

Experiences on Product Development with
Open Source Software

Ari Jaaksi
Nokia

P.O Box 779
33101 Tampere, Finland

ari.jaaksi@nokia.com

Abstract. This article discusses Nokia’s experiences of using open source in
commercial product development. It presents the development model used in
the creation of mobile consumer devices and highlights the opportunities and
challenges experienced. This article concludes that the main benefits come
from the utilization of already available open source components, and from
their quality and flexibility. It illustrates the challenges and solutions faced
when mixing open and closed development models at Nokia.

1 Introduction

The Nokia 770 and N800 Internet Tablets are mobile consumer devices. They
provide wireless internet access and enable internet use cases such as voice and
video calls, web browsing, messaging, and media consumption in a pocketable
mobile device. Nokia has built these products on Linux and other open source
components in a close collaboration with open source communities. In addition,
Nokia runs the www.maemo.org web site that supports community development on
internet tablets.

Nokia uses open source extensively in the creation of the internet tablets. We
favor components that are developed by active communities and used by many users.
This ensures that the selected components are developed and maintained properly
both now and also in the future. For this reason we prefer to use mainstream desktop
components whenever possible. Desktop and PC related projects are typically more
active and mature than the projects targeting embedded devices. Therefore, we
actually run a Linux based desktop configuration on a mobile device.

2 Software Architecture

Figure 1 illustrates our software architecture [1]. We integrate unmodified open
source components into our platform. We also sponsor the enhancements of many
existing open source components to make them fit for our use. We then integrate

86 Ari Jaaksi

these modified open source components into our platform. Some components we
develop from scratch, many of which we then open source. Finally, we integrate
closed components from various sources, such as from commercial software
vendors.

Figure 1: The Nokia open source software architecture

We have 428 source code packets in our platform. 25% of the packages are taken

from open source projects without any modifications. Examples of such components
include the gnuchess chess game engine, bzip2 data compressor, and id3lib for
manipulating ID3v1 and ID3v2 tags in digital audio files.

About 50% of the packages originate form open source projects, but Nokia has
made modifications to the components. In such cases, we actively push our
modification upstream to the originating projects. The additional modification work
is needed especially in the areas of UI and usability, power management,
performance, and memory management. Our engineers work directly with
communities participating development projects to ensure that our modifications are
accepted upstream. In addition to making modifications ourselves, we also hire and
ask developers within the communities to enhance components based on our needs.
Examples of such components are the Linux kernel, D-BUS, GNOME-VFS, GTK+,
GStreamer, and OBEX. We also reuse and improve entire subsystems and subsystem
architectures, such as GNOME [2] and Debian [3]. Instead of separate components,
we then reuse architectural blocks that already integrate several independent
components.

Finally, some 25% of the packages are proprietary closed source components,
either belonging to Nokia or licensed from commercial vendors such as Real
Networks or Adobe. Some of the Nokia proprietary components that are kept closed
are closely related to the hardware. Examples of such components are the boot loader
and battery charging implementations. In addition, the majority of the user interface
applications are also closed.

Experiences on Product Development with Open Source Software 87

A European Union report by Ghosh [4] studied the software running on the
Nokia 770. They concluded that the device runs 15 million lines of open source
code, 200.000 of which where created by Nokia. This demonstrates that it is possible
to use open source code and modify it to meet your own specific needs with minimal
effort. In fact, Nokia manages to modify and use open source components for
desktop environments in its mobile internet devices with less than 1.5% additional
investment.

3 Community collaboration

We source our open source components directly from community projects. We
do not use any embedded distros as the starting point of our architecture. Instead, we
want to utilize mainstream desktop oriented open source components to get the
maximum community benefits.

3.1 Selecting the core components

We analyze the technical suitability of all components and subsystems. All
selected components must fulfill our functional requirements and meet our hardware
specifications. The components also need to be of good quality and mature enough
for consumer products.

We actively participate in the communities from which we source our
components to ensure that the selected subsystems develop further over time. We
also ensure that the goals of the development communities match our goals. This all
happens through active community discussions, conferences, and workshops.

It is important that the open source components we use are licensed under proper
licenses and have clear copyright and licensing information attached to them. We
also choose to select components that do not lock us into one vendor through
requirements such as mandatory copyright donations or dual licensing models. It is
also important that our components be licensed under an open source license, such as
LGPL, that allows us to integrate proprietary components into our platform as well.

For the key components and subsystems, we did not have too many options to
choose from. For example, the only true graphical environment alternatives were Qt
and Gtk+ [5][6]. We selected Gtk+ because it is developed by a vibrant multi-polar
community with no single company dominance. It is therefore easy to contribute our
changes to Gtk+ on the basis of general usefulness and technical merit only. Also,
Gtk+ is licensed under LGPL, and that allows us to mix proprietary UI elements
without a dual commercial license.

3.2 Creating software as a part of communities

Our strategy is to find a suitable community and then take part of the community
work. We do not want to control the project or branch the work. Instead, working as

88 Ari Jaaksi

an integral part of a community provides us with access to code and engineers
outside of our own development team.

As an example, we sponsored the development of the D-BUS [7] message bus
system. We hired some key developers from the D-BUS community into our project
but asked them to continue working within the project in open source. They then
contributed code and participated in the development of D-BUS, and we performed
a lot of testing that helped in reaching the needed product quality.

We open source new components and subsystems we have developed, such as

our Hildon application framework. We have also opened the development of selected
middleware components at the Maemo Sardine distro [8]. Open middleware
development enables application developers to follow the latest changes in our code
so they can test their applications against the latest changes, update them as a result
of any API changes, and pilot the latest additions to our software. This open
development allows anybody to participate in the development of the middleware
code and see where it’s heading. This is all available before a stable release of the
software for the end-users. As an example, several parts of the code running on N800
Internet Tablet were already available before Nokia even announced the product in
early January, 2007.

Figure 2: Working with communities

We work closely within communities to develop software, as illustrated in Figure
2. We collaborate with many individuals and companies in upstream projects (1) and
Nokia engineers take part of the community work. We take selected components
from those upstream projects (1), develop some code of our own (4), source
components from commercial vendors (2) and create a Nokia internal distro called

Experiences on Product Development with Open Source Software 89

Nokia’s Open Source Software Platform (5). We then actively push our changes and
modifications back upstream to minimize Nokia specific code.

We integrate the final software for our products within Nokia (4). We integrate

both the product software for internet tablets (6), and the www.maemo.org tools and
software for an external www.maemo.org software distro (7). While open source and
communities help us in implementing software components and subsystems
upstream (1)(3), we believe that the final product and product integration is better
done within Nokia by Nokia (4). After all, we are responsible for meeting our
quality, schedule, and monetary goals.

Finally, we offer www.maemo.org and Maemo garage for external developers
(3). They use these facilities in their projects that develop software for Nokia’s
internet tablets. We are fortunate to have many volunteers and community people
developing applications and submitting their work, such as documents, bug reports,
and enhancements to www.maemo.org.

While Nokia provides the basic www.maemo.org infrastructure, the actual distro,
and various development and community tools, it is the community members
themselves who enhance them and provide support for each other. This greatly
improves the developer experience on www.maemo.org. In the end of 2006, the
www.maemo.org developer site hosted almost two hundred open source projects
dedicated to the internet tablets, and had almost 60 000 unique visitors per month.

4 Benefits of open source

We have created two devices, provided software upgrades to these devices, and
created an open source community around the www.maemo.org community site. Our
development experiences include all the phases starting from initial requirements
analysis to selling the devices, working together with many other companies and
open source projects, and offering upgrade software for end users. We thus believe
that we can draw some conclusions about developing consumer products with open
source. The benefits are clear.

 4.1 Efficiency

The biggest efficiency gains came from the utilization of already available
components, such as the Linux kernel and the GTK+ toolkit. It was cheaper and
more efficient for Nokia to build the internet tablets using the open source model
than it would have been using a proprietary one. This conclusion can be drawn by
studying other similar product development activities at Nokia.

In reality, developing an own operating system and middleware was never even
an option for us. We needed to either use an existing commercial and closed
operating system and middleware, or then use an existing open source operating
system and middleware. We used the open approach in order to benefit from the
cheaper or non-existent licensing costs, in order to have better strategical control,

http://www.maemo.org/

90 Ari Jaaksi

and to have the ability to freely enhance the code according to product and market
needs.

Productive software developers can enhance development efficiency
significantly. With proprietary and closed software systems, we typically train and
educate developers for a long period of time. It takes several projects for the
developers to become productive with the closed and proprietary systems and
technologies we use at Nokia. This is not the case with our open source based
software platform, because we use widely known tools, components and
architectures. The Linux operating system and Debian packages, for example, are
commonly taught in universities and other companies. That makes new developers
productive faster than with other software platforms used at Nokia.

4.2 Quality

The code that we obtain from open source projects is of better quality and has
fewer errors than code we developed by ourselves. This is because open source code
has already been used by others before we take it into use, and they have already
fixed the most severe errors.

However, if we compare the open source code to the commercial components
used in our platform, the quality difference is not that obvious. The commercial
components have typically been used by others, too. That has improved their quality.

An additional benefit to open source is that the quality of the code and the skills
of developers can be verified in advance. We can study the component code, build
prototypes, and run performance tests freely with open source components. This
helps us to select good quality components and subsystems. Also, when a developer
or a subcontractor submits code to an open source project, the quality is easy to
verify. This allows us to assess the quality of our developers and subcontractors
before hiring them.

4.3 Flexibility

Open source provides flexibility when we need to fix problems or change
functionality. We often request bug fixes or modifications for the commercial closed
components on our platform. However, if the vendor of that particular component
does not have the capacity or willingness to fix the problem on time, we can be left
few options. Typically we cannot fix problems ourselves in these scenarios, because
the companies from whom we license our closed components don’t want us to access
their source code. With open source components, however, we fixed bugs ourselves,
hire somebody else to fix them, or work with the communities in order to obtain the
modifications. With so many options available, we are able to fix the problems we
have in most cases.

Experiences on Product Development with Open Source Software 91

4.4 Software licensing

Software in-licensing requires a lot of negotiations between a licenser and a
licensee. Based on our experiences, an average in-licensing process for a software
component takes 6 – 12 months. Problems and delays in software licensing are one
of the most common reasons for missing features or delayed projects.

In contrast, licensing with open source is simple. The licensor already has the
license terms in place. She may offer some additional options, such as support or
training, but the actual licensing terms are already established. In addition, all the
source code is available for the licensee to study and evaluate. The licensee can also
assess the community, companies, and available hackers supporting the technology
in question prior to taking it into use. And, they are able to talk to others about the
technology without worrying about trade secrets. Because of these factors, open
source projects are never delayed because of complicated in-licensing negotiations.

Open source simplifies and accelerates software licensing, and reduces
technology and quality risks. Instead of negotiation for months, the technical work
can start immediately.

4.5 Future and roadmaps

The future direction and plans for open sourced components and subsystems are
typically discussed openly, and are open for contributions. We can, therefore,
monitor and influence the development of relevant technologies through the
community work.

The choices are more limited with closed source commercial components.
Companies developing closed source components typically decide themselves about
the future of their technology. They may choose to reveal parts of they plans, and
they may choose to take external input into account. But, unlike in the open source,
you cannot participate yourself and contribute in an open fashion.

4.6 Open source and confidentiality

An open source approach requires openness and information sharing during
development. However, you do not want to reveal the products to the public before
the actual product announcement. There is thus a potential conflict between the open
source openness and product launch secrecy.

Nevertheless, we worked intensively with communities already before we
announced the Nokia 770 Internet Tablet. Also, we opened parts of the firmware
development before launching the Nokia N800; we worked with several
communities to develop code for it. Many community developers had very detailed
information about our forthcoming products due to their involvement in this process.
Despite this, however, we had no information leakage from developers prior to the
commercial product announcements. Based on our experiences, therefore, it is
possible to develop software openly, while maintaining product confidentiality.

92 Ari Jaaksi

5 Issues and challenges

The open source development model is different than the closed one. The open
source model shares code and work with other people and companies. They have
their own schedules and targets that may not coincide with ours. However, that
doesn’t necessarily matter as long as we work upstream on non-differentiating
aspects of the software.

At the end of the day, however, we must ensure that we get our products done in
time with proper quality. Thus, at some point we need to drive the project to the
conclusion that benefits us the most. This typically requires a more closed and single
company controlled way of working. This mixture of open and closed development,
illustrated in Figure 2, is important to master and we already can draw some
conclusions from our experiences.

5.1 Hacking vs. stabilizing

In the early stages of a product development project, we work closely with
communities, individual hackers, and hacker companies. We develop code in a true
hacking mode. Later, we freeze our requirements to get things focused and to get
software ready for shipment.

We have an internal milestone when we all software functionality must be
implemented. We predict the shipment date to synchronize marketing activities, and
reserve a factory production line. At this milestone, System Testing can run all test
cases. All features are implemented at this point, but the system is still unstable and
buggy. From this point on, all effort is put into bug fixing and stabilization.

At this milestone, the whole development team switches modes, from hacking
and new development, to integration and stabilizing. Hacking and new development
happens around independent components within teams. Integration and stabilizing,
on the other hand, happens around the entire software stack and between teams. This
requires a shift from a component view to a system view of software development.

This is a radical change of mode. The open source culture is very much for trials,
hacking, innovation and other creative aspects of software development. Meeting
deadlines, not developing new features, and focusing on stability are not what many
open source communities or developers naturally do. In addition to us, the Linux
project, Debian, and others seem to have difficulties making a final good quality
release on time [9], [10].

In recent projects we have made the move from the hacking to stabilizing more
apparent and strict. We now make the change very explicit in our process, and
enforce it even more than in some conventional product development projects.
Accordingly, we managed to get N800 ready right on time with no delays. This
proves that we have managed to improve our stabilization phase.

Experiences on Product Development with Open Source Software 93

5.2 Architecture management

Open source requires us to manage our architecture not only form the
conventional 4+1 point of view [11] but also from the legal and IPR point of view.
Some components, such as players and codecs, are available only as closed source
components. We need to, therefore, mix open source and proprietary code and
manage different licensing rules within the product code.

We manage the legal and IPR status of each software component. It is not
enough to manage the architecture in terms of the development time API
compatibility or run time performance, but we also need to manage the mix of
various open source and closed source licensing rules. This is an additional job that
we need to do when developing products based on open source.

5.3 Community alignment versus backwards compatibility

Internet tablets provide a platform on top of which applications and services can
be developed. It is important that the platform provides application compatibility
over product generations.

A binary compatibility is an ultimate goal for such backwards compatibility. That
would allow the same application to run on various platform and product generations
without recompilation. This is typically achieved by selecting development APIs and
components that remain unchanged over platform generations. If a company
developing product generations also develops all the software, such API freezing can
be achieved by not introducing new features and changes to the relevant code.

However, open source components develop constantly. They get new features,
their architecture change, and bugs are fixed. This development happens and it
cannot be stopped. Our current strategy is to stay close to the latest development. We
want to avoid a big difference between the component developed in the community
and the component version used by us. For example, we are eager to move to the
latest Linux kernel version as soon as it is possible for two reasons. We want to get
the latest development into use, and we want to minimize the delta we need to
maintain our selves.

These two concepts, product backwards compatibility and staying current with
open source development are somewhat contradictory. In several cases, it would
have been easier for us to provide backwards compatibility simply by not changing
the underlying code. However, communities move on. If we decided to use an old
version of a component we would need to do all backporting and new development
ourselves to that component. Communities would not help us for they are already
working on new versions. That would eventually put us on a different development
branch and increase the amount of code we need to develop and maintain ourselves.

We do not have a final answer to this contradiction. So far we have not managed
to maintain true backwards compatibility as we had hoped. Going forward, this is
one of the things we need to better understand and manage. To do so, we are
implementing more strict architecture management and compatibility layers between
of the open source originated platform components and applications.

94 Ari Jaaksi

5.4 Community participation in product integration

We work closely within communities in the upstream projects to develop various
software components. This work happens in a community mode. Then, when we
decide on the product features and integrate the final software, we do it ourselves in
Nokia internal product development projects, illustrated in Figure 2. The closed way
of integrating the software causes frustration among some external open source
developers. They’d like to find a way to be part of the Nokia’s product development,
not only in developing components and technologies in upstream projects but
actually deciding on features, and integrating the final product together with Nokia.

We launched the Sardine distro [8] partially to address this problem. We now
allow external developers to participate more in the actual development and
integration process within Nokia. This is this is one of those areas where we still
need to collect experiences and learn. There may be room for more community
collaboration even in the most crucial steps of the product development. But in all
cases, we expect that the product companies, such as Nokia, must have the final
control over the product features and quality. It cannot be given to communities.

5.5 Investing in community work

Using open source code effectively requires community participation. It is
sometimes possible to use an open source component without further development.
Such participation is almost free of charge. In many cases, though, we work with
communities to enhance components and develop them further. Such participation
requires extra resources.

When open sourcing our own code and patches, we must ensure that our
developers can work with the open sourced components. We must continue support
the code in open source so that the code will meet our future needs, too. Just
releasing code with no plans to develop it further won’t benefit us.

We have open sourced individual components and participated some
development with no clear benefit for us. We have either been left alone to develop
the component, or our needs have not been taken into account when developing a
component further. In these cases the joint open source development didn’t happen
or it didn’t benefit us. Therefore, we now observe individual projects and try to
identify when the open source investment pays off and when it doesn’t.

6 Summary

We have created two consumer devices, the Nokia 770 and the Nokia N800
Internet Tablets, utilizing open source software. In addition, we have made software
updates to those devices and initiated community work around the www.maemo.org
web site. Our experiences demonstrate that an open source technology and

http://www.maemo.org/

Experiences on Product Development with Open Source Software 95

development model is well suited for consumer devices. We have created products in
a shorter time and with fewer resources with open source than we have managed to
create using proprietary software alone. In essence, open source offers time and cost
savings in a form of readily available components and subsystems, available
developers, and an effective development model.

Open source doesn’t make software development free or easy. It provides
effective tools for product creation. Combining these new tools, such as community
involvement, and utilization of open components, with more traditional software and
product engineering practices is a good mix.

As a device manufacturer, we alone are responsible for the quality of the end
product. We must therefore utilize all quality and software engineering mechanisms
to achieve the needed quality. We cannot skip such development aspects such as
specifications, integration, testing, and documentation, for example. In addition,
open source introduces certain new requirements, such as community interaction and
legal and IPR management. These hard requirements seem to contradict with open
community work in certain cases. We have not managed to successfully solve all
these conflicts. However, we are working on improving community participation in
the stabilization process as well as allowing community members to participate
firmware development. The results are not yet known, though.

Acknowledgements

Thanks to Bradley Mitchell for his assistance in writing this article.

References

[1] Jaaksi 2006: Building consumer products with open source
http://www.linuxdevices.com/articles/AT7621761066.html

[2] http://www.gnome.org/

[3] http://www.debian.org/

[4] Ghosh, R A (ed.), ‘Study on the:Economic impact of open source software on
innovation and the competitiveness of the Information and Communication
Technologies (ICT) sector in the EU, Final report, November 20, 2006, Merit

[5] http://www.trolltech.com/

[6] http://www.gtk.org/

[7] http://www.freedesktop.org/wiki/Software/dbus

[8] http://sardine.garage.maemo.org/

[9] Glance, David, G : Release criteria for the Linux kernel, 2004:
http://www.firstmonday.org/issues/issue9_4/glance/index.html

http://www.debian.org/
http://www.gtk.org/
http://www.freedesktop.org/wiki/Software/dbus
http://sardine.garage.maemo.org/
http://www.firstmonday.org/issues/issue9_4/glance/index.html

96 Ari Jaaksi

[10] Brockmeier, Joe, The 2005 Debian Project Leader election, 2005
http://lwn.net/Articles/127031/

[11] Kruchten, P.B. The 4+1 View Model of Architecture. In IEEE Software,
November, 1995: 42-50

http://lwn.net/Articles/127031/

