

OpenBQR: a framework for the assessment
of OSS

Davide Taibi1, Luigi Lavazza12, and Sandro Morasca1

1 Università dell’Insubria
luigi.lavazza@uninsubria.it, sandro.morasca@uninsubria.it,

davide.taibi@uninsubria.it, WWW home page: http://www.uninsubria.it
2 CEFRIEL

WWW home page: http://www.cefriel.it

Abstract. People and organizations that are considering the adoption of OSS,
or that need to choose among different OS products face the problem of
evaluating OSS in a systematic, sound and complete way. While several
proposals concerning the evaluation of costs and benefits exist, little attention
has been given to the evaluation of technical qualities and, in general, to the
“usage-oriented” issues. In this paper the existing proposals are examined, the
different types of qualities and issues that are relevant to potential users are
described, and a coherent and innovative method for the evaluation of OSS is
proposed. The proposed method is expected to support the potential user in the
evaluation and choice of OSS in a flexible way, taking into account all the
aspects that are relevant to the user.

1 Introduction

Open Source Software is a continuously growing movement. In order to give an idea
of the size of the phenomenon, note that at the end of 2006 there were over 100,000
ongoing OSS project based on the best known repositories (such as SourceForge,
CodeHaus, Tigris, Java.net and Open Symphony). OSS can also boast of several
success stories: programs like the Apache projects, Netscape/Firefox, Eclipse, Linux,
MySQL, and several others are well known and used by a huge number of people
worldwide. Nevertheless, there are several areas where OSS was not adopted, at least
not as widely as it could be expected. An example is given by the so called desktop
environments and office applications. In fact, even in the areas where OSS has been
successful, there are several potential users that did not adopt OSS.

Understanding why the adoption of OSS is limited is quite complex. A first
reason is that the very concept of Open Source is hardly understood [1] [2] .
People tend to confuse OSS with free software (i.e., software that can be used
without paying any fee) and open standards with proprietary disclosed software (like
PDF) [1]. Another reason is that it is not obvious how to carry out the cost/benefit

mailto:luigi.lavazza@uninsubria.it,%20sandro.morasca@uninsubria.it
mailto:davide.taibi@uninsubria.it
http://www.cefriel.it/
http://www.codehaus.org/
http://www.tigris.org/
http://www.java.net/
http://www.opensymphony.com/

174 Davide Taibi, Luigi Lavazza, and Sandro Morasca

analysis, given that the acquisition cost of OSS is usually null. Recently, the concept
of Total Cost of Ownership (TCO) has been proposed as a mean to evaluate the cost
of adapting, managing and maintaining OSS; nevertheless, the concept of TCO is not
widely used, partly because it is not well understood (there are several, often not
coherent, definitions) and partly because there is the suspect that most published
TCO evaluations are driven by software vendors who want to convince customers
that the commercial option is economically profitable. Finally, deciding the adoption
of OSS requires the evaluation of the qualities of candidate OS programs, and their
comparison with commercial programs. However, assessing the qualities of OSS is
still a practice not well consolidated. Organizations facing the problem of deciding
about the adoption of OSS have hardly any guide for carrying out a well structured
comprehensive evaluation.

On the other hand, the producers of Open Source software cannot rely on clear
indication concerning the factors that could determine the success of their products.

In this paper we discuss the qualities of OSS that determine its success and the
features of OSS that should evaluated by potential users and adopters. Based on
these considerations, a framework for the assessment of OSS is proposed. The goal is
that such framework explicitly describes the qualities and properties of OSS that are
considered important by both users and producers. In this way the framework can be
employed by potential users for evaluating OSS. On the contrary, producers will get
indications of what users value more, thus understanding what needs to be improved
in their proposals.

The paper is structured as follows: Section 2 presents the current situation and
the most recent proposals concerning OSS evaluation. Section 3 describes the
features of OSS that –according to our analysis and understanding– are deemed
important by organizations and professional users. Based on these considerations,
our proposal for an OSS evaluation framework –named OpenBQR– is described in
Section 4. In Section 5 we describe the validation activities that we carried out in
order to confirm the capability of OpenBQR to represent the important features of
OSS. Section 6 describes a web-based tool for carrying out the evaluations according
to the criteria defined by the OpenBQR. Finally, Section 7 draws some conclusions.

2 State of the art and related work

The economic perspective

The first and most obvious problem with OSS is to assess its cost. Often OSS is free,
i.e., there is no fee to pay in order to use the software; however, even in these cases it
is clear that using OSS requires some investment. TCO (Total Cost of Ownership)
addresses the evaluation of the cost of adopting and using a software program,
including all the expenses, and spanning the whole lifecycle of the system [8].
Therefore, TCO involves the evaluation costs due to acquisition, adaptation,
deployment, training, operation, maintenance, etc.

OpenBQR: a framework for the assessment of OSS 175

TCO applies to both OS and commercial software, thus allowing the comparison
of costs. In fact, TCO became popular also because it was used to support both the
thesis that OSS is more convenient than commercial software, and the vice versa.

Although TCO had the merit of providing a sound and comprehensive basis for
the evaluation of SW costs, it is limited with respect to two important issues:

x TCO does not address the costs that are connected with the evolution of the
user’s business process, which could require updating the software or even
changing it, thus calling for additional investments.

x TCO does not include the evaluation of benefits, thus providing an incomplete
view of the financial consequences of adopting the considered software.

Other proposals have addressed these limitations of TCO. In order to take into
consideration the future evolution of the users’ needs, Cosenza proposed the Total
Account Ownership (TAO) index, which aims at representing the degree of freedom
of the user with respect to the technology provider [7]. The TAO considers issues
like contracts and licenses, software adaptability, openness of formats and interfaces,
documentation, training and assistance providers, etc., and indicates to what extent
adopting a given piece of software is a commitment for the future.

The Full Business Value (FBV) aims at representing the whole value of the
investment and includes the assessment of: system efficiency; system effectiveness;
business efficiency; business effectiveness. The TCO can therefore be seen as a
means to prove part of the information required by the FBV.

However, none of the TCO, TAO and FBV indexes address the issue of software
quality. Since the adequacy of the software –from both the functional and quality
point of view– is of fundamental importance, it is clearly necessary to assess them.

Next section discusses the evaluation of technical qualities as well as the
assessment of the software adequacy with respect to the business process it is
supposed to support.

The quality perspective

Recently, the problem of evaluating OSS became evident, so that a few organizations
invested some effort in the creation of models for the quality and evaluation of OSS.
The variety of models proposed witnesses the attention for the problem, but also
demonstrates the difficulty of defining a fully satisfactory model.

The Open Source Maturity Model (OSMM) [3] is an open standard that aims at
facilitating the evaluation and adoption of OSS. The evaluation is based on the
assumption that the overall quality of the software is proportional to its maturity.

The evaluation is performed in three steps:

1. Evaluation of the maturity of each aspect. The considered aspects are: the
software product, the documentation, the support and training provided, the
integration, the availability of professional services.

2. Every aspect is weighted for importance. The default is: 4 for software, 2 for the
documentation, 1 for the other factors.

176 Davide Taibi, Luigi Lavazza, and Sandro Morasca

3. The overall maturity index is computed as the weighted sum of the aspects’

maturity.
The OSMM has the advantage of being quite simple. It allows fast (subjective)
evaluations. However, the simplicity of the approach is also a limit: several
potentially interesting characteristics of the products are not considered. For
instance, one could be interested in the availability of professional services and
training, in details of the license, etc. All these factors have to be ‘squeezed’ into the
five aspects defined in the model.

In general we doubt that using ‘maturity’ as a proxy of the overall OSS quality is
a good idea. Since we are interested in the evaluation of the OSS quality, it is much
more effective to go straight for the definition of metrics that represent directly the
aspects of the SW product that determine the quality for the user, i.e., what the users
consider important in order to make OSS suitable for usage.

The Open Business Readiness Rating (OpenBRR) [5] is an OSS evaluation

method aiming at providing software professionals with an index applicable to all the
current OSS development initiatives, reflecting the points of view of large
organizations, SMEs, universities, private users, etc. On the official Open BRR site
several evaluations are available. They can be examined and easily adapted: you just
need to input the parameters that suit best your needs in the spreadsheet containing
the evaluation. The proponents of the method plan to apply it to all SourceForge and
Java.net projects, so that potential users can find a ready to use evaluation of the
software they are interested into.

In the first step of the evaluation, the list of programs to be evaluated is
compiled. Then every component is evaluated with respect to a set of indicator
selected according to the target usage and including: the type of license, the
compliance with standards, the existence of a user base, the availability of reliable
support, the implementation language, internationalization, etc. Then the
functionality of products is evaluated. The features of a “reference application” are
identified and their importance is graded with respect to “standard usage”. Then
every product is evaluated with respect to how well it implements every feature.
Finally, the grades are normalized and the final evaluation (a grade in the 1..5 range)
is computed.

The Open BRR is a relevant step forward with respect to the OSMM, since it
includes more indicators, the idea of the target usage, and the possibility to
customize evaluations performed by other, just by providing personalized weights.
With respect to the latter characteristics, the Open BRR as however some limits: one
is that for many products it is difficult to choose a “reference application” that
reflects the needs of all the users; another is that there are lots of possible target
usages, each with its own requirements; finally, every subjective evaluation
performed by a user could be not applicable to other users. In any case, the final
score is probably a too synthetic indicator to represent the complex set of qualities of
a software product.

OpenBQR: a framework for the assessment of OSS 177

Qualification and Selection of Open Source Software (QSOS) is a model for the
selection and comparison of OS and free software [4]. The evaluation process is
carried out in four independent iterative phases. The definition phase aims at
identifying the factors to be considered in the following phases. Phase 2 aims at
collecting from the OS community the relevant information concerning the products.
The goal is to create for every product an identity card (IC) reporting general
information (name of the product, release date, type of application, description, type
of license, project URL, compatible OS, …), available services, functional and
technical specifications, … The quality aspects of the selected products are
evaluated, and a grade (in the 0..2 range) is assigned according to the evaluation
guidelines provided by QSOS. Phase 3 is dedicated to the definition of the selection
criteria. The user’s needs and constraints are described. Phase 4 consists in the
comparison of the products’ evaluation forms with the selection criteria, and in the
identification of the product that matches betters with the user’s needs and
constraints.

Although in principle the method is effectively applicable to most OSS, the
QSOS approach does not represent a relevant step forward with respect to other
evaluation methods. Its main contribution is probably the explicitation of the set of
characteristics that compose the IC, and the provision of a guideline for the
consistent evaluation of these characteristics. Nevertheless, the evaluation procedure
is too rigid and a bit cumbersome. For instance, it is required to define the IC of
products that could be filtered away in phase 4 because they do not match the
requirements. Such a procedure is justified when the ICs of products are available
from the OS community before a user begins the evaluation. However even in this
case it may happen that the user needs to consider aspects not included in the IC: this
greatly decreases the utility of ready-to-use ICs. The strict guidelines for the
evaluation of the IC, necessary to make other users’ scoring reusable, can be ill
suited for a specific product or user. Finally, even though in the selection criteria it is
possible to classify requirements as needed or optional, there is no proper weighting
of features with respect to the intended usage of the software.

3 Features of OSS that determine its acceptance by professional
users

Assessing Open Source Software can require a complex process. In this Section, we
describe the characteristics that are taken into account by people in order to assess
the overall quality of OSS when choosing and adopting an OSS.

After a complete analysis of requirements, a set of parameters should be
assessed, which favour a complete comprehension of the OSS being evaluated. We
have identified several straightforward indicators that clearly show the quality of a
software package to be adopted, divided into five different areas: functional
requirement analysis, target usage assessment, internal quality, external quality, and
likelihood of support in the future.

178 Davide Taibi, Luigi Lavazza, and Sandro Morasca

Target usage assessment

License: Not all open licenses are equal. Some licenses are more restrictive than
others. If you need to extend the software, copy left properties are important because
they allow modification of the code base and the redistribution of the modified
version as long as the new product stays open.
Compliance with standards: for several application domains compliance with
standards is important. For instance, in a website implementation, valid W3C-HTML
code is a first step toward more compatibility with browsers and better rendering of
pages. Using only strict HTML (that is, the Strict HTML DTD) makes the site easier
to maintain and evolve.
Implementation language: if customization work and internal support are required, it
is important to choose a product written in a programming language that is
sufficiently mastered by the organization’s programmers.
Internationalization Support: useful for applications that need to be translated into
different languages.
Books: the availability of books about the software is a strong indicator of the
software’s level of maturity and popularity.
Interest by well known industry and market analysts and consultants: the availability
of research reports on the software by analysts from leading market research firms
(like Gartner or IDC) usually witnesses the relevance and diffusion of products.

Internal quality

With OSS it is possible to examine the internal quality of software, which is
generally not disclosed for commercial software. For the purpose of evaluating the
internal qualities you can choose among the many metrics proposed in literature and
effectively supported by tools, like McCabe Cyclomatic Complexity, Chidamber and
Kemerer’s object-oriented metrics suite, Halstead complexity metrics, etc.

External quality

The main indication for the external quality of a software product is the defect
density. It is therefore interesting to evaluate the number and severity of bugs over
time, as well as defect removal speed. The latter is also a good indicator of the
quality of support for the product.

In some cases it is also relevant to evaluate the defect removal process. In some
cases, the removal of specific defect can be sped up by “donations” (in practice, you
pay the organization maintaining the software for solving the problem that is relevant
for you). If you are considering a product with a high donation/bugs ratio, you must
consider this cost of maintenance in your cost/benefit analysis.

Probability of support in the feature

General it is needed that a software product is supported as long as it is in use. We
can estimate if the OSS being evaluated will be supported in the future through an in-
depth analysis of the community of OSS developers, assessing:
x The “vitality” of the product, indicated by its age and the number and frequency

of releases.

OpenBQR: a framework for the assessment of OSS 179

x The number of companies involved in the development. A large number of

companies is a good index of probability for a continuative support.
x The number of developers per company is useful to understand how important –

or even “strategic”– each company considers the OSS product.
x The number of independent developers is also relevant, since a large community

of developers guarantees a continuous development and maintenance effort.

4 Open BQR: a framework for the evaluation of OSS
We defined Open BQR as an extension and integration of Open BRR and QSOS to
address some of the problems of the current OSS evaluation methods, which are still
immature, due to the relative novelty of the field. Here, we list some problems that
Open BQR helps addressing.
x Existing methods usually focus on specific aspects of OSS.
x Some methods proceed to evaluating indicators before they are weighted, so

some factors may be measured or assessed even if they are later given a very
low weight or even a null one. This results in unnecessary waste of time and
effort.

x No OSS evaluation method adequately deals with internal and external product
qualities, even though the source code is available.

x The dependence of the users of OSS is not adequately assessed, especially the
availability of support over time and the cost of proprietary modules developed
by third parties.

During the definition of Open BQR, we tried to build a complete, simple, repeatable,
adaptable and open OSS evaluation method with the following characteristics. As
such, Open BQR can be used by several types of users, including ICT experts who
need to evaluate and select OSS products, OSS developers, software quality
assurance and measurement professionals. The main features of Open BQR concern
the investigation of a number of relevant aspects of an OSS product, including:

x Functional adequacy to requirements;

x Quality, in terms of absence of defects or time-to-fix;

x Availability of maintenance support;

x Cost of non OSS modules or necessary development tools;

x Other issues like license type, programming language ...
The evaluation process is composed of three phases, in the same line of thought as
Open BRR, as we detail in the following subsections. These phases and their sub-
phases consider the OSS product features outlined in Section 3.

Quick Assessment Filter

Like in the Open BRR a list of topics is identified, along with their characteristics.
Unlike in the Open BRR, the characteristics are measured only after a weight has
been assigned to them. The idea is to avoid data collection for characteristics that
may be deemed of no or little importance, and reduce the effort and time for defining

180 Davide Taibi, Luigi Lavazza, and Sandro Morasca

a measurement plan and collecting the data. This phase is divided into five steps,
each of which addresses a different area, as follows.

1. Selection of indicators based on scope and target use: First, the application
target is selected (Mission-critical, Regular, Development, Experimentation, …).
Second, the license type is assessed, to check if the license type allows the
development of the product as required by the specifications. Third, standard
compliance, implementation language, internationalization support, books, and
interests by major analysts are taken into account.

2. Analysis of external qualities: mainly, this step addresses the defects uncovered,
the percentage of those that were fixed, and the distribution and average of the
time it took to fix them.

3. Analysis of internal qualities: internal sub-characteristics qualities from the
ISO9126 standard have been selected, along with other common indicators, such
as McCabe’s cyclomatic complexity.

4. Product support over time: this can be quantified based on the number of
programmers that provide solutions to the incoming requests.

5. Existence of required functionalities: based on the user requirements, the
functionalities of the OSS product are weighted on a 0 - 9 scale, to assess their
relative importance. The required functionalities are then assessed on a 0 – 100
scale (the value ‘0’ meaning “not implemented” and the value ‘100’ meaning
“fully implemented”).

Data Collection & Processing

The outcome of the previous phase is a list of all the necessary indicators, along with
their assigned weights. This phase is organized as follows:

1. Pruning: All of the indicators with a zero weight or a weight below a user-
specified threshold are eliminated.

2. Measurement: The remaining characteristics are measured.

3. Normalization: The weights for each of the five areas described in the steps of
Phase 1 are normalized to a total of 100. This allows for a fair comparison
across different areas, i.e., each area will receive a score between 0 and 100.

4. Assessment: The final score for each area is obtained, and a single score is
computed for the entire product as a weighted sum of the results obtained for the
single areas, if needed. This can be useful for a first assessment, for instance for
filtering out products whose total overall score is too low. An in-depth
comparison among OSS products requires the knowledge of the values obtained
in the single areas, along with the evaluation of costs.

Data Translation

This last phase consists in visualizing the results of the evaluation of the various
products for comparison purposes. An example of a polar plot for immediate
visualization is given in Fig. 1.

OpenBQR: a framework for the assessment of OSS 181

5 Validation
In order to validate the approach three well known Content Management Systems
have been evaluated by means of Open BQR. The results have been compared with
the informal evaluations of the same tools expressed (via forums etc.) by the
community of users. For space reasons we cannot provide the entire evaluation, so
we report here a few details to show how one should proceed with OpenBQR. The
three products we analyzed are Mambo (http://www.mamboserver.com), Drupal
(http://www.drupal.org) and WebGUI (http://www.webgui.it). We started by setting
a number of requirements for the application, and we ranked them in order of
importance. We envisioned a personal web application with a user-defined layout
(weight 10), with user-operated functionalities for creating, reading, updating,
deleting web pages (weight 10) and files (weight 5), image gallery (weight 7), and
support for the Italian language (weight 4). We then carried out the other activities of
the Quick Assessment Filter.

target indicators

external qualities

internal qualities

support

cost

functionality

Product A

Product B

Product C

Fig. 1. Open BQR evaluation: visualization of the comparison of three products.

Some details of the evaluation are reported in Appendix A. The following
comparison table reports the synthesis of the results for the three products.

Product Mambo Drupal Web GUI

Target usage assessment 30,69 20,31 28,45

Analysis of external qualities 11,72 9,66 14,14

Availability of support in the future 35,68 29,14 13,10

Satisfaction of functional requirements 100 100 100

Overall evaluation 78,10% 68,10 55,69

Rating ���� ��� ��
According to our analysis, the best product is Mambo, although from the point of
view of the external quality WebGUI is better.

6 A web-based tool implementing OpenBQR
A web based tool is being developed to help users apply the method in a coherent
way. The tool is designed to be able to easily manage a complete assessment, from

http://www.drupal.org/
http://www.webgui.it/

182 Davide Taibi, Luigi Lavazza, and Sandro Morasca

the requirements analysis, to the final visualization of the results. The main goal of
the tool is to provide a framework for the comprehension and application of the
Open BQR model, through all its steps, starting from the requirements analysis, to
the assessment of all the indicators and at the end showing a complete report with the
total score and a radar graph.

Through the web-based tool, we also collect data about the usage of Open BQR
(what features the users consider more important, what kind of software they are
interested into, etc.). These data are used to improve the method and the tool. The
users’ privacy is protected by a nondisclosure agreement. Data are published only in
aggregated form and we take care that no information about specific users is ever
made public.

Fig. 2. A screenshot of the Open BQR web-based tool.

7 Conclusions
In this paper, we have introduced a new OSS quality evaluation framework, which
we built by integrating and extending existing approaches, so as to take advantage of
their strengths, alleviate some of their drawbacks, and include some additional
characteristics of interest. OpenBQR is fairly complete, simple, repeatable,
adaptable, and open, so it can be used by different software organizations.

Future work will include using OpenBQR for the evaluation and comparison of
OSS products in several different areas. This may lead to tailored, more specific
versions of OpenBQR for the different application areas. Also, this will allow us to
further validate both the way the approach is used and its usefulness in reflecting
what the software industry expects from an OSS quality evaluation framework. This

OpenBQR: a framework for the assessment of OSS 183

will entail interviews and studies that will involve all the major stakeholders, i.e., the
OSS producers and the OSS users.

184 Davide Taibi, Luigi Lavazza, and Sandro Morasca

Acknowledgments
The research presented in this paper has been partially funded by the IST project

[9], sponsored by the EU in the 6th FP (IST-034763).

The work was also supported by the FIRB project “ARTDECO," sponsored by the
Italian Ministry of Education and University, and the project “La qualità nello
sviluppo software," sponsored by the Università degli Studi dell'Insubria.

8 References
[1] D. Cerri and A. Fuggetta, “Open Standards, Open Formats, and Open Source”,

July 2006, Submitted for publication
[2] A. Fuggetta. “Open source software: an evaluation”. Journal of Systems and

Software, April 2003.
[3] “Making Open Source Ready for the Enterprise: The Open Source Maturity

Model”, from “Succeeding with Open Source” by Bernard Golden, Addison-
Wesley, 2005, available form http://www.navicasoft.com

[4] Atos Origin, “Method for Qualification and Selection of Open Source software
(QSOS), version 1.6”, http://www.qsos.org/download/qsos-1.6-en.pdf

[5] “Business Readiness Rating for Open Source - A Proposed Open Standard to
Facilitate Assessment and Adoption of Open Source Software”, BRR 2005 -
RFC 1, http://www.openbrr.org.

[6] S. H. Kan, “Metrics and Models in Software Quality Engineering, 2nd Edition”,
Addison Wesley Professional, 2003.

[7] G. Cosenza, Liberi di Cambiare, Computer Business Review On-line Italy,
http://www.cbritaly.it/Aree-tematiche/OSS/Liberi-di-cambiare. (In Italian).

[8] J. Smith David, D. Schuff, R. St. Louis, “Managing your total IT cost of
ownership”, Communications of the ACM, Volume 45, n. 1 (January 2002).

[9] http://www.qualipso.eu

OpenBQR: a framework for the assessment of OSS 185

9 Appendix A. Details of the evaluation of CMS

Product Drupal 4.7.4 Mambo 4.5.3 WebGUI 7.0

System requirements Drupal Mambo WebGUI

Application Server PHP 4.3.3+ PHP 4.1.2+ mod_perl
Cost Free Free Free
Database MySQL, Postgres MySQL MySQL
License GNU GPL GNU GPL GNU GPL
Operating System Any Any Any
Programming
Language

PHP PHP Perl

Web Server Apache, IIS Apache, IIS, any
PHP enabled
web server

Apache

Support Drupal Mambo WebGUI

Commercial Manuals Yes Yes Yes
Commercial Support Yes Yes Yes
Commercial Training Yes Yes Yes
Developer Community Yes Yes Yes
Online Help Yes Yes Yes
Public Forum Yes Yes Yes
Third-Party Developers Yes Yes Yes

Ease of Use Drupal Mambo WebGUI

Mass Upload Free Add On No Yes
Prototyping No No Yes
Server Page Language Yes Yes Yes
Spell Checker Free Add On No Limited
Style Wizard No No Yes
Template Language Limited Yes Yes
WYSIWYG Editor Free Add On Yes Yes

Built-in

Applications
Drupal Mambo WebGUI

Blog Yes Yes Yes
Document
Management

Limited Free Add On Limited

File Distribution Free Add On Free Add On Yes
Link Management Free Add On Yes Yes
Mail Form Free Add On Yes Yes
Photo Gallery Free Add On Free Add On Yes

186 Davide Taibi, Luigi Lavazza, and Sandro Morasca

Indicators

Assigned

weight

Evaluation Normalized

weight

Weighted

evaluation

Target usage
type of license 9 10 15.52 15.52

standard compliance 5 8 8.62 6.90

implementation language 0 0 0.00 0.00

internationalization support 4 10 6.90 6.90

books 2 4 3.45 1.38

analysts and consultants 0 0 0.00 0.00

External qualities
bug number 6 8 10.34 8.28

average time for defect
removal

4 5 6.90 3.45

effect of donations of defect
removal speed

6 0 10.34 0.00

Internal qualities
complexity 0 0 0.00 0.00

reuse 0 0 0.00 0.00

dependencies 0 0 0.00 0.00

others 0 0 0.00 0.00

Future support
number of releases 9 10 15.52 15.52

number of organizations
supporting the software

5 9 8.62 7.76

number of programmers per
organization

4 9 6.90 6.21

number of independent
programmers

4 9 6.90 6.21

Total 100.00 78.10

