

Sprint-driven development: working,
learning and the process of enculturation in

the PyPy community

Anders Sigfridsson, Gabriela Avram, Anne Sheehan and Daniel K. Sullivan
Interaction Design Centre, Dept. of Computer Science & IS

Engineering Research Building, ER1002, University of Limerick, Ireland.
{anders.sigfridsson, gabriela.avram, anne.sheehan, daniel.sullivan} @ul.ie

WWW home page: http://www.idc.ul.ie

Abstract. In this paper we examine sprint-driven software development as it
occurs in a specific Open Source community, PyPy. Applying a situated
learning perspective, we report the findings from a study focused on the
activities leading up to, taking place during, and following after sprints. The
study included analyses of sprint reports, email archives and other documents
available on the community website, as well as a one-week period of direct
observation of a specific sprint. The objective of the study was to elaborate on
how the practices of sprint-driven development in the PyPy community
facilitate learning, the dissemination of knowledge among its members and the
expansion of the Open Source community. This paper aims to assess how
sprint-driven development can facilitate situated learning in distributed
software development by describing the practices applied in PyPy.

Keywords: Distributed software development, Open Source communities,
sprints, situated learning.

1 Introduction

Software development is a complex task. It is an activity which not only requires
people with highly specialized technical skills, who are capable of working with
highly abstract constructs and keeping up to date in an uncertain and rapidly
developing area, but it also requires a high degree of collaboration. A software
development project is often characterised by large scale, uncertainties, and complex
interdependencies [14]. Further adding to these difficulties is the fact that software
development is increasingly carried out in a distributed manner, fuelled by the
complexity and large scale of modern software systems, by the trend toward
globalization and the search for an educated yet inexpensive work force.

134 Sigfridsson, Avram, Sheehan and Sullivan

While the challenges facing globally distributed software development are not
unique, certain difficulties – technical and managerial, as well as social and cultural -
are further exacerbated by geographical and temporal distance. Three often
mentioned issues are cultural differences, trust, and communication [e.g. 10, 19, 22].
But these are by no means the only difficulties, as more traditional concerns such as
coordination, control and software processes are also affected by the distribution
[e.g. 4, 11]. Currently there is significant interest in both academia and industry to
gain a better understanding of these key issues and, above all, to discover ways of
addressing the difficulties and thus improving practice [9].

A number of the most complex and successful software products nowadays –
Linux, Apache, Firefox, OpenOffice and Eclipse, to mention but a few – have been
developed or enhanced by Open Source Communities. The growing success of Open
Source Software has resulted in it becoming a focus for research into issues relating
to distributed software development. What is interesting about this phenomenon is
how these loosely organized and often ad-hoc communities, using mostly simple
communication and development tools such as email lists, version control systems
and simple text editors [e.g. 8], can manage to develop high quality software [e.g. 17,
13].

Whilst we must recognize that the practices of Open Source communities are by
no means the “silver bullet” for developing software and that many of them may not
be adaptable to the more rigid requirements of the corporate world, they still provide
a valuable resource in terms of understanding the key issues relating to distributed
software development thus potentially providing guidance in the improvement of
practice. Within the Open Source arena it is quite common that novel development
methods and ways of working in cooperative projects are tried out. Some projects
not only aim at producing an operational end product, but also actively investigate
and improve software development techniques and attempt to find improved ways of
running software development projects. One such Open Source project is PyPy.

The PyPy project1 evolved from within the Python Open Source community and
is focused on re-implementing the Python programming language using Python
itself. The end-product will be an open run-time environment for the Python
language, but this is not the only goal. It also focuses on investigating novel
techniques for implementing practical dynamic programming languages and aims to
showcase a software development method called “sprint-driven development”. In
this paper, we are focusing on this latter aspect.

We have conducted a study of the activities in PyPy consisting of document
analysis of mailing lists, archives, sprint reports and other documents available on
the community website2 as well as a direct observation of one PyPy sprint, which
took place in August 2006 in Limerick, Ireland. The objective of the study was to
examine the actual activities leading up to, taking place during and following after
sprints and to elaborate on how sprint-driven development facilitates learning, the
dissemination of knowledge among its members and the expansion of the Open
Source community. This paper will present a brief introduction to the PyPy project
and the principles of sprint-driven development, and will then provide some specific

1 http://pypy.org/
2 http://codespeak.net/

http://pypy.org/
http://codespeak.net/

Sprint-driven development 135

accounts of the collaborative practices that occur in this community. We will apply a
situated learning perspective to explain what we have observed and will draw
conclusions about what lessons can be learned from PyPy regarding how sprint-
driven development facilitates situated learning in distributed software development.

1.1 The socGSD project

At the University of Limerick, Ireland, a group at the Interaction Design Centre
has received national funding as part of a software engineering research consortium
to study the social, organisational, and cultural aspects of global software
development (socGSD). The socGSD project aims to explore through case studies,
how organizations attempt to manage the coordination of engineering work via a
variety of mechanisms, from the formation of closely-knit, though distributed, teams
in multinational companies through to Open Source communities, who act as self-
organising bodies and manage to produce notable results without having formal
management structures and too many well-defined rules. Our research is based on
the findings of earlier studies on articulation and coordination work, information
sharing, knowledge management and informal learning practices in distributed work.
Our work is exploring the diversity of ways in which distributed teams shape their
work practices and come to a joint understanding of their objectives. Our research
also considers the various ways in which developers acquire new skills through their
day-to-day practice and continuously improve their practice through learning and
innovation.

Our research methods mainly rely on an interpretive, naturalistic approach to
data collection and analysis. This means that we study the phenomenon in the actual
settings where the work activity takes place, attempting to make sense of the work
through the eyes of those actually doing it.

The study of an Open Source community for the duration of a sprint provided us
with an excellent opportunity to observe the actual work practices of a team of
developers who were collocated for one week, but also to consider these practices
from the perspective of the context offered by the community’s web presence and
accounts of similar events.

1.2 Situated learning

Various theories of learning exist, each emphasizing different aspects of learning
and embracing different fundamental assumptions regarding the nature of
knowledge, learning and the role of the individual learner [15, 3, 23]. According to
Lave&Wenger [15], situated learning can be considered as a bridge between a view
according to which cognitive processes are primary and a view according to which
social practice is the primary, generative phenomenon and learning is one of its
characteristics. From this latter perspective, learning is viewed as an integral and
inseparable aspect of social practice. Our study adopts a social practice theory of
learning. In particular we are influenced by the concepts of situated learning,

136 Sigfridsson, Avram, Sheehan and Sullivan

specifically legitimate peripheral participation, an analytical perspective introduced
by Lave & Wenger [15] as a way of understanding learning.

According to Lave & Wenger [15] knowledge is learned by becoming a
legitimate peripheral participant in a community of practice and by gradually
acquiring “mastery”, or knowledge and reputation, through a process of social
interaction. Learning is thus not the result of direct and intentional teaching; rather it
is enabled by participation in practice and access to the learning resources available
in the community [24]. Active participation of newcomers allows them to interact
with more knowleageable peers and provides access to the expertise available within
the community. Learners acquire not just formal knowledge and skill, but also the
ability to behave as members of a particular community of practice. In the words of
Brown & Duguid [3] it involves becoming an “insider” or “becoming a practitioner
not learning about practice.” This situates learning squarely in the practices and
communities in which the knowledge takes on meaning and significance.

Both Orr’s [18] and Lave & Wenger’s [15] research emphasizes that to
understand working and learning, it is necessary to focus on the formation and
change of the communities in which work takes place. Based on his ethnographic
research on photocopier repair technicians, Orr posits that “not only is learning in
this case inseparable from working, but also individual learning is inseparable from
collective learning.” The implication is that knowledge and learning are not simply
the property of the individual, but are socially constructed and distributed. Hence
what is learned is connected to the context in which it is learned and so learning can
be fostered by fostering access to and membership of a particular community of
practice.

The application of a situated learning perspective to distributed teams and Open
Source Communities is not new [e.g. 24, 8, 21]. According to Ye & Kishida [24], an
Open Source community requires a high degree of openness in terms of both process
and product, as it offers more learning resources to encourage participation. In
addition, the manner in which a software system is partitioned also has an impact on
knowledge acquisition. By allowing newcomers to work on relatively independent
tasks, each with progressive difficulty, it fosters the possibility of legitimate
peripheral participation. In other words, it allows newcomers to participate
peripherally by contributing to tasks at their current skill level and to gradually move
on to take charge of more difficult tasks as mastery evolves. Furthermore, research
by Gutwin et al. [8] on awareness in distributed software development highlights the
importance of facilitating peripheral participation through email and chat. The
mechanism of “overhearing” inherent in these text-based communication tools
allows developers to become peripheral participants in each others conversations,
thus providing valuable awareness and enabling “expertise” to gradually become
visible.

2 The PyPy project and sprint-driven development

2.1 The PyPy project

Sprint-driven development 137

PyPy is part of the large Open Source community behind Python. Python is a
programming language, published under an OSI approved Open Source License. The
Python language was originally developed in 1990 by Guido van Rossum. Today,
the de facto standard implementation of the language is the CPython implementation,
which is also being developed as an Open Source project

The PyPy project also aims at producing an implementation of Python. But
unlike CPython, which is developed and written in C, the PyPy project is developing
an interpreter for the Python language in Python itself (hence the project name).3

However, creating a run-time environment for Python is not the only purpose of
this project. The PyPy project came into being as an Open Source project in 2003
and in December 2004 the project received partial funding from the European Union
(EU). As a result, the project objectives expanded to include a methodological goal,
namely to demonstrate that the Open Source way of working in general, and the
development methodology of choice in particular, are successful ways of
undertaking distributed, collaborative work and hence can be of use in future EU
projects as well as in large-scale development projects in general. The methodology
adopted by the PyPy community is what has been called “sprint driven
development”.

2.2 Sprint-driven development

A “sprint” is a focused development session – developers gather in one place for
a short period of time and work in pairs (or small groups) on specific parts of the
software system. This type of event has become popular within some Open Source
communities – for example, the OpenBSD and Linux communities - and has many
names, such as “hackathon”, “codefest”, “sprintathon”, “sprint”, and so on. The
primary purpose of these on-site meetings, which last from a few days up to one
week, is to write and test code in a collaborative way. To facilitate access, these
events are often collocated with conferences of relevance to the community’s
members, but they may also be hosted separately in various locations, usually
organized by community members or hosted by sponsors.

The practice of using sprints for pivotal development was initiated by the Zope
Corporation in the early days of the Zope 3 project4. In order to maintain focus, the
traditional sprint is supposed to last for only three to four days and to involve no
more than 10 people. A sprint generally incorporates aspects of eXtreme
Programming such as pair-programming and test-driven development. In addition, it
is usually led by a “coach”, who sets the goals, organizes the event, coordinates the
work, tracks the results and follows up.

The underlying concept is that a sprint is a good way to give a project “a boost
by focusing the efforts of a group on specific development issues” [12].
Furthermore, sprints also offer valuable opportunities to maintain developer
involvement, and to enable newcomers to get acquainted with the code base as well
as the specifics of a project.

3 For technical specifications, http://codespeak.net/pypy/dist/pypy/doc/architecture.html
4 http://www.zopemag.com/Guides/miniGuide_ZopeSprinting.html

http://codespeak.net/pypy/dist/pypy/doc/architecture.html

138 Sigfridsson, Avram, Sheehan and Sullivan

2.3 Sprint-driven development in practice in PyPy

The PyPy community describe themselves as a hybrid project, combining
different aspects of Agile and Distributed Development within the context of an
Open Source community [5]. In PyPy the developers are not just distributed but also
dispersed, with no more than a few developers being located in the same place. The
main strategy in PyPy to handle this challenge to the development process is to
“sprint” systematically, using sprints not only for software iteration purposes but also
to provide an accelerated and collaborative physical practice that enables community
building as well as the dissemination of knowledge and learning within the team. In
fact the PyPy project itself originated from a one-week sprint held in February 2003.

The sprint methodology used with the PyPy community differs in a number of
ways from the original Zope3 format described earlier. The focus of Zope3 sprints
was to produce code and as such they tended to be rather closed events where only
experienced Zope developers participated and they were usually arranged close to
larger releases [5]. In addition, an appointed “coach” was used to coordinate the
event and its outcome. However, within the PyPy community a sprint is an open
event where newcomers are welcomed – indeed a sprint is seen as an opportunity to
initiate newcomers into the project and clearly has a “tutorial” component. In
addition, PyPy sprints are developer-driven and no formal role such as a “coach”
exists. Instead, they have introduced a mechanism of initial and daily status
meetings where the whole group makes decisions. A local contact will help to
organize the logistics for the event based on the sprint location.

A PyPy sprint is usually 7 days long, with one free day in the middle normally
dedicated to social events. The sprint is initiated with a start-up meeting. Tutorials
will be arranged during the sprint if there are new participants present or if a new
tool or feature has been implemented. For the remainder of the week, each day
begins with a status meeting. During the status meetings, progress is discussed, tasks
are drafted, the direction of the sprint is set or altered, and developers pair up
according to needs, skills and wishes. During sprints pair-programming is used
systematically – not only between core developers sharing an interest in a specific
task but also for mentoring newcomers by pairing them with core developers [5].
The pairs may change each day, or may continue to work together for several days.
Apart from the actual code, the outcome of a sprint is also a sprint report. The sprint
report summarizes the activities and the initial goals and results. It also serves as an
orientation for focusing the work of the community until the next sprint.

In PyPy, there is a rough plan detailing future sprints for the coming months,
enough to maintain a general awareness of the dates and sites of upcoming sprints
and allowing people to plan for attendance. About a month before a particular sprint,
its content and goals are discussed on the mailing list (pypy-dev) and on the PyPy
IRC channel, mostly by the core developers, although the discussions are transparent
and anyone can, in principle, participate.5 Information is also distributed on the
general pypy-sprint mailing list and through the project webpage. As the sprint
approaches, a more detailed sprint announcement is sent out. People can announce
their intention to attend either by checking in the information in Subversion (the

5 http://codespeak.net/pypy/dist/pypy/doc/dev_method

Sprint-driven development 139

PyPy code repository and version control system), or by posting on the sprint
mailing list. Lately, the PyPy project introduced “pypy-sync meetings” (on IRC) and
this has also become a major forum for discussing the content and goals of upcoming
sprints where any member can participate.

3 Research Method

In our study of collaborative work practices, the preferred methods are inspired
by ethnography. We try, whenever possible, to observe people in their normal work
environment as they engage with their work practice. Furthermore, we interview the
participants (individually or in groups) and bring into discussion events we observed,
complementing what we saw with the addition of their perspectives. An
ethnographic approach typically includes field work done in natural settings, the
study of the larger picture to provide a more complete context of activity, an
objective perspective with rich descriptions of people, environments and interactions,
and an aim toward understanding activities from the informants’ perspective [1].
More recent studies [16] claim that by narrowing the focus of field research before
entering the field, using key informants and multiple interactive observation
techniques and collaborative iterative data analysis methods, one can obtain reliable
data in a shorter period of time than was traditionally considered.

The study we conducted was mainly centred on the sprint that took place in
Limerick, Ireland, between the 21st and 28th of August, 2006. The sprint was hosted
at the University of Limerick, with the assistance of local contacts. Three researchers
where involved in this observational study, but none participated actively in the
coding efforts. For the most part, there were 7 participants in this sprint, mostly core
developers. A local developer joined the sprint for the last three days, and two
newcomers also visited and attended a tutorial that was arranged for them. Since
there were mostly core developers present, the sprint was considered an opportunity
to work on some of the more crucial technical matters, e.g. the JIT module, core
optimization and distributed testing.6

We studied this sprint mostly through direct observation, complemented by
informal discussion and a dedicated Q&A session. We observed and recorded (video
and audio) the start-up meeting and the daily status meetings, as well as observed
some of the actual work sessions. Because of the interest expressed by two different
groups of researchers at the University of Limerick in the PyPy way of working, the
project manager organized a workshop on the first day of the sprint where the PyPy
project and the sprint-driven methodology was presented. One of the most senior
members of the project joined the last half of the workshop and there was a Q&A
session.

6 http://codespeak.net/svn/pypy/extradoc/sprintinfo/ireland-2006/limerick_sprint-report.txt

140 Sigfridsson, Avram, Sheehan and Sullivan

Prior to the sprint, we reviewed a number of sources referring to Open Source
communities in general and sprints, the Python language and the PyPy project in
particular, including papers and talks, as well as mailing lists, web pages, bios, sprint
reports, blog posts referring to PyPy, and so on. In order to get an insight into the
activities of the project and the dynamics of the community, since it’s inception, we
studied the PyPy community’s extensive online documentation (such as project
descriptions and both sprint and EU reports), as well as mailing list archives and chat
transcripts that are available on the website. After the sprint, we continued to
observe the community for an additional four months, mostly through continued
document analysis of email lists, sprint reports and other documents.

4 Sprints as a way of working, learning and innovating

Several authors speak about the various roles assumed by the members of Open
Source communities [20, 24, 7]. The traditional evolution based on perceived levels
of expertise, is from the periphery of the community to the centre: the majority of
people start as users, get involved by discovering and later fixing some bugs, make
occasional contributions to the source code, and only after gaining a reputation as an
“expert” can they be accepted as core members of the community. The apprentice
often has a long (and sometimes lonely) way to go before becoming actively
involved in development. The PyPy community is, in this respect, quite different.
There is no single leader or visionary – just a core group of passionate Python
developers. Anyone who has the skills and motivation can rapidly become an active
contributor, because within the PyPy community there is a welcoming attitude
toward new participants which originates in the strong belief of the community
members regarding the benefits of collaborative work. There is a strong culture of
openness and transparency, or as described in [8] a culture of “keeping it public”.
Access to the PyPy online mailing lists and IRC is freely available. Core developers
are accessible to answer questions or act as mentors both virtually via mailing lists
and IRC and in person during sprints. The fact that the PyPy development process
incorporates an automated framework for testing and version control allows for a
more relaxed attitude regarding distribution of commit rights to new developers [5].

Several studies on Free and Open Source Software mention learning as one of
the core motivations for participation [24, 7, 13], but in many cases, this simply
means “lurking” and using the available code. While “lurking” - or in effect being a
peripheral participant in the community - can provide valuable awareness
information [8], in PyPy newcomers are encouraged to become directly involved in
development from the very beginning. The PyPy community has developed a
comprehensive and detailed repository of documentation, guides for beginners, talks,
sprint reports, mail and chat archives in addition to its main code repository. While
an important part of the PyPy community’s body of knowledge is freely available on
the web, becoming a member of the community is made quicker and easier by
participation in collocated events such as sprints. Newcomers can make a decision
about staying or leaving after being offered an immersion in the practices, social
events and personal contacts that usually arise in a sprint.

Sprint-driven development 141

Before deciding to join their first sprint, newcomers are encouraged to get
accustomed to the work being done in PyPy. The architecture of the interpreter, the
code itself, extensive coding guidelines, the available documentation, the tools used,
configuration and various tutorials are all available on the PyPy website.
Furthermore, newcomers are also encouraged to start socializing with the others by
participating in email and IRC conversations and accessing the mail and chat
archives. For example, the following excerpts from the PyPy mailing lists show how
the community greets newcomers:

“Cool! Contributions are of course very welcome! I guess the most immediate step
would be to read through the documentation and ask any question you might have
(here – on the mailing list- or on the IRC channel). It certainly won't be a problem
finding work for you :-)”

“In addition, note that this sprint is […] a coding sprint, and we specifically
welcome newcomers. If possible and interesting for you, feel invited :-) That's the
best way to grasp the basics of PyPy and discuss. Also feel free to say hello in the
#pypy IRC channel (irc.freenode.net) and discuss your interests.”

Subsequently, during the actual sprint, newcomers are given tutorials and then

“taken by the hand” usually by pairing up with an experienced developer, working
together on a chosen topic and getting detailed feedback.

The participants in the Limerick sprint in August 2006 were in the majority part
of the core PyPy group, with one exception: a young and enthusiastic developer who
was funded through the “Summer of PyPy” initiative7 (although it was not his first
PyPy sprint). Pairs were formed and topics were chosen in an extremely flexible
way. The start-up meeting highlighted the list of topics that needed attention
resulting from previous sprints and discussions, the participants announced their
intentions to the group, paired up according to these, and simply started working on
them. Although the project manager (who has an administrative role and is not
involved in coding) and one of the core developers chaired the meeting, their role
was more one of facilitating the sprint, and not imposing anything on the group. At
the end of the week, this role was taken over by another member of the core group.
Every decision was taken collectively, and the initial program changed several times
to accommodate people and events. Usually, there’s a day dedicated to social
activities in the middle of the sprint week, but this time the group decided to
continue working through the dedicated break day because of a slow start on
Monday morning, and to have a night out on Friday instead, when the local
developers were planning to join.

This is one illustration of how flexible the working style of PyPy sprints are and
it shows that agility and the ability to incorporate continuous change and adaptation
are highly valued by the PyPy community. They innovate continuously, looking for
both solutions to make their software more efficient, and for practices that would
allow them to enhance or improve the form but keep the spirit of their activities.

7 http://codespeak.net/pypy/dist/pypy/doc/summer-of-pypy.html

142 Sigfridsson, Avram, Sheehan and Sullivan

The lack of formality and the relaxed atmosphere are probably the first striking
aspect when observing a sprint. During the Limerick sprint, participants spoke to
each other, moved around asking questions, joked and had fun. They were all located
in the same room and maintained a certain awareness of what was happening in the
other coding groups. They made the decision to take a break – or continue an hour
more than planned – by consulting each other. Peers were invited to have a look
when unexpected errors occurred or a new solution was tried out. Priorities were
permanently shuffled, concepts re-invented, new routes adopted, tried out and
sometimes abandoned.

In the Limerick sprint, different working styles could be observed in the pairs. In
the first pair, one of the participants distributed his attention, switching between
multiple windows, reading through his emails or keeping an eye on the chat channel
while listening to a new solution proposed by his team-mate. His (more experienced)
companion explained every step he was taking, made his reasoning transparent and
asked a lot of provoking questions. A dialogue went on throughout the session: when
the first developer had an idea he preferred to try it out instead of explaining it, while
his colleague watched the screen, waiting to see the result. The second pair did not
display as much interaction, perhaps because the tasks were divided more clearly
between them. They seemed to work independently each on his own laptop, showing
each other errors or successes and exchanging ideas only once in a while. The third
pair was sharing a laptop. Most of the time, the laptop’s owner was the one using it,
but his actions seemed to result from their joint discussion. The conversation was
vivid and emotional, accompanied by a lot of gestures.

The participants in a PyPy sprint benefit not only from their mutual knowledge
sharing, but there’s also a recognisable flow of enthusiasm. When speaking about the
core group of developers during the methodology workshop, the project manager
described them as “soulmates”, who have much stronger bonds than the current EU
project framework and want to continue working together after the end of this
project. Sprints provide the opportunity for a process of learning and enculturation,
where new participants get the chance to become directly involved not only in
problem solving, innovation and planning, but also in the social life of the
community.

5 Discussion

5.1 Learning facilitated by sprint-driven development

A major issue in distributed software development projects is how to facilitate
learning about programming techniques, technology and project specific matters
among project participants when direct interaction is limited due to geographical and
temporal distance and, often, affected by national, social and organisational cultural
differences. A sprint offers a good opportunity for the dissemination of knowledge,
both among senior members of the community and to new members. However, being
able to contribute to a software development project does not just require technical
skills.

Sprint-driven development 143

From a situated learning perspective, learning cannot be seen as an isolated
activity, separated from the practice it is meant to enable [3]. Instead, learning
involves becoming an “insider”, not just absorbing a discreet body of individual
knowledge, but learning to function within the community of practice. So learning
the necessary skills needed to participate in a project like PyPy also involves learning
about the dynamics of the community, what norms and interpretive schemes are
dominating, and what range of behaviour is acceptable, as well as developing an
identity in the community.

PyPy sprints are a perfect illustration of situated learning, as conceptualized by
Lave & Wenger [15]: newcomers begin by reading the information online and
joining mailing lists and IRC channels and then eventually join their first sprint and
get more and more involved in the general development effort, learning happens in a
community of practice, by participation (a peripheral one in the beginning), and by
gradually acquiring knowledge and reputation through social interaction. Brown &
Duguid write that the “central issue in learning is becoming a practitioner not
learning about practice” [3]. From what we have seen during this study, this is
precisely what the PyPy people are supporting when welcoming new participants to
sprints, arranging tutorials for them, and pairing them up with more experienced
developers to do the work. This mechanism is further enhanced because the new
participants are encouraged to participate in the mailing lists and IRC channels and
to get acquainted with the system architecture and the code base prior to their first
sprint, and thus have already started to form an identity within the community when
arriving at the sprint.

Learning the concepts of the Python programming language does not mean one
knows how to program in that language. Applying those concepts to a specific
project and actually writing code is when learning happens. Sprints accelerate this
process for distributed teams, recognising the important situated aspects of learning
and supporting them.

5.2 Sprints as a way of sustaining and renewing the community

Previous research on Open Source software development has shown that learning
is, in fact, a major motivational force for participants [24, 13]. It has also been
argued that for Open Source projects to sustain themselves, the community must co-
evolve with the system developed [24]. The community must be able to regenerate
itself through both concrete contributions of code and the emergence of new
members who can carry on the work. The sprints in PyPy, through conscious
mentoring efforts, attract new members and enable them to both achieve the
necessary technical skill and to create an identity within the community, thus
ensuring the sustainability of the community.

However, regarding the formation of the community, there are also possible
hazards with driving development through sprints. During the sprint, the centre-
periphery relationship, usually based on experience and contributions resulting in a
hierarchy in most Open Source communities, is altered: the collocated participants
become the centre, while all the others move, in a way, to the periphery because they
are missing from that specific location. The danger is that this leads to the formation

144 Sigfridsson, Avram, Sheehan and Sullivan

of in-groups. The active PyPy coding effort is a subgroup within the wider Python
community and those who participate in sprints are again a further subgroup
(although temporary) of the overall coding effort. This situation can lend itself to the
formation of in-groups and the exclusion of others and the eventually fragmentation
of the group.

A previous experimental effort [2] to consider the in-group/out-group effect was
concerned with the mixed media working environment whereby access to resources
is not equally distributed. In part this is a consequence of having a substantial
component of the development team collocated. The hypothesis which they
examined was that individuals collocated together will interact more and form an in-
group. We heard this concern voiced by the project manager herself. Since the
progress is so rapid and so much happens during a sprint, they are aware that there is
a risk that the non-participants can't keep up and can become passive. For example,
this is acknowledged in one of the EU reports8 where it is stated that, “due to the
projects fast pace and its many developments, it requires substantial effort for the
average community member to contribute to the project.” However, in the PyPy
project, there is conscious effort to ensure the community doesn’t fragment and so
“the mentoring and supporting activities from the EU project members have
increased accordingly.”

The strategy has been to host sprints at different locations to encourage and
facilitate participation from as wide a group as possible. During the period 2003-
2004 6 sprints were arranged in various European cities (since then there has been a
more systematic structuring of sprinting every 6th week) [6]. Sprints have also been
organized on other continents whenever possible. For example, there was a post-
PyCon PyPy sprint in February 2006 in Dallas, USA, and another one in Tokyo,
Japan in April 2006. Also, during the recent Leysin sprint, in January 2007, a remote
participant worked constantly with two others participating in the sprint to
accomplish a specific task. Non-European developers whose participation in sprints
is more difficult to organise have raised the possibility of doing a “virtual sprint” that
would enable them to get involved as well.

6 Conclusions

Our study has focused on the actual activities leading up to, taking place during
and following after sprints and the purpose has been to elaborate on how sprint
driven development facilitates learning, the dissemination of knowledge among its
members and the expansion of the Open Source community. The aim of this paper
has been to illustrate how sprint-driven development can facilitate situated learning
in distributed software development by describing the practices applied in PyPy.

The observations indicate that the sprint-driven development methodology as it
occurs in PyPy is interesting because, while it is a way to accelerate the development
in terms of written code, it also serves as a mechanism to expand the community and

8 http://codespeak.net/pypy/extradoc/eu-report/D14.3_Report_about_Milestone_Phase_2-

final-2006-08-03.pdf

Sprint-driven development 145

facilitate the enculturation of its members. In PyPy, we have seen how new
participants are welcomed to sprints and how a real effort is made to include them in
the community by encouraging participation in the online activities prior to their first
sprint and arranging tutorials and pairing them up with experienced developers to
work during the sprint. This attracts new members and enables them to both achieve
the necessary technical skill and to create an identity within the community, thus
enabling them to contribute. It also contributes to sustaining and renewing the PyPy
community through the inclusion of new participants and the emergence of new core
members and active developers.

7 Acknowledgements

The authors would like to extend thanks to the PyPy community and to the
participants of the Limerick sprint for allowing us access and for being so
accommodating. This work is part of the socGSD project at the University of
Limerick. socGSD is one of the LERO (the Irish Software Engineering Research
Institute) cluster projects funded under PI grant 03/IN3/1408C by the Science
Foundation of Ireland (SFI).

8 References

1. Blomberg J. et al. (1993) Ethnographic field methods and the relation to design. In D.
Schuler and A. Namioka, (Eds.) Participatory Design, Lawrence Erlbaum, pp. 123-155.

2. Bos N., N. S. Shami, et al. (2004). In groups/Out Group Effect in Distributed Teams: An
Experimental Simulation. Proceedings of the 2004 ACM Conference on Computer
Supported Cooperative Work, Chicago, Illinois, USA, pp. 429-436.

3. Brown J. S. & Duguid P. (1991) Organizational learning and communities-of-practice:
towards a unified view of working, learning and innovation. Organization Science, vol. 2,
no. 1, Special Issue: Organizational Learning: Papers in Honour of (and by) James G.
March (1991), pp. 40-57.

4. Carmel E. & P. Tjia (2005) Offshoring Information Technology: Sourcing and
Outsourcing to a Global Workforce. Cambridge University Press, Cambridge, MA.

5. Düring B. (2006A) Sprint Driven Development: Agile Methodologies in a Distributed
Open Source Project (PyPy). The 7th International Conference on eXtreme Programming
and Agile Processes in Software Engineering, Oulu, Finland.

6. Düring, B. (2006B). Trouble in Paradise: the Open Source Project PyPy, EU-Funding
and Agile Practices. AGILE 2006 Minneapolis, Minnesota, USA IEEE Computer
Society's Digital Library.

7. Ghosh, R. A. & R. Glott (2002). Free/Libre and Open Source Software: Survey and
Study- summary report. Workshop on Advancing the Research Agenda on Free/Open
Source Software. Maastricht, Int'l Institute of Infonomics, Univ. of Maastricht.

146 Sigfridsson, Avram, Sheehan and Sullivan

8. Gutwin C., Penner R. & Schneider K. (2004) Group awareness in distributed software
development. In Proceedings of the 2004 ACM conference on Computer supported
cooperative work, pp. 72 – 81, 2004.

9. Hargreaves E., Damian D., Lanubile F. & Chisan J. (2004) Global Software
Development: Building a Research Community. In ACM SIGSOFT Software Engineering
Notes, vol. 29, no. 5, September 2004, pp. 1-5.

10. Herbsleb J. D. & Moitra D. (2001) Global Software Development. IEEE SOFTWARE,
March/April 2001, pp. 16-20.

11. Herbsleb J. D. & Grinter R. E. (1999 A) Architectures, Coordination, and Distance:
Conway's Law and Beyond. IEEE Software, 16(5): 63-70

12. Holden H. (2006) Running a Sprint. ONLamp.com, Python Development Center.
Available:

http://www.onlamp.com/pub/a/python/2006/10/19/running-a-sprint.html (15/01/07).

13. Kim E. E. (2003) An Introduction to Open-Source communities. Blue Oxen Associates.
Available: www.blueoxen.com/research/00007/BOA-00007.pdf (19/01/07).

14. Kraut R. E. & Streeter L. A. (1995) Coordination in Software Development. In
Communications of the ACM, vol. 38, no. 3, March 1995, pp. 69-81.

15. Lave J. & Wenger E. (1991) Situated Learning: Legitimate Peripheral Participation.
New York: Cambridge University Press.

16. Millen D. R. (2000) Rapid ethnography: time deepening strategies for HCI field research.
Conference on Designing interactive systems: processes, practices, methods, and
technique, New York, ACM Press.

17. Mockus A., Fielding R. T. & Herbsleb J. D. (2002) Two Case Studies of Open Source
Software Development: Apache and Mozilla. ACM Transactions on Software
Engineering and Methodology (TOSEM), Vol. 11, Issue 3 (July 2002) , pp. 309 – 346.

18. Orr J. (1996) Talking about machines: An Ethnography of a Modern Job, Ithaca, New
York, IRL Press.

19. Prikladnicki R. et al. (2003) Global software development in practice: lessons learned.
Software process improvement and practice, vol. 8, 267-281, 2003.

20. Rahtz, S. (2004) Building Open Source Communities, OSS Watch, University of Oxford,
Available: http://www.oss-watch.ac.uk/talks/2004-11-19-bodington/ (20/12/06).

21. Robey D, Huoy Min Khoo & Powers, C. (2000) Situated Learning in Cross-functional
Virtual Teams. IEEE Transactions on Professional Communication, Vol. 43, Issue 1, pp
51-66.

22. Sahay S., Nicholson B. & Krischna S. (2003) Global IT Outsourcing: Software
Development Across Borders. Cambridge, UK: Cambridge University Press.

23. Wenger E. (1998) Communitites of Practice: Learning, Meaning, and Identity,
Cambridge University Press.

24. Ye, Y. and K. Kishida (2003). Toward an Understanding of the Motivation of Open
Source Software Developers. International Conference on Software Engineering -
ICSE2003, Portland, OR.

http://www.onlamp.com/pub/a/python/2006/10/19/running-a-sprint.html
http://www.blueoxen.com/research/00007/BOA-00007.pdf
http://www.oss-watch.ac.uk/talks/2004-11-19-bodington/

