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Abstract.  In  this  paper,  we  propose  to  explore  possible  benefits  of
communication  and  coordination  tools  in  open  source  projects  using  data
envelopment analysis (DEA),  a general method for efficiency comparisons.
DEA offers several advantages:  It  is a non-parametric optimization method
without any need for the user to define any relations between different factors
or a production function, can account for economies or diseconwhile omies of
scale, and is able to deal with multi-input, multi-output systems in which the
factors  have  different  scales.  Using  a  data  set  of  30  open  source  project
retrieved  from  SourceForge.net,  we  demonstrate  the  application  of  DEA,
showing  that  the  efficiency  of  the  projects  is  in  general  relatively  high.
Regarding the effects of tool employment on the efficiency of projects, the
results were surprising: Most of the possible tools, and overall usage, showed a
negative relationship to efficiency.

Keywords. Open  Source  Software  Development,  Efficiency,  Data
Envelopment Analysis, Software Repositories

1 Introduction

Considerable uncertainty has for a long time surrounded the topic of the efficiency of
open  source  software  development,  and  the  factors  influencing  this  efficiency.
Currently, any comparison of open source software projects is very difficult. There is
increased discussion on how the success  of  open source projects  can be defined
[21,22,9,10], using for example search engine results as proxies [23]. In addition, the
process applied in these projects can differ  significantly,  and several elements of
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both process and infrastructure could have an impact. For example, [19] has used a
sample of projects from SourceForge.net to uncover whether the process maturity
has had any on success of open source projects. In this analysis, the notion of success
was based on the downloads achieved, and a relationship to version control, mailing
lists and testing strategies was found.
In this paper, we apply the method of Data Envelopment Analysis (DEA) to compare
open source projects according to their efficiency in transforming inputs into outputs.
For any  production process, this efficiency and productivity is a key indicator in
comparison to other processes. DEA  is a non-parametric optimization method for
efficiency comparisons without any need for the user to define any relations between
different  factors  or  a  production  function.  In  addition,  DEA  can  account  for
economies  or diseconomies  of scale,  and is  able  to  deal  with multi-input,  multi-
output systems in which the factors have different scales.
Efficiency and productivity in software development is most often denoted by the
relation of an effort  measure to an output measure, using either lines-of-code or,
preferably due to independence from  programming language,  function points [1].
This approach can be problematic even in an environment of commercial software
development due to missing components especially of the output, for example also
[15] agree that productivity measures need to be based on multiple size measures. In
open source development,  there are additional problems which point towards DEA
as an appropriate method.

In open source projects, normally the effort invested is unknown, and therefore
might need to be estimated [2,16,17], and is also more diverse than in commercial
projects,  as it  includes core team member,  committers,  bug reporters and several
other groups with varying intensity of participation. Besides that, also the outputs
can be more diverse. In the general case, the inputs of an open source project can
encompass a set of metrics,  especially concerned with the participants. So, in the
most simple case, the number of programmers and other participants can be used.
The output of a project can be measured using several software metrics, most easily
the  number  of  LOC,  files,  or  others.  This  range  of  metrics  both  for  inputs  and
outputs, and their different scales necessitates application of an appropriate method
like DEA.

The main result of applying DEA for a set of projects is an efficiency score for
each project. This score can serve different purposes: First, single projects can be
compared  accordingly,  but  also  groups  of  projects,  for  example  those  following
similar  process  models,  located  in  different  application  domains  or  simply  of
different scale can be compared to determine whether any of these characteristics
lead to higher efficiency. 

In a prior paper, DEA has been explored in this context,  but with a different
dataset mostly relying on in-depth CVS analysis [18]. This has demonstrated that
DEA  can  indeed  be  applied  in  this  context,  and  has  also  shown  that  neither
inequality  in  contributions,  nor  licensing  scheme  nor  intended  audience  have  a
significant impact on efficiency. In this paper, we will employ the results of a DEA
to investigate whether the adoption of communication and coordination tools like
mailing lists or particular source code control systems have any impact on efficiency.
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2 Data Envelopment Analysis

The  principle  of  the  border  production  function  was  introduced  by  Farell  for
measuring  the  technical  efficiency  [12]  and  enhanced  by  Charnes,  Cooper  and
Rhodes [6] into the first Data Envelopment Analysis model (the CCR model). The
object of analysis the DEA considers is very generally termed Decision Making Unit
(DMU). This term includes relatively flexibly each unit which is responsible for the
transformation of inputs into outputs, for example hospitals, supermarkets, schools,
bank branches and others.

The basic principle of DEA can be understood as a generalization of the normal
efficiency evaluation by means of the relationship from an output to an input into the
general  case  of  a  multi-output,  multi-input  system without  any given conversion
rates or same units for all factors. In contrast to other approaches, which require the
parametric  specification  of  a  production  function,  DEA  measures  production
behavior  directly  and  uses  this  data  for  the  evaluation  of  all  DMUs.  The  DEA
derives  a  production  function  from  mean  relations  between  inputs  and  outputs
(whereby  it  is  only  assumed  that  the  relation  is  monotonous  and  concave),  by
determining the outside cover of all production relations (see also Figure  1), while
for example a regression analysis estimates a straight line through the center of all
production relations. The DEA identifies "best practicing" DMUs, which lie on the
production border. A DMU is understood as being efficient if none of the outputs
can be increased, without either or several of the inputs increasing or other outputs
being reduced, as well as vice versa.
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Fig. 1. Data Envelopment Analysis for the case of one input and two outputs with 7 DMUs (A
– G), out of which C – F are efficient, and depicting inefficiency of A for which D and E form
the reference set

For each DMU an individual weighting procedure is used over all inputs and outputs.
These  form  a  weighted  positive  linear  combination,  whereby  the  weights  are
specified  in  such  a  way  that  they  maximize  the  production  relationship  of  the
examined unit, in order to let these become as efficient as possible. The efficiency of
an examined unit is limited with 1. That means that no a-priori weightings are made
by the user,  and that  the weights  between the DMUs can be different.  For each
evaluation object the DEA supplies a solution vector of weighting factors and a DEA
efficiency score. If this score is equal to 1, then the DMU is DEA efficient. In this
context,  DEA efficiency  means  that  no  weighting  vector  could  be  found  which
would have led to a higher efficiency value. DEA efficient are thus all those DMUs
which are not clearly DEA inefficient compared with the others. Any inefficiency
can  therefore  not  be  ruled  out  completely.  For  each  inefficient  DMU the  DEA
returns a set of efficient DMUs which exhibit a similar input/output structure and lie
on the production border near to the inefficient DMU (reference set, see also Figure
1). Using this information, an idea in which direction an increase in efficiency is
possible can be gained. 

The first model of the DEA was introduced by Charnes, Cooper and Rhodes [7]
and  is  therefore  designated  as  CCR model.  They pose  four  assumptions  for  the
production possibility set, which are convexity, possibility for inefficient production,
constant returns to scale and minimum extrapolation. The different basic models of
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the DEA can be divided on the basis of two criteria: This is on the one hand the
orientation of the model, on the other hand the underlying assumption regarding the
returns to scale of the production process. With input-oriented models the reduction
of the input vector maximally possible with the given manufacturing technology is
determined,  whereas  with  output-oriented  models  the  maximally  possible
proportional increase of the output vector is determined. The returns to scale can be
assumed either as being constant or variable. With constant returns to scale size-
induced productivity differences are considered into the efficiency evaluation, with
variable  returns  to  scale  the  differences  are  neutralized by the model.  The  most
common example of a model with variable returns to scale is an advancement to the
CCR  model  by  Banker,  Charnes  and  Cooper,  the  BCC  model  [3].  This  model
includes an additional measuring variable in the fundamental  equation to capture
rising, falling or constant returns to scale.
In the area of software development, DEA was so far only rarely applied. Banker and
Kemerer use this approach in order to prove the existence of both rising and falling
returns to scale [4]. Banker and Slaughter use the DEA in the area of maintenance
and  enhancement  projects  [5].  It  can  be  proven  that  rising  returns  to  scale  are
present, which would have made a cost reduction of around 36 per cent possible
when utilized. An investigation of Enterprise Resource Planning (ERP) projects was
done by [20], using 30 SAP R/3-projects of a consulting firm for the application of
the DEA. [14] gives an in-depth discussion on the application of DEA in software
development.

3 Data Selection and Set

Based on the date January 8th 2007, we selected the thirty most often downloaded
projects from SourceForge.net, as presented by the website based on the past 7 days.
This statistic is updated daily, the current standings can be seen anytime from the
respective web page1. This was done in order to arrive at a relatively homogeneous
set of projects. Potential problems and pitfalls in using this approach are described in
the following.

For  each  of  these  projects,  a  number  of  variables  was  retrieved  from  the
respective homepage. We define and use the following variables in this study, with
binary variables later on employed for distinguishing between groups of projects:

ê Project: This simply gives the project's name.
ê Donations: This binary variable shows whether the project has activated the

donations feature.
ê GNU-style licence: This binary variable codes whether a project is under a

GNU GPL licence (true) or not (false), to give an impression of whether a
strict copyleft-scheme is followed by the project.

1http://sourceforge.net/top/toplist.php?type=downloads_week
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ê Audience: Again, the intended audience of a project is coded as a binary
variable,  depending  on  whether  the  intended  audience  is  developers  or
system administrators (true) or not (false).

ê Age: The age of the project in years, which is computed based on the year
in which the project was registered on SourceForge.net (using 2007 minus
registration year).

ê Developers: This is the number of developers as reported by the project's
page on SourceForge.net.

ê Downloads: This is the number of downloads of the project within the last 7
days, as given by the respective statistics page described above.

ê Status: The development status from the web page. This is assigned by the
project's  administration,  and  has  seven  possible  values,  reaching  from
planning,  pre-alpha,  alpha,  beta  to  production/stable  and mature,  and  to
inactive.

ê Translations:  The  number  of  different  translations  available,  from  the
project's page, with all languages counted equally as one.

ê Operating  Systems:  As  translations,  but  with  the  respective  operating
systems (or families thereof, e.g. all Windows versions are counted as one).

ê Tracker: This binary variable codes whether the project employs the tracker
service of SourceForge.net (true in that case).

ê Tracker total: This is the total number of entries summed over all different
active trackers of a project.

ê Mailing list:  This binary variable codes whether the project employs the
mailing list service of SourceForge.net (true in that case).

ê Mailing list  total:  This is  the total  number of postings summed over  all
mailing lists of a project.

ê Forum: This binary variable codes whether the project employs the forum
service of SourceForge.net (true in that case).

ê Forum total: This is the total number of messages summed over all different
active forums of a project.

ê Tasks:  This  binary  variable  codes  whether  the  project  employs  the  task
service of SourceForge.net (true in that case).

ê Tasks total: This is the total number of tasks (in any status like open or
closed) summed over all different subprojects of a project.

ê CVS:  This  binary  variable  codes  whether  the  project  employs  a  CVS
repository (true in that case).

ê CVS commits: The total number of commits to the CVS repository as given
on the project's page.

ê SVN:  This  binary  variable  codes  whether  the  project  employs  an  SVN
repository (true in that case).

ê SVN commits: The total number of commits to the SVN repository as given
on the project's page.

ê Size: The size in byte of software offered, summing over all packages of the
project in the latest release.
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The first,  and a major source of possible threats is construct validity. Several
measures used for conceptualizing different aspects for the following analyses might
be  problematic  and  need  to  be  discussed  in  this  context.  First  is  the  notion  of
developer, which is taken directly from the web page. In some projects, people could
be contributing code without relevant account, which sometimes is only granted to
long-time participants, by sending it to one of those persons who then does the actual
commit.  Therefore,  the  number  of  developers  might  actually  be  higher  than  the
number reported here. This fact is very problematic to check. In a case study of the
OpenACS  project  under  participation  of  project  insiders  and  using  the  strict
standards for CVS comments, [11] have found that only 1.6% of revisions pertained
to code committed for someone without CVS privilege. Other metrics suffer from
similar possible problems, for example a project might have existed before it was
registered on SourceForge.net, and also the size might be affected by several factors
like  different  compression algorithms employed.  In addition,  several  parts  of  the
coordination and communication tools might be in use, but not opened to the public,
and thus disregarded in this context, or tools completely distinct from the platform
might be employed. This is for example true for the source code versioning systems
in our dataset. Also [13] give an overview of problems associated with mining data
from Sourceforge.net.  Lastly,  the  external  validity  of  the  results  depends  on the
selection  of  an  appropriate  dataset.  In  our  case,  the  approach  is  still  mostly
exploratory, but using the definition above, a coherent dataset was aimed at. For,
example,  this shows in the intended audience,  which in no case is developers or
system administration alone, or the fact that all projects save one use a GPL-licence.
Table 1 gives descriptive statistics for some relevant metrics.

Table 1. Descriptive Statistics of Dataset (N=30)

Median Mean Std.Dev. Min. Max.
Downloads 97,682.00 285,507.53 538,548.91 63,122 2,457,185
Developers 9.00 10.23 9.53 1 39
Status 5.00 n/a n/a 4 6
Age 5.00 4.87 1.76 2 8
Translations 1.50 7.90 11.19 1 35
Size 21,220K 106,780K 232,072K 2,832K 998,118K
Tracker total 175.00 1,313.73 4,095.57 0 22,527
Mailing list
total

29.00 10,070.13 31,792.62 0 169,574

Forum total 0.00 3,659.40 9,520.53 0 44,272
Tasks total 0.00 2.33 9.83 0 52

4 Analysis and Results

Based on the data set and variables as described above, we set up an DEA with the
following parameters, using the program accompanying [8]:  The first choices to be
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taken concern the definition of input and output factors, as well as the model to be
applied. Based on the literature on DEA in the context of IT-projects [4,5,14,20],
variable returns to scale are selected.  Regarding the orientation of the model,  an
output-orientation might seem more appropriate. Given a certain input which can be
acquired, i.e. participants attracted, the output is to be maximized. According to this
reasoning, the BCC-O model is applied.

Regarding the definition which factors are to be used as inputs and outputs, it is
to  be considered that  with an increase in  the number of factors more DMUs are
estimated to be efficient. Also the availability of factors in the data set limits the
possibilities. In this case, we selected to use the number of developers and years of
existence as inputs, downloads, size, status and translations as outputs.  Naturally,
this selection is based on the available data, and could be changed.

For  an  overview  of  the  results,  see  Table  1.  In  this  table,  statistics  on  the
efficiency scores in the total population are given. Overall, 11 different projects have
been  classified  as  DEA  efficient,  the  mean  efficiency  score  with  0.922  seems
relatively high.  For  each efficient  project,  the  number  of  times  it  appears  in  the
reference sets of non-efficient projects is also given. This can be used as an indicator
of the relative importance of this project in determining efficiency scores.

Table 2. Results of Applying DEA to the dataset

No. of DMUs 30
Average 0.922
Std. Dev. 0.096
Median 0.953
Minimum 0.706
Maximum 1.000
Number of DEA-efficient DMUs 11
Frequency in Reference Set
Peer set Frequency
eMule 8
Ares Galaxy 0
Azureus 3
GTK+ and The GIMP installers for Windows 10
eMule Plus 0
emule Xtreme Mod 15
Portable Apps 6
CDex 16
Gaim 2
MediaCoder 0
WinSCP 0

As one of the results is an efficiency score for each project, we can now use this
score  for  analysing potential  effects  on this  efficiency.  As explanatory variables,
information concerning the communication and coordination tools employed by the
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projects  is  used.  As a start,  correlations  between the efficiency scores  and these
metrics are explored to uncover any relationships. All of the following analyses were
performed  using  R  (version  2.4.0),  a  free  software  environment  for  statistical
computing and graphics. Specifically, tracker, mailing lists, forums, tasks and both
CVS and SVN were explored as possible influences. In addition, a new metric was
computed  summing up the  binary  variables  depicting  whether  or  not  a  tool  was
employed, to give an indication of the overall diversity of a project in this context.
This shows out of a maximum of 6 a mean of 2.53 with median 3 and 1.48 standard
deviation.

The  results  are  not  conclusive:  Regarding  correlation  coefficients,  these  are
mostly  small  (below  0.3)  and  for  all  tools  except  forums  negative.  Also  the
correlation to the overall number of tools employed is with -0.257 negative. Using
non-parametric  Mann-Whithney  U-tests,  these  results  were  tested  for  statistical
significance:  The  negative  relationships  with  overall  tool  usage  (p<0.01),  CVS
(p<0.05),  tasks  (p<0.01),  and  the  positive  relationship  with  forum  employment
(p<0.01) are statistically proven. The results from [18] regarding licensing scheme
and audience could not be checked due to minimal respectively no variance in these
attributes, the inequality in contributions was not available in this data set.
These results seem rather surprising, given that [19] found a relationship between
process maturity and success, but there are two different explanations: First, the tools
as  provided  by  SourceForge.net  are  not  giving  relevant  help  to  the  projects
employing them, so projects using other tools, or even none at all for a given task
perform  better.  The  second  explanation  would  be  that  all  the  tools  for
communicating with users and potential co-developers are more of a hindrance to
efficient software development, detracting attention and time from the developers,
which might be better spent on actual development work. Naturally, the view on this
might also depend on the output factors included: Employing mechanisms like bug
tracking  might  help  to  achieve  higher  quality  in  the  released  software,  and  it  is
unclear whether this effect is currently incorporated. Naturally, it could be assumed
to  higher  quality  projects  achieve  a  higher  number  of  downloads,  but  including
quality aspects in the list of output factors might give additional insights.

5 Conclusion and Future Research

In this paper, we have used a method to compare the efficiency of open source
projects to analyse potential impacts of different communication and coordination
tools. The method used is the DEA, which is well-established in other fields and
offers several advantages in this context as well: It is a non-parametric optimization
method  without  any  need  for  the  user  to  define  any  relations  between  different
factors  or  a  production  function,  can  account  for  economies  or  diseconomies  of
scale, and is able to deal with multi-input, multi-output systems in which the factors
have different  scales.  Using a data  set  of  30 open source project  retrieved from
SourceForge.net, we have demonstrated the application of DEA. Results show that
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the  efficiency  of  the  projects  is  in  general  relatively  high  with  low  variance.
Regarding the effects of tool employment on the efficiency of projects, the results
were surprising: Most of the possible tools, and overall usage, showed a negative
relationship  to  efficiency.  This  could  be either  due to  more efficient  tools  being
available  elsewhere,  or  a  negative  influence  of  all  activities  except  software
development per se.

In  future research,  additional  work  has  to  be done  on arriving at  a  common
understanding of input and output factors and their definitions. For example, using
the size in bytes instead of lines-of-code might be problematic, but on the other hand
captures  other  output  aspects  like  audio  or  others  as  well.  Also  the  selection of
projects  to  be  included  might  be  worked  on,  to  preclude  projects  without  real
development  work,  which only serve as assemblers  of  others.  Further,  additional
analyses based on the results using other project characteristics would be of high
interest. For example, the definition of different process models would be of high
interest  for  efficiency comparisons.  These could also include comparisons within
application areas, different project scales, and  comparisons to commercial or mixed-
mode development projects.
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