

A Framework for Evaluating Managerial
Styles in Open Source Projects

Eugenio Capra1 Anthony I. Wasserman2
1 Department of Electronics and Information, Politecnico di Milano,

Piazza Leonardo da Vinci 32, 20133 Milano, Italy, eugenio.capra@polimi.it
2 Center for Open Source Investigation, Carnegie Mellon West, Mountain

View, CA 94035 USA, tonyw@west.cmu.edu

Abstract This paper presents the Software Project Governance Framework (SPGF)
for characterizing management of software projects, based on mechanisms used for
communication and collaboration, the organizational structure of projects, and testing
and quality assurance procedures. The framework was developed and validated from
interviews and surveys with leaders of more than 70 commercial and community-
based software projects, including both closed and open source projects.

Keywords Management of OSS development; Working practices; Industry
contribution; Community contribution.

1 Introduction

Open source software and accompanying “open” development practices have had a
major impact on the software industry. “Open” software development processes
involve new managerial styles, governance and social models, working practices and
communication techniques (cf. [1], [4], [5], [9], and [10]).

Open source products fall into two major categories, which we term
“community” and “commercial”. Community Open Source projects are led by a
community of developers or stakeholders and are distributed under an approved open
source license, e.g., GPL, BSD, or Apache. Companies or institutions may have a
significant role in the governance of the project, and may contribute many of the
resources needed for the ongoing development of the project, but there are few, if
any, limitations on who may participate in the various aspects of the project.
Development is done “in the open” so that anyone may have complete, no-cost
access to the current state of the project. These projects, such as those sponsored by
the Apache Software Foundation, have established policies for granting “commit
rights” that allow individuals to modify the code base.

Commercial Open Source projects are led by a company, which has usually
developed most or all of the code, and then sells subscriptions and services for the
developed product. Commercial Open Source applications are very often distributed
with a dual license scheme, one offering unrestricted use of the software (community
version) and one intended for commercial use of the software. In some cases, the two

2 Eugenio Capra and Anthony I. Wasserman

versions of the software differ, with the commercial version including features that
are not present in the unrestricted version. In that situation, the commercial version
of the software typically includes some closed source code. Also, the license for the
community version may not be an “approved”, i.e., an OSI-listed, open source
license.

These approaches are beginning to blend with traditional closed-source software
development. Numerous companies offer both closed and open source products, and
also participate in non-commercial open source projects. In many cases, companies
have completely different policies for each type of project.

While open source is technically a licensing model, its impact on software
development processes goes well beyond licensing. The open source phenomenon
has had a global impact on the way organizations and individuals create, distribute,
and use software, and has challenged the conventional wisdom of the software
engineering and software business communities. For this reason, we have focused on
managerial and governance approaches to open source projects with the primary goal
of creating a framework to characterize these different managerial styles and to
evaluate the “openness” of a software project (as opposed to the software itself). The
resulting framework allows potential users of the project to identify well-managed
projects and allows potential contributors to see if there is a good opportunity to
participate in the project.

Governance theory has been applied to software development in a number of
different approaches [6], and is defined as the complex process that is responsible for
the control of project scope, progress, and continuous commitment of developers [8].
It would be very difficult to elaborate a framework able to encompass all the possible
governance dimensions of a software project. We propose a governance framework
that allows one to position a software project along the continuum between “fully
open” and “fully closed” approach.

This paper is organized as follows: Section 2 gives a brief overview of the study

we conducted to define the framework. Section 3 presents the framework with some
quantitative and qualitative metrics to evaluate software projects along several
dimensions. Section 4 describes some existing open source projects and discusses
how they can be classified according to our framework as an example. Section 5
briefly discusses how the framework was applied to our sample. Finally, Section 6
gives preliminary conclusions and topics for further study.

2 Methodology

Our framework aims at positioning a software project along the continuum between
fully open and fully closed governance practices. It was developed through
preliminary empirical analysis based on individual face-to-face interviews with 25
project managers of major software projects along the continuum, including

A Framework for Evaluating Managerial Styles in Open Source Projects 3

traditional closed source development projects (packaged software and software as a
service), Commercial Open Source and Community Open Source projects. Project
managers were asked which governance dimensions were most significant to
measure the degree of openness of a software project. We identified four
fundamental governance dimensions: contribution, project leadership, working
practices, and testing. These dimensions were chosen since they were widely cited
by the project managers, and since they had the highest ranking of all of the cited
dimensions.

Subsequently, we refined and validated our framework through a continuing
study of more than 70 software projects. We included projects from
SourceForge.org, Apache.org, Tigris and Java.net that met the following criteria:

 Mature status (according to the classification provided by the repositories,
when available, or to common sense for major projects);

 At least 2 administrators (committers);
 At least 2 developers or contributors.

We have focused on large and well-known projects, rather than those developed

by small teams, because these projects had developed and evolved their managerial
and governance approaches. Our goal was to identify the dimensions that best
illustrate the continuum between open and closed governance approaches. Our
research approach has been informal, aimed at identifying the key dimensions and
differentiators among projects of varying age, size, diffusion and domain. Table 1
describes how these parameters vary across the sample.

Variable Minimum
value

Average
value

Maximum
value

Age [year] <1 8 30
Size [core
developers] 10 100 1,000

Size [kSLOC] 40 1,000 6,000
Diffusion
[downloads or users] 2 25,000 200,000

Table 1 – Description of age, size and diffusion of the projects analyzed.

Data was collected through interviews with and surveys of key project personnel,

namely community managers, QA managers, VPs of engineering, committers, and
project leaders, with follow-up calls made as needed for clarification and
consistency.

 The interviews focused on the following topics:

• Governance and organization: Is the project more similar to a “benevolent
dictatorship” or to a democracy? Is it self-organizing or centrally controlled?

4 Eugenio Capra and Anthony I. Wasserman

What is the role of the internal community versus the external community? How
many developers are paid?

• Work practices and tools: How is the right to commit code granted? How is code
reviewed? How important is automated testing? How many management tasks
and non-code-developing tasks are shared in the community?

• Communication and social culture: Which tools (cvs, bug tracking, IRC, wiki,
etc.) are used? How frequent is face-to-face communication? How open are
discussions? How is consensus reached?

• Comparison between open and traditional projects: How do closed and open
projects differ in management practice? What are the relative advantages of open
source development compared with traditional closed development?

The results of these interviews formed the basis for our framework, which we call
the Software Project Governance Framework (SPGF). The methodology we adopted
to formalize the evidence we gathered is based on three major steps. First, we
identified and characterized two hypothetical projects representing the two extremes
of the spectrum, i.e. a completely traditional closed software project and a
completely open source community-based project (see also [3]). Second, we defined
dimensions along which these projects can be evaluated, eventually selecting four
dimensions that gave the most accurate picture of governance. Third, we scored
each dimension of each project from 1 to 4, where 1 indicates a closed-style
approach and 4 signifies an open-style approach. We show the detail of the scoring
for each dimension below. Note that neither licensing nor the distribution model are
part of the framework.

The SPGF framework provides a qualitative assessment of the degree of openness
and, accordingly, scales are ordinal. Assessing governance by means of ratio vari-
ables not only is difficult, but may also be misleading [5], [11]. The SPGF frame-
work is intended for comparing projects rather than providing absolute assessments.
Moreover, the output of our framework may be employed within quantitative meth-
odology according to the approach discussed by Briand et al. in [1].

We would also note that the interviews covered a wide range of topics, and our
dimensions have been extracted as the most important factors to distinguish different
approaches to project governance. Some of the interviews ranged beyond the
specific issues of the framework and helped us to validate the overall approach.

3 The Framework

This section presents our framework. First, we characterize the properties of a
completely closed and a completely open project. Then we describe the four
dimensions at the base of the framework and provide a graphical representation
methodology.

A Framework for Evaluating Managerial Styles in Open Source Projects 5

3.1 A traditional closed source project

A “traditional” software project is led by a company or an organization which strictly
controls the development process. The proprietary code is closed and is developed by
paid staff, possibly including contractors or outsourced teams. Most projects have a
well-defined organizational structure following a development process aimed at
producing a high quality product (or service) on a predictable schedule. Members of
the team “meet” regularly, and report their progress through their organization’s
management structure.

Many companies have user groups, advisory boards, forums, and other ways for
users to interact with the development team, but the final decisions are all made by
the company, which has responsibility for all of the code and documentation. In
general, the development team has its own communication mechanism, which is not
open to outsiders.

The company does most of its own testing and fixes problems even before
releasing a beta version to users. Many make their beta versions available to a broad
community of users, providing mechanisms for reporting issues and problems in
functionality, performance, installation, usability, stability, and/or security.

3.2 A completely open software project

At the opposite end of the spectrum are the thousands of Community Open Source
projects, each with its own community, open to anyone who is interested in the
project. The work is done entirely in the open, and is typically hosted in such
repositories as SourceForge, Tigris.org, Apache Software Foundation, and Java.net.
The software can be acquired and used by anyone, subject to the terms of the
project’s license agreement.

In an open source project, a project lead (or leadership group) is responsible for
overall project management, such as determining when a version of the software is
ready (stable version), selecting the license to be used with the software release, and
deciding who can have “commit rights” to the code.

 Some projects are very informal, without formal organization and governance
bodies. Decisions are usually made by informally discussing issues within forums,
mailing lists or IRC channels. Some communities may have a voting mechanism for
resolving issues.

 Project participation is open to all, independent of organizational affiliation.
Many projects include both volunteers, who have another job and work on the
project in their spare time, as well as people who are paid by companies to work on
the project.

Since project participation is often a volunteer activity, the project leadership
cannot easily compel someone to work on a specific task or to adhere to a schedule,
as is the case in a commercial software project. Participants in these community-

6 Eugenio Capra and Anthony I. Wasserman

based projects rarely meet in person. Instead, they communicate by mechanisms such
as forums, mailing lists, IRC channels, instant messaging systems, wikis, blogs,
online shared task lists or similar devices. Each community relies on one or more of
these tools according to its tradition and habits.

A Community Open Source project doesn’t have formal testing or quality
assurance processes, but instead relies upon individual developers to test their own
code, and for community members to test the software and post issues (and possibly
fixes) using the project’s issue tracking system. Well-managed projects respond
quickly to posted bugs, relying on individual committers to make any needed
changes or enhancements to their code. While commercial projects control the
number of releases and offer customer support for those releases, no comparable
support mechanism is in place for community-based open source projects.

3.3 Dimensions of the SPGF

Using these typical approaches for project management, we defined the following
dimensions along which software projects can be evaluated.

3.3.1 Contributions

This dimension measures the relative amount of voluntary code development. Most
Commercial Open Source companies resemble proprietary software companies in
their reliance on paid development.

In a community-based open source project, code is usually developed on a
voluntary basis. However, contributors may be employed or hired by a company or
an organization that wants to lead the project or to accomplish specific tasks (e.g., to
implement a new feature or to fix a specific bug).

A significant difference between hired and voluntary developers is that the
former have to follow the guidelines and deadlines imposed by their employers,
whereas the latter are really free to work according to their will and inclination.

Table 2 provides a quantitative metric for this dimension.
Please note that we use the term hired developer rather than employee as a way

to distinguish volunteers from people who receive regular compensation for their
contributions to a software project. Whoever is the employer and whatever the form
of contract, a person who is paid to develop an application will behave differently
from a person who writes code in his spare time just for personal satisfaction. Some
companies pay a nominal “bounty” to individuals for small contributions; we do not
consider them to be hired developers.

We used 80% as a threshold since the percentage of code committed by
volunteers on commercial projects is typically below 10%. In community-based
projects, less than 50% of the code is developed by hired employees.

A Framework for Evaluating Managerial Styles in Open Source Projects 7

Value Description
1 100% of the code is developed by hired developers
2 >80% of the code is developed by hired developers
3 >50% of the code is developed by hired developers
4 Most of the code is developed by volunteers

Table 2 - Evaluation of contributions dimension.

3.3.2 Project leadership

This dimension indicates the degree to which the leadership of a project is
hierarchical. Commercial Open Source projects are led by a company, which usually
defines a roadmap and sets schedules. Companies might also play a significant role
in guiding and managing community projects. Some Community Open Source
projects are indirectly governed by a predominant company, which defines the
roadmap of the project and leverages the community to reach its goals. Communities
may be led not only by a company, but also by a foundation or by an independent
committee. Some projects are managed by a “benevolent dictator”: participation and
discussion are fostered, but final decisions are made by the project leader or an
entrusted committee. The Linux Kernel project is an example this style of
governance. On the other hand, fully open communities often lack a formal
organization. Decisions are made by voting or by governance bodies which are
directly elected by active contributors. Less formal communities adopt the lazy
consensus approach, i.e., issues are discussed within forums and mailing lists and
decisions are made when nobody has anything more to add.

It is very difficult to provide a quantitative metric to evaluate this dimension. For
the cases we analyzed, we developed a qualitative scale, shown in Table 3.

Value Description
1 Roadmap and development process are led by one company

or organization which has a predominant leadership role,
makes decisions and sets schedules.

2 Roadmap and development process are led by one company
or organization. However, free discussion and participation to
the governance of the project is fostered.

3 The community is ruled by some formal rules and principles.
Decisions are made mainly by voting or by governance
bodies directly elected by contributors.

4 The community completely lacks a formal organization and
governance bodies. Decisions are made by informally
discussing issues.

Table 3 - Evaluation of Project leadership dimension.

8 Eugenio Capra and Anthony I. Wasserman

3.3.3 Working practices

This dimension indicates the degree to which the working and communication
practices of a project are geographically distributed and virtual.

Proprietary software projects and many Commercial Open Source projects rely
primarily on a closed community working for a single employer, often in close
physical proximity. A Community Open Source project, by contrast, often has a
geographically dispersed membership. With little funding to support physical
meetings of the project team, these projects rely heavily on collaborative tools. Note
that such tools may also be used by those in close proximity to each other.

Table 4 presents a qualitative scale for this dimension.

Value Description
1 Developers work on the same site, communicate in

traditional ways and have regular physical meetings.
2 Most developers work on the same site and have regular

physical meetings, with some remote participants
3 The community is dispersed and most developers are

remote. Some subsets of developers, however, work at the
same location and meet regularly.

4 The community is widely dispersed and all the developers
communicate through virtual tools. Physical meetings are
totally absent or very rare (1-2 per year).

Table 4 – Evaluation of working practices dimension.

3.3.4 Testing

This dimension aims at describing the testing process, as well as the presence and
role of a Quality Assurance department (or resources) within the project.

As noted in Section 3.1, commercial software development organizations
typically have Quality Assurance departments that define formal test processes and
are responsible for the quality of the application. A Quality Assurance department
also defines quality standards, including those for contributions submitted for
inclusion in the code base.

By contrast, Community Open Source projects rely on their own developers and
their user community for testing, with relatively few formal processes or tools. In
general, open source projects tend not to have specific QA roles, even though some
open source projects have very strict pair reviewing rules that determine when new
code or patches can be committed to the code base.

 Table 5 provides a qualitative scale for this dimension. Please note that by
“internally” we also mean testing done by the committers or the core developers of a
project. The word “community” in this context refers to users or casual contributors.

A Framework for Evaluating Managerial Styles in Open Source Projects 9

Value Description
1 All the testing is controlled internally by specific QA roles.

New versions of the application are released only after
being thoroughly tested.

2 Most testing (>50%) is performed internally before new
versions of the application are released. The user
community is leveraged as a broader testing platform, for
example by releasing beta versions and then collecting
feedback and bug notifications.

3 Some testing (<=50%) is performed internally, but most of
it is left to the community of users.

4 Testing is completely left to the community of users.
Table 5 – Evaluation of testing dimension.

3.3.5 Graphical representation

We use a diamond graph to show where projects fall on the spectrum for each
dimension. Figure 1 shows the extreme cases of a traditional closed source and a
completely open software projects.

0
1
2
3
4

Contribution

Project
leadership

Working
practices

Testing

Traditional closed source
Completely open software

Fig. 1 – Graphical representation of project management dimensions.

10 Eugenio Capra and Anthony I. Wasserman

4 Case Studies

In this section we provide some examples on how the SPGF may be applied to real
projects. We apply the SPGF to three open source projects: OpenOffice.org, MySQL
and SugarCRM. We chose these since they are well known applications, and show
differences among the dimensions of the framework.

Figure 2 presents a graphical representation of the positioning of these projects. A
first glance at the picture shows that OpenOffice.org and MySQL are closer to the
completely open source approach, while SugarCRM is closer to closed software
projects.

0
1
2
3
4

Contribution

Project leadership

Working practices

Testing

OpenOffice
MySQL
SugarCRM

Fig. 2 Graphical representation of the assessment of a project according to the framework.

4.1 OpenOffice

OpenOffice (OpenOffice.org) is a widely used open source office suite with more
than 100 million downloads.

OpenOffice is quite a monolithic project. Although everybody can contribute to
the project and can earn commit right, Sun Microsystems and IBM have historically
contributed almost 90% of the code, paying more than 90 developers for their work.
Other companies, such as RedHat and Novell, also contribute to the code. This
accounts for the score 2 on contribution dimension.

A Framework for Evaluating Managerial Styles in Open Source Projects 11

The community has a very structured governance model, based on a Community
Council and an Engineering Steering Committee. The Community Council is
constituted by members of the community but is deeply influenced by Sun and IBM.
The project has a clear and shared roadmap, which probably could not exist without
a corporate structure in the background. All these factors lead to score 2 on the
project leadership dimension.

Communication within the community mainly takes place on mailing lists and on
IRC channels. However, most of Sun’s developers work in Hamburg and meet daily.
As a result, issues are often discussed in person and then conclusions are posted on
mailing lists, so that remote community members can be informed. Moreover,
occasional cross-corporation meetings are held several times a year. Consequently,
working practices score 3.

OpenOffice began as StarOffice with Sun, and the QA team that worked on
StarOffice now works on OpenOffice. There are currently about 550 QA members
with canconfirm privilege, i.e. the ability to approve some feature before it is issued.
In this particular aspect, OpenOffice is very similar to a traditional software house.
Testing is also managed in a very structured way. Specific test suites have been
written, integration and system testing are carried out regularly, daily smoke tests,
regression testing and code coverage tools are adopted on a regular basis. Every
developer is responsible for testing his code, but pair review is applied, too, and the
QA team has to confirm the validity of new code. Feedback and bug notifications
from users are also accepted and encouraged. This behavior accounts for score 2 on
testing dimension.

4.2 MySQL

MySQL (www.MySQL.com) is distributed by MySQL, AB (now part of Sun
Microsystems). Even though the code is open, it is mainly developed (99%) by
employees of the company. The community is invited to submit new code, which is
reviewed according to strict and documented internal standards before it is accepted.
However, this is quite rare, given the size and complexity of the code base. This
accounts for the score 1 on contribution dimension.

MySQL (the company) controls governance of the project. The corporate culture
is very open to discussion, which is fostered by means of online communication
tools, such as blogs, wikis, and forums, but MySQL, as a traditional software house,
makes the final decisions. Thus, we assign a score of 1 to project leadership
dimension.

The real value of the community is mainly to create a broad marketing platform
and to provide extensive testing that augments the internal MySQL QA department.
Functional tests and cross-platform tests are usually done by the internal
development team, then QA tests the alpha versionusing their own scripts. Once the
code is released, more than 50% of testing is left to the community, which also

12 Eugenio Capra and Anthony I. Wasserman

performs most of the integration tests. This combination of internal QA and external
testing explains the scores 3 on the testing dimension.

Although MySQL is managed as a traditional company, many of its working
practices resemble those of community projects. Developers are located in 26
countries around the world, and work from home, meeting only once or twice a year.
They mainly communicate through asynchronous tools, such as highly specific
internal IRC channels, shared task lists and e-mails, to overcome time zone
differences. Telephone conference calls and video chats are also organized, but they
are always combined with e-mails or forum posts. This accounts for the score of 4 on
the working practices dimension.

4.3 SugarCRM

SugarCRM (www.SugarCRM.com) is another Commercial Open Source project.
Similarly to MySQL, most of the code is open, but it is developed by internal
employees only. The core application is centrally controlled by the company, while
the community is involved in the creation of new projects, such as extensions and
plug-ins, which are hosted on the SugarForge website. Consequently, the score for
contribution and project leadership dimensions is the same as MySQL.

On the other hand, most of the developers work in the same location and have
regular meetings. Forums and mailing lists are used, but by external community
members rather than internal developers. VoIP phone conferences are frequent, but
this happens even in very traditional closed source projects. Consequently, it scores 1
on the working practices dimension.

Most quality assurance and testing is performed by the internal QA department,
which is also responsible for bug fixing. This accounts for score 1 on the testing
dimension.

SugarCRM governance and managerial styles are actually very similar to those
of a traditional closed software project, with the only exceptions that most of the
code is open and that external people can contribute code.

5 Application of the framework to the sample

After defining the framework, we applied it to our sample of Community Open
Source projects. Table 6 shows the distribution of the scoring of the projects in the
sample along the four dimensions of the framework.

A Framework for Evaluating Managerial Styles in Open Source Projects 13

Dimension x x<3 3<=x<4 x=4
Contribution 43% 10% 47%
Project Leadership 30% 48% 22%
Working Practice 7% 37% 57%
Testing 33% 44% 15%

Table 6 – Distribution of SPGF scores across the sample.

Most of the communities have some kind of organization and governance bodies,

which control new contributions and part of the testing. In particular, the survey
showed that approximately 50% of the code of the applications in the sample is
developed by hired developers and that physical meeting are held in 35% of projects.

6 Conclusions and Future Work

The Software Project Governance Framework provides a consistent way to analyze
projects based on their governance and managerial styles. The central idea behind the
framework is that open source has a deep impact on the governance of a software
project and, consequently, may impact its quality and costs. The empirical analyses
we conducted allowed us to study and embrace a wide range of different software
projects. The SPGF provides a structured methodology to analyze managerial and
governance models, and to categorize these projects according to the dimensions that
are regarded as the most significant by the project leaders. We think that the SPGF
may enable a deeper comprehension of software projects and may be useful to a wide
range of users.

First, it may be used by researchers to quickly assess and cluster projects. This
allows one to select a homogenous sample of projects from a governance point of
view before performing further surveys and analysis. We are working on a research
project that seeks correlations between the SPGF dimensions and quality of design
and development effort of a software project. Second, this framework is valuable to
end users seeking information about the structure of various open source projects.
For example, a company which is evaluating the adoption of an open source
application may want to know and classify the governance approach behind the
development of that application. Third, this framework may be used as a reference
by developers and project leaders who want to position their products among the
different typologies of open source projects and clearly present their managerial style
to the public.

In the future, we are planning to further validate and potentially extend this
framework. We will expand our sample through additional interviews and surveys,
and also seek correlations between these dimensions and project success.

14 Eugenio Capra and Anthony I. Wasserman

Acknowledgments

We are grateful to the project managers who provided data to us. For the projects identified in this
paper, we specifically acknowledge the participation of Louis Suarez-Potts (OpenOffice), Kaj Arnö
and Omer BarNir (MySQL), and Jacob Taylor (SugarCRM). We also thank Professor Chiara
Francalanci and Francesco Merlo (Politecnico di Milano) for their support and advice.

References

[1] L.C. Briand, K. El Emam, and S. Morasca, “On the application of measurement theory in

software engineering”, Journal of Empirical Software Engineering, vol. 1, no. 1, pp. 61-88,
1996

[2] B. Fitzgerald, “The Transformation of Open Source Software, MIS Quarterly, vol. 30, no. 3,
2006.

[3] K. Fogel, “Producing Open Source Software”, O’Reilly, Sebastopol (CA), 2006.

[4] G. Goth, “Open Source Business Models: Ready for Prime Tim”, IEEE Software, Nov/Dec
2005, pp. 99-100.

[5] M. Griffiths. (2006, Oct. 5). Most software development metrics are misleading and
counterproductive [Online]. Agile Journal, Available:
http://www.agilejournal.com/content/view/107

[6] L.J. Kirsch, “The management of complex tasks in organizations: controlling the systems
development process”, Organization Science, vol. 7, no. 1, pp. 1-21, 1996.

[7] A. MacCormack, J. Rusnak, and C.Y. Baldwin, “Exploring the Structure of Complex
Software Designs: An Empirical Study of Open Source and Proprietary Code”, Management
Science (forthcoming).

[8] P.S. Renz, Project governance: implementing corporate governance and business ethics in
nonprofit organizations, Heidelber, Physica-Verl, 2007.

[9] S. Slaughter, J. Roberts, and I. Hann, “Communication Networks in an Open Source Software
Project”, Proc. of 2nd Conference on Open Source Systems, Italy, Jun 2006.

[10] S. Slaughter, J. Roberts, and I. Hann, “Motivations, Participation and Performance in Open
Source Software Development”, Management Science, (forthcoming).

[11] J. Sonnenfeld, “Good governance and the misleading myths of bad metrics”, Academy of
Management Executives, vol. 18, no. 1, pp. 108-113, 2004.

