Effect of Coupling on Defect Proneness in
Evolutionary Open-Source Software
Development

A. Giines Koru', Dongsong Zhang?, and Hongfang Liu®

! Department of Information Systems, UMBC gkoru@umbc.edu
2 Department of Information Systems, UMBC zhangd@umbc . edu
3 Department of Biostatistics, Bioinformatics, and Biomathematics, Georgetown
Medical Center h1224@georgetown.edu

Abstract. Previous research on closed-source software found that highly
coupled software modules were more defect prone, which makes it im-

portant to understand the effect of coupling on defect proneness in

open-source software (OSS) projects. For this purpose, we used Cox

proportional hazards modeling with recurrent events. We found that

the effect of coupling was significant, and we quantified this effect on

defect proneness.

Key words: Open-source software, object-oriented software, defect proneness,
coupling, Cox proportional hazards model, recurrent events, Mozilla.

1 Introduction

Coupling is the degree to which a program element is related to or interacts
with other program elements. The higher the average coupling of elements in
software, the more complex and defect prone it is considered to be [7]. The pre-
vious research on closed-source software has shown that highly coupled software
modules are more defect prone compared to less coupled ones [2, 5]. Therefore, it
is important to build statistical models to understand the relationship between
coupling and defect-proneness in OSS.

However, the evolutionary aspects of OSS development processes require
specialized modeling techniques. The structural characteristics of OSS modules
(e.g., coupling) can change in the post-release period. Making the situation
even more complicated, new modules can be added or some modules might
be removed from a system shortly after measurement time. The traditional
approaches to quality modeling, which measure specific system snapshots and
relate them to future defect counts, cannot accommodate these special charac-
teristics of OSS.

The main research contribution of this study is to develop and evaluate a
statistical model in order to understand the effect of coupling on defect prone-
ness while taking the dynamic aspects of OSS development into account. For



272 A. Giines Koru, Dongsong Zhang, and Hongfang Liu

this purpose, we adopted Cox proportional hazards modeling with recurrent
events.

In the rest of the paper, we first explain our modeling approach and the data
used in the study. Then, we present our modeling results. Finally, we discuss
the implications of this work and conclude the paper.

2 Cox Proportional Hazards Model for Recurrent Events

Cox proportional hazards model [3] (henceforth Cox model) has become the
most common technique used for various time-to-event analysis purposes in
many fields [4, 8]. Cox model is connected to the counting process and Martin-
gale theory [1], which makes it suitable for recurrent events. In recurrent event
modeling, an event of interest is observed for a subject multiple times during a
follow-up period [4].

In our study, each defect fix made to a class was considered an event. Being
more defect prone meant having a higher risk of having events. We had a single
time-dependent covariate, Coupling Between Objects (CBO), denoted by x(¢)
below. CBO for a class C' is defined as the number of methods and instance
variables of other classes used by C.

We specify the hazard function, which is the instantaneous risk of an event

for class 7 at time t, as:
Ai(t) = No(t)eP =@, (1)

B is the coefficient for x;(t) and A\ is an unspecified non-negative function of
time called the baseline hazard function. It is the instantaneous hazard of having
an event without any covariate effect, when 5 = 0.

Cox model is semi-parametric because it does not explicitly describe a base-
line hazard function. It is proportional because the hazard ratio for two subjects
would only depend on the differences in their covariate values. If one writes the
right side of the Equation 1 for two subjects, say classes j and k, and takes
their ratio, the result should be e?(*i()=2x(t) which is the instantaneous rela-
tive risk. Note that § should remain constant over time. This is an important
assumption of any Cox model, known as proportional hazards assumption. We
checked this assumption for our model (see Section 4). The details of the Cox
model, such as the estimation of 3, can be found in [4, §].

3 Data for Recurrent Event Modeling

Table 1 presents hypothetical data for demonstration purposes. The subjects are
classes, and the events of interest here are defect fixes. Each new class introduced
to the system during an observation period is followed up until the observation
period ends or until the class is deleted. Modifications made during the follow-
up time are entered as observations, which correspond to the rows in Table 1.



Effect of Coupling on Defect Proneness in Evolutionary OSS Development 273

name start end event CBO state

A 0 10 0 5 0

A 10 30 1 8 0
A 30 50 0 9 1
B 0 20 1 3 0
B 20 80 O 2 1
B 80 120 1 5 1
B 120 150 0 5 1

Table 1. Data Layout Used in the Study

Each modification creates a new observation with a (start,end] time interval,
where start is a time infinitesimally greater than the modification time; end is
either the time of the next modification, or the end of the observation period,
or the time of deletion, whichever comes first. The open bracket on the left and
the closed bracket on the right mean that at any end time ¢, the observation
that has t in its end column should be used in the internal computations of the
Cox model. For example, for ¢t = 50, the third row should be used. Open and
closed brackets enable us to model non-overlapping observations. They carry
no meaning about the timings of other data items, which are explained below.

When a class is added to the system, a new observation is entered with
start = 0. The event cell is set to 1 if an event (defect fix) takes place at the
time represented by end, or 0 otherwise. A class deletion is handled easily by
entering a final observation whose event is set to 1 if the class is deleted for
corrective maintenance, or 0 otherwise. CBO is a time-dependent covariate and
its column carries the coupling measurements of the class at start. Its value
may change during successive observations but can remain constant like a fixed
covariate too. The state column in Table 1 is used to create a conditional Cox
model. For any class, state is initially set to 0, and it becomes 1 after the class
experiences an event, and always remains at 1 thereafter.

We developed Perl scripts to extract data from the CVS (Concurrent Ver-
sions System) of the Mozilla project between May 29, 2002 (with the release of
Mozilla 1.0) and Feb 22, 2006, which was the observation period of our study.
We obtained a complete measurement history of every single C++ class intro-
duced to Mozilla during this observation period. The start and end times were
computed in minutes based on the time tags of the CVS commits. The event
data were obtained by automatically parsing the log portions of CVS commits
and searching for the words ’defect’, 'fix’, and ’bug’ in a non—case-sensitive
manner to detect corrective changes. Our manual examination of 100 randomly
collected CVS logs showed that the accuracy of the automated approach was
98%. Once a CVS commit was classified as a corrective change, the effected
classes were determined with their most recent observations. The event field of



274 A. Giines Koru, Dongsong Zhang, and Hongfang Liu

those observations was set to 1. At the end, we obtained 15,545 observations
that belonged to 4,089 classes.

4 Modeling and Results

The resulting conditional Cox model is shown in Figure 1. The model shows
that CBO is highly significant with a very large z-statistic and a zero p value
when entered using log transformation. This functional form of CBO was de-
termined by inspecting the plots obtained by using the Poisson approximation
[8]. The entire model is also very significant as shown by the Likelihood ratio,
Wald, score, and robust score tests. Both normal and robust estimates show
this significance. The coefficient for the loglp(C BO)! is 0.661, and its standard
error estimate is 0.0117. The robust sandwich estimate of the standard error,
which takes the intra-subject correlation into account, is 0.0297. Both of these
standard error estimates are small, therefore, we can safely use B = 0.661.

n= 15545
coef exp(coef) se(coef) robust se zp
logip(CBO) 0.661 1.94 0.0117 0.0297 22.3 0
exp(coef) exp(-coef) lower .95 upper .95
log1p(CBO) 1.94 0.516 1.83 2.05

Likelihood ratio test= 3200 on 1 df, p=0
Wald test = 497 on 1 df, p=0
Score (logrank) test = 3271 on 1 df, p=0, Robust = 148 p=0

Fig. 1. Modeling results using log CBO

There was no interaction between log CBO and time (p = 0.93). Therefore,
the proportional hazards assumption of the Cox model was satisfied. An Arjas
plot between the cumulative expected and cumulative actual number of events
was drawn to see the overall fitness of the model. This plot closely followed the
45° line, which showed good fitness. We also looked at the correlations between
the expected and actual events. The Spearman’s correlation was 0.77 and the
Somer’s D,, rank correlation was 0.72. As a result, the model shown in Figure
1 has passed all the tests for a good fitting model.

5 Implications

The model in Figure 1 indicates that one unit of increase in the natural log of
coupling caused Mozilla classes to experience a defect fix at a rate 94% higher.

! To accommodate CBO = 0, the natural log was taken after adding 1.



Effect of Coupling on Defect Proneness in Evolutionary OSS Development 275

o
o _|
S
©

n

iz}

c

)

it
o

T o

L o 7

o ©

)

Q

x

|

—

o o

E 8

> 3

w

)

=

=

(—“o

2 o |

E o

3

O
o -

T T T T T
0 2000 4000 6000 8000

Cumulative Sum of Actual Events

Fig. 2. Plot of cumulative sum of actual events versus cumulative sum of expected
events

Our results have important implications considered the recent findings about
the coupling in some OSS products.

Schach and Offutt [6] found that the degree of common coupling in the Linux
kernel posed risks to the first release, and this situation deteriorated during the
successive releases of this kernel. Yu et al. [9] performed a categorization of
common coupling within kernel-based software and applied this categorization
to the Linux kernel. They argued that without preventive actions, the maintain-
ability of the Linux kernel would continue to be problematic. In a comparison
of coupling in different OSS products, Yu et al. [10] found that the Linux kernel
compared unfavorably with respect to three BSD kernels, namely, FreeBSD,
NetBSD, and OpenBSD.

The above findings combined with our results show that OSS developers
can take some preventive actions to improve quality. First, the quality assur-
ance activities, such as inspections and testing, can be focused on highly coupled
modules. Second, restructuring OSS software to reduce coupling can also im-
prove quality in the long run.



276 A. Giines Koru, Dongsong Zhang, and Hongfang Liu
6 Conclusion

The dynamic nature of OSS development requires a dynamic modeling approach
to understand the relationship between coupling and defect proneness well. The
traditional approaches that measure systems snapshots and count future defects
cannot accommodate changing measures, added modules, deleted modules, etc.

Our modeling results showed that coupling has a significant effect on defect-
proneness. Therefore, coupling should be monitored and managed in OSS
projects to produce reliable and maintainable OSS products. The modeling
approach explained here can be tightly integrated into an evolutionary OSS
development in a seamless manner and can be used at any time while building
models. The capabilities of the existing OSS tools can be easily combined for
this purpose.

As the future work, we plan to collect data from additional OSS products and
projects to generalize the identified relationship between coupling and defect
proneness across a set of different OSS products.

References

1. Per Kragh Andersen, Ornulf Borgan, Richard D. Gill, and Niels Keiding. Statis-
tical Models Based on Counting Processes. Springer-Verlag, 1993.

2. Lionel C. Briand, Jiirgen Wiist, John W. Daly, and D. Victor Porter. Exploring the
Relationships between Design Measures and Software Quality in Object-Oriented
Systems. Journal of Systems and Software, 51(3):245-273, 2000.

3. David R. Cox. Regression models and life tables. Journal of the Royal Statistical
Society, 34:187-220, 1972.

4. Jr. David W. Hosmer and Stanley Lemeshow. Applied Survival Analysis :Regres-
sion Modeling of Time to Event Data. John Wiley & Sons, Inc., 1999.

5. Khaled El Emam, Saida Benlarbi, Nishith Goel, and Shesh N. Rai. The Con-
founding Effect of Class Size on the Validity of Object-Oriented Metrics. IEEE
Trans. on Software Engineering, 27(7):630-650, July 2001.

6. Stephen R. Schach and Jefferson A. Offutt. On the Nonmaintainability of Open-
Source Software. In Meeting Challenges and Surviving Success: The 2nd Workshop
on Open Source Software Engineering, pages 52 — 54, Orlando, Florida, May 2002.

7. Katherine J. Stewart, David P. Darcy, and Sherae L. Daniel. Opportunities and
challenges applying functional data analysis to the study of open source software
evolution. Statistical Science, 21:167-178, 2006.

8. Terry M. Therneau and Patricia M. Grambsch. Modeling Survival Data: Extending
the Cox Model. Springer-Verlag, 2000.

9. Liguo Yu and Kai Chen. Categorization of common coupling and its application
to the maintainability of the linux kernel. IEEE Trans. on Software Engineering,
30(10):694-706, 2004. Member-Stephen R. Schach and Member-Jeff Offutt.

10. Liguo Yu, Stephen R. Schach, Kai Chen, Gillian Z. Heller, and A. Jefferson Offutt.
Maintainability of the kernels of open-source operating systems: A comparison
of linux with freebsd, netbsd, and openbsd. Journal of Systems and Software,
79(6):807-815, 2006.



