla’s home page. http://multizilla.
mozdev.org (2006). Home page for the MultiZilla project, cited September 6,
2006.

[43] Raymond, E.S.: The cathedral and the bazaar. In: The Cathedral and the Bazaar.
O’Reilly and Associates (1999)



Requirements Acquisition in Open Source Development: Firefox 2.0 79

[44] Reis, C.R., de Mattos Fortes, R.P.: An overview of the software engineering pro-
cess in the Mozilla project. In: Proceedings of the Open Source Software Devel-
opment Workshop. Newcastle upon Tyne, UK (2002)

[45] Scacchi, W.: Understanding the requirements for developing open source soft-
ware systems. IEE Proceedings – Software 149(1), 24–39 (2002)

[46] Scacchi, W.: Free and open source development practices in the game commu-
nity. IEEE Software pp. 59–66 (2004)

[47] Schach, S.R., Jin, B., Wright, D.R., Heller, G.Z., Offut, A.J.: Maintainability of
the Linux kernel. IEE Proceedings – Software 149(1) (2002)

[48] Schneider, F.: Bug 329292 - add SafeBrowsing anti-phishing extension to trunk
for evaluation. https://bugzilla.mozilla.org/show_bug.cgi?
id=329292 (2006). Request for enhancement posted to Mozilla issue database,
asserting need to integrate Safe Browsing into Firefox core.

[49] Schultz, K.: Comment on bug 329292. https://bugzilla.mozilla.
org/show_bug.cgi?id=329292#c9 (2006). Comment #9 posted to
Mozilla issue database discussion of Bug 329292.

[50] Sellers, D.: Better searching with Sherlock 2. http://www.
computeruser.com/articles/1906,5,18,1,0601,00.html
(2000). Article posted to the Computer User web site, access November 12,
2007.

[51] Strong, R.: SpellBound - release notes. http://spellbound.
sourceforge.net/relnotes (2005). Web page containing release
history for the SpellBound extension to Firefox, accessed December 14, 2007.

[52] Strong, R.: Bug 326580 - Firefox 2.0 Windows installer. https://
bugzilla.mozilla.org/show_bug.cgi?id=326580 (2006). Issue
posted to Firefox issue database, accessed December 11, 2007.

[53] Torisugari: Spell checker for Firebird. http://forums.mozillazine.
org/viewtopic.php?t=34799&postdays=0&postorder=
asc&postsperpage=15&start=0 (2003). Entry in MozzillaZine
“Extension Development” discussion forum describing initial port of Thun-
derbird spell checking mechanism to Firebird v. 0.7, accessed December 14,
2007.

[54] Trudelle, P.: Shall we dance? Ten lessons learned from Netscape’s flirta-
tion with open source UI development. Tech. rep., Mozilla.org (2002).
URL \url{http://www.iol.ie/\˜calum/chi2002/peter_
trudelle.txt}. Presented at the Open Source Meets Usability Workshop,
Conference on Human Factors in Computer Systems (CHI 2002), Minneapolis,
MN. Accessed December 28, 2006.

[55] Wheeler, D.A.: Why open source software / free software (OSS/FS, FLOSS, or
FOSS)? Look at the numbers! Technical report, dwheeler.com (2005). URL
http://www.dwheeler.com/oss_fs_why.html

[56] Zotero Project: Zotero - the next generation research tool. http://www.
zotero.org/ (2007). Home page of the Zotero Project, accessed Decem-
ber 15, 2007.




