
From the Cathedral to the Bazaar: An
Empirical Study of the Lifecycle of Volunteer

Community Projects
Andrea Capiluppi1, and Martin Michlmayr2

1 University of Lincoln, UK, acapiluppi@lincoln.ac.uk
2 University of Cambridge, UK, martin@michlmayr.org

Abstract. Some free software and open source projects have been extremely
successful in the past. The success of a project is often related to the number of
developers it can attract: a larger community of developers (the `bazaar')
identifies and corrects more software defects and adds more features via a
peer-review process. In this paper two free software projects (Wine and Arla)
are empirically explored in order to characterize their software lifecycle,
development processes and communities. Both the projects show a phase
where the number of active developers and the actual work performed on the
system is constant, or does not grow: we argued that this phase corresponds to
the one termed 'cathedral' in the literature. One of the two projects (Wine)
shows also a second phase: a sudden growing amount of developers
corresponds to a similar growing output produced: we termed this as the
`bazaar' phase, and we also argued that this phase was not achieved for the
other system. A further analysis revealed that the transition between `cathedral'
and `bazaar' was a phase by itself in Wine, achieved by creating a growing
amount of new modules, which attracted new developers.

1 Introduction

Prominent free software (or open source software, OSS) projects such as Linux
[32], Apache [27] and FreeBSD [18] have been extremely successful. Anecdotal
evidence has been used in the past to characterize successful OSS projects:
users/developers acting as "more eyeballs" in the correction of bugs, developers
implementing new features independently, skillful project managers dealing with a
mostly flat organization, and the resulting coordination costs [28].

Previous studies have provided empirical evidence on the process of successful
OSS projects: the definition of various types of developers has been discussed for the
Mozilla and the Apache projects, justifying different levels of effort [27], and
claiming that the first type (core developers) contribute to the success of a system.

2 Andrea Capiluppi1, and Martin Michlmayr2

Also, social network analyses have shown communication and coordination costs in
successful OSS projects [21].

In all these cases, successful projects are studied and characterized, but an
analysis in their earlier inception is not given. Therefore, empirical studies on
whether the project always benefited of a large number of developers, or built instead
its bazaar through several years, are still missing. In order to tackle this missing link,
this paper explores the evolution and development processes of two OSS systems, the
Wine (a free implementation of Windows on Unix) project and the Arla file system.
The first system has been widely adopted and developed by many developers. Arla,
on the other hand, is still in a `cathedral' phase when compared Wine: fewer
developers are currently collaborating towards its development.

The aim of this paper is to empirically detect and characterize the phases
achieved by these two systems, to illustrate whether one phase consequently follow
the other, and to establish one of these phases as a `success' for an OSS project. If
this is the case, sharing the empirical guidelines on how to achieve this transition
could help developers to work on the benefits of the bazaar phase.

Structure of the paper: in Section 2, a theoretical background will be given, as
well as two research questions, based on OSS communities. Also, a description of the
approach used to acquire and analyses the data employed will be presented. The data
will be used to test the presented questions. Section 3 will describe the phases
observed in the two systems from the point of view of the activities of developers.
This section will also give a detailed description of the activities that underpin the
success of a OSS system, as observed in the proposed case studies. Section 4 will
deal with related work in this (and other) areas, identifying the main contributions of
this paper, and will discuss a number of questions raised in this paper that need
further empirical exploration. Finally, Section 5 will give conclusions on the overall
process and lifecycle of OSS systems, as well as possible future research directions.

2 Background Research

One of the authors, in a previous work [29], presented a theoretical framework for
the activities and phases of the lifecycle of OSS projects. The objective was to
provide a more systematic approach for the development of OSS projects, to increase
the likelihood of success in new projects. In this paper, the objective is to empirically
evaluate the theory contained in that work through two case studies, and to report on
best practices of actually successful OSS projects. Since previous studies have shown
that many OSS projects must be considered failures [3, 7], it is argued that the latter
ones lack some of the characteristics as described in [29], notably the transition
between the closed (or `cathedral') and the open (or `bazaar') styles. In his popular
essay “The Cathedral and the Bazaar", Eric S. Raymond [28] investigates
development structures in OSS projects in light of the success of Linux. The
terminology of the `cathedral' and the `bazaar' introduces both a closed approach,
found in most commercial entities, where decisions on large software projects are
taken by a central management; and an open one, where an entire community is in
charge of the whole system.

From the Cathedral to the Bazaar 3

Instead of viewing these approaches as diametrically opposed, as originally
proposed by Raymond, this paper considers these as complimentary events within
the same OSS software project. Figure 1 illustrates three basic phases, which this
research argues a successful OSS project undergoes. The initial phase of a OSS
project does not operate in the context of a community of volunteers. All the
characteristics of cathedral style development (like requirements gath- ering, design,
implementation and testing) are present, and they are carried out in the typical style
of building a cathedral, that is, the work is done by an individual or a small team
working in isolation from the community [5]. This development process shows tight
control and planning from the central project author, and is referred to as `closed

prototyping' by Johnson [17].
In order to become a high

quality and useful product, [29]
argued that an OSS project has to
make a transition from the
cathedral phase to the bazaar
phase (as depicted by the arrow
in Figure 1). In this phase, users
and developers continuously join
the project writing code,
submitting patches and

correcting bugs. This transition is associated with many complications: it is argued
that the majority of free software projects never leave the cathedral phase and there-
fore do not access the vast resources of manpower and skills the free software
community offers [7].

2.1 Research questions

In this paper, historical data on code modifications and additions of large (sub-
systems) or small scale (modules) sections of a software system are analyzed in order
to track how the studied systems evolved over time. Two research questions are
presented here: the historical data will be then tested against them, and the results
will be evaluated in the next section. The first is based on out- put obtained from
input provided, the second on what new developers tend to work on when joining a
OSS project. The research questions can be formulated as follows (metrics used to
asses each question are also provided):

i) research question 1: the `bazaar' phase involves a growing amount of
developers, who join in a self-sustaining cycle. The output obtained in a bazaar phase
follows a similar growing trend. OSS projects, while still in the `cathedral' phase, do
not benefit from a growing trend in input provided and output achieved.

ii) research question 2: new developers, when joining a software project, tend to
work on newest modules first, either by creating the modules themselves, or by
contributing to a new module. This can be rationalized saying that new developers
might not need insights on all the preexisting functionalities of a system, thus
preferring to develop something new. This research question will be used to gather
further insights on how Wine could achieve a bazaar phase.

Fig. 1. OSS development lifecycle

4 Andrea Capiluppi1, and Martin Michlmayr2

2.2 Empirical approach

The empirical approach involves the extraction of all changes embedded in
sources of information of both input (effort provided by developers) and output (that
is, additions or changes of subsystems and modules). In the following analysis, the
ChangeLog file, recording the whole change history of a project, has been used
rather than an analysis of the projects' CVS repositories. From previous research it is
known [10, 22] that different development practices have an influence on the best
data source, and the ChangeLog file offers more reliable information in the selected
case projects [6, 12, 30].

The steps to produce the final data can be summarized in: parse of raw data, and
extraction of metrics. As part of the first step, automated Perl scripts are written to
parse the raw data contained in the ChangeLog and to extract pre-defined data fields.
The data fields which will be considered in this study are: name of the system, name
of the module, name of the subsystem containing that module, date of creation or
change and unique ID (name and email) of the developer responsible for the change.

2.2.1 Raw data extraction
The analyzed ChangeLog files follow very regular an- notating patterns, thereby

allowing a straightforward analysis of the history of changes in a project in a semi-
automated way. The following steps have been performed during the extraction of the
raw data:

1 – Identification of dates: it was observed in the studied cases that each touch
was delimited by a date, using the following or a similar pattern: for example,
YYYY-MM-DD, as in “2000-12-31”. Each touch can be associated with one or more
than one developers; also, each touch can be associated with one or more than one
modules. For each touch there is one and only one date.

2 – Affected modules and subsystems: each touch affects at least one file, and is
recorded with a plain-text description. In some cases the same touch affects many
files: these modifications are referred to the same date. Subsystems are extracted as
the folder containing the affected file.

3 – Details of developers: All touches concern at least one developer, displayed in
various forms inside of the description of the touch. If more than one developers are
responsible for a touch, they are recorded together within the touch.

4 – Derivation of metrics: Counts were derived of both effort provided by
developers and work produced creating new modules and amending existing ones.

2.2.2 Metrics choice and description
The analysis of the two OSS systems involved three types of metrics, used

differently to discuss the research questions. A list is proposed in the following:
i - Input metrics: the effort of developers was evaluated by counting the

number of unique (or distinct, in a SQL-like terminology) developers during a
specific interval of time. The chosen granularity of time was based on months:
different approaches may be used, as on a weekly or on a daily basis, but it is
believed that the month represented a larger grained unit of time to gather the
number of active developers. This metrics was used to evaluate the first research

From the Cathedral to the Bazaar 5

question. For instance, in February 2006 it was found that the Wine system had 73
distinct developers who wrote code for this system in that month.

ii - Output metrics: the work produced was evaluated by counting the touches
to modules or subsystems during the same interval of time. Smaller- grained metrics,
like lines of code, were not considered in this study: evaluating how many lines of
code are produced by OSS developers could be subject to strong limitations1. In the
following section this metric will be used also as an indicator of parallel development
work performed in successful projects. This metrics was also used to evaluate the
first research question. As above, in February 2006 it was detected that the Wine
system had 820 distinct modules which were touched in that month.

iii - New Input and Output metrics: the newly-added effort was evaluated
counting the new developers joining the project. The work produced by these new
developers was also isolated: the objective is to determine how much of this work has
been focused on existing parts of the system, and how much goes to new parts. This
metrics served to evaluate the second research question, i.e. to explore if new
developers tend to work either on old or new parts of the system. As above, in
February 2006 it was detected that the Wine system had 73 new developers (i.e. not
detected in any of the previous touches). It was also empirically detected that these
new developers worked in part on old modules, and in part on new modules, i.e.
added in the same month. It was observed that 75% of their work concerned newer
modules, and 25% on existing modules.

2.3 Case studies

The choice of the case studies was based on the recognized, objective success of
one of the systems (Wine), while the second analyzed system (Arla) seems to have
suffered from an inability of recruiting new developers, and achieved a much smaller
overall size. Both of them have been used in the past for other empirical case studies,
and their development style and growth pattern have been extensively studied.

The authors recognize that the two systems have two very different application
domains: Wine is a tool to run Windows applications on Linux and other operating
systems, while Arla is a networked file system. The main objective of the present
study was not to evaluate the exogenous reasons behind successfully recruiting
projects (like the presence of recognized “gurus” in a project, the good reputation of
the existing community, etc [9]). On the contrary, this study focuses on evaluating the
presence of three different stages in successful projects. The research presented here
proposes a theoretical framework for OSS projects, independently from their domain,

and empirically evaluates the
mechanisms of forming a
community around OSS projects.

The choice of the information
sources was restricted to two
classes of items, the CVS
commits and the ChangeLog

1 Lines of code produced are biased by the skills of the developer, the programming
language and, in general, the context of the modifications.

Table 1: summary of information in the two systems.

6 Andrea Capiluppi1, and Martin Michlmayr2

records. The CVS repository of Arla was found to be incomplete, since it does not
contain the complete evolution history of the project. This is probably due to the fact
that the CVS has been adopted at some point after the project's first inception. It was
also observed that the CVS server of Wine is inaccurate: a query for active
developers shows only 2 committers, against a much larger number of developers
found in the ChangeLog records. That probably means a restriction in the write
access to the Wine CVS. ChangeLogs were therefore preferred over CVS logs.

As a means to characterize the two systems, Table 1 displays some basic
information about their ChangeLog files, the time span, and the amount of distinct
developers which were found actively contributing to the project.

3 Results and discussion of the phases

In the following section, the two research questions are discussed, and the three
phases (cathedral and bazaar, separated by a transition phase) as presented in [29] are
evaluated, based on the empirical data from the case studies. Apart from this
evaluation, it is also planned to identify some practical actions that OSS developers
should consider in order to enhance the evolutionary success of their projects, and to
ease the transition between the cathedral and the bazaar phases.

3.1 The cathedral phase

One of the main differences between closed, traditional software and OSS
development is the ownership of the code. In the first environment, the development
is typically driven by a team of individuals, while users do not contribute to, nor
access the source code. In the latter, potentially everyone has the right to access and
modify the source code underlying an application. It is argued that a typical OSS
system will follow a cathedral approach in its first evolution history.

Arla system – input: Figure 2 (left) shows the distribution of distinct
developers per month in the Arla system. Even though a sum of over 80 developers
have contributed code, patches and fixes to the project (see Table 1), the number of
distinct developers working on the development each month is much lower: on
average only about five distinct developers work on the code base each month. As
stated above, the first research question is not confirmed by the empirical findings: in
the Arla project, the evolution of distinct, active developers in a month shows a
regular, constant pattern.

Arla system – output: Figure 2 (right), on the contrary, shows the amount of
distinct modules and subsystems that Arla developers have worked on since its
inception: the distribution is fairly regular, and that could mean that new developers,
when joining the project, are not expanding it into new areas, but that they rather
work on existing functionality, together with the core developers. This will be tested
in the section dedicated to the transition phase. These output findings, i.e. a constant,
not growing pattern in output produced, confirm that the first research question does
not apply for the Arla system.

From the Cathedral to the Bazaar 7

While these findings do not necessarily imply that Arla is a failure compared to
Wine (as in the overall amount of developers from Table 1), it raises some interesting
questions: for instance, it should be studied why only a small, but constant, number
of developers is contributing code. As a possible explanation of its (reduced) success
in recruiting new developers, one could argue that the system could be perceived as
mature already [8], and that little further work was needed. Similar problems have
been observed in the past for the OpenOffice.org and Mozilla systems: they represent
two extremely complex applications and required a huge investment in the study,
before developers could actually contribute directly.

In the next sections, practical guidelines will be evaluated on how an OSS system
could tackle the issues faced by the Arla project, and in order to benefit of the efforts
of a larger pool of developers.

3.2 Bazaar phase

The aim of many OSS projects is to reach a stage where a community of users
can actively contribute to its further development. Some of the key characteristics of
the bazaar phase are visualized in Figure 3, and can be summarized as follows:
• Contributions: the bazaar style makes source code publicly available and

contributions are actively encouraged, particularly from people using the software.
Contributions can come in many different forms and at any time. Non-technical
users can suggest new requirements, write user documentation and tutorials, or

Figure 2: Development input (left) and output produced (right) in Arla

Figure 3: Detailed bazaar phase

8 Andrea Capiluppi1, and Martin Michlmayr2

point out usability problems (represented as low-level "itches" in Figure 3);
technical users can implement features, fix defects and even extend the design of
the software (the high-level "itches" of Figure 3).

• Software quality: increased levels of quality comes from thorough, parallel
inspections of the software, carried out by a large community of users and
developers. These benefits are consistent with software engineering principles: the
`debugging process' of a OSS project is synonymous with the maintenance phase
of a traditional software lifecycle.

• Community: a network of users and developers review and modify the code
associated with a software system. The old adage “many hands make light work”
is appropriate in describing the reasons for the success of some OSS projects [27].
Wine system – input: From the empirical standpoint, Figure 4 (left) shows the

distribution of distinct developers per month in the Wine system. In total, over 800
developers have contributed code, patches and fixes (Table 1). Even though this
project has a longer time span, which could have facilitated the growth of a
developers basis, a clear distinction between a first phase (cathedral) and a later
phase (bazaar) can be identified in the number of developers. Around July 1998, the
Wine system has undergone a massive evolution in the number of distinct developers
involved in the project. The sustainability of this new bazaar phase is demonstrated
by the further, continual increasing number of new distinct developers in the Wine
system. The first research question finds an empirical evidence analyzing the Wine
system, a growing pattern of active developers signals the presence of the bazaar

phase. The sustainability of the input process is visible in the ever-changing amount
of distinct developers which participate in the evolution of the system.

Wine system – output: The bazaar phase is characterized by an open process
in which input from volunteers defines the direction of the project, including the
requirements. The initial implementation is mainly based on the requirements of the
project author. In the bazaar phase, projects benefit from the involvement of a diverse
range of users (with different requirements) who work together to increase the
functionality and appeal of the software.

This parallel development behavior is achieved successfully in the Wine project.
During the investigation of this system, the evolving scope of the project became
apparent through the amount of distinct modules which developers work on each
month. Figure 3 (right) shows the amount of distinct modules and subsystems that
developers have worked on since its inception: the distribution is growing abruptly

Figure 3: Development input (left) and output produced (right) in Wine

From the Cathedral to the Bazaar 9

around the same time when an increase of distinct authors is observed Figure 3,
right). This means that the project, with new developers joining constantly, is actively
expanding it into new areas. The growing pattern of active developers sustains a
growing pattern of output produced: as above, the first research question helps
signaling the presence of the bazaar phase when such a growing pattern occurs.

3.3 Transition phase – defining new avenues of development

The theoretical framework represented in Figure 1 assigns a fundamental role to
the transition phase, since it requires a drastic restructuring of the project, especially
in the way the project is managed. One important aspect is commencing the
transition at the right time. This is a crucial step and a hurdle many projects fail to
overcome [11]. Since volunteers have to be attracted during the transition, the
prototype needs to be functional but still in need of improvement [17, 28, 2].

If the prototype does not have sufficient functionality or stability, potential
volunteers may not get involved. On the other hand, if the prototype is too advanced,
new volunteers have little incentive to join the project because the code base is
complex or the features they require have already been implemented. In both cases,
adding future directions to the system could provide potential new developers further
avenues for the development.

Based on the second research question, new developers, when joining a software
project, tend to work on new modules, rather than old ones. As a consequence, the
core developers should expand the original system into new directions and provide
new code to work on: this would foster the recruitment of new developers and

facilitate the transition phase.
To evaluate this question, an

experiment was designed: at first, the
newly added modules were extracted in
every month. In parallel, the amount of
new developers was also extracted.
Finally, what new developers worked on
was defined as the percentage of new
modules they handled: Figure 4
graphically summaries this process.

The empirical results were extracted
for the two systems Arla and Wine and are
displayed in a box-plot, spanning all the

releases for the two systems. Figure 8 is a description, on a percentile basis, of the
modules as handled by newest developers.

Transition achieved – Wine: this system reveals that new developers, when
joining the project, tend to work more easily on new modules than on older ones. In
fact, more than 50% (on average) of what they work on is newly added in the same
month, either by themselves or the core developers (right boxplot of Figure 5). Also,
the average value of the boxplot was found to be larger when considering only the
`bazaar' phase of Wine.

Figure 4: Design of research question 2.

10 Andrea Capiluppi1, and Martin Michlmayr2

This first result is confirmed by plotting the amount of new modules created by
the developers (Figure 5, right). A growing pattern is detected, similar to the one
observed in the global evolution of the system (Figure 3): new developers join in,
working on newest parts of the code, while core developers sustain the community of

the project by continuously adding
new modules.

Transition not achieved –
Arla: this second system provides a
much more interesting box-plot: the
tendency of new developers is clearly
towards working on something new,
rather than on old modules (left
boxplot of Figure 5). The main
difference with the Wine project is
that, for most of the periods, there are
no new developers joining in the Arla
development. Based on the

assumptions of the second research question, new developers still prefer to start
something new, or work on newly added code: still, this project could not ease the
transition phase by not recruiting new developers. Therefore, it is possible to
conclude that the original developers in Arla failed in providing new directions for
the system, by creating new modules or subsystems. This conclusion is backed by the
amount of new modules created by the developers (Figure 6, left): a decreasing
pattern is detected, which confirms that new developers (and the community around
the project), albeit willing to work on the system, were not adequately stimulated by
the core developers.

In summary, considering the second research question stated above, we found
similar evidences for both the systems: when joining the development of an OSS
system, new developers tend to work on (i.e., add or modify) new modules rather
than old ones. As a proposed corollary to these results, the transition to a bazaar
phase should be actively sought by the core developers: potential new developers
should be actively fostered adding new ideas or directions to the project.

Figure 5: Description of effort for new developers

Figure 6: Creation of new modules in the Arla and Wine systems

09
/9

7

05
/9

8

01
/9

9

09
/9

9

05
/0

0

02
/0

1

10
/0

1

06
/0

2

02
/0

3

10
/0

3

07
/0

4

03
/0

5

11
/0

5

07
/0

6

0

5

10
15

20

25

30

35
40

45

50

55

Arla - insertion of new modules

Month

06
/9

3

10
/9

4

02
/9

6

07
/9

7

11
/9

8

04
/0

0

08
/0

1

12
/0

2

05
/0

4

09
/0

5
0

20

40

60

80

100

120

140

160

Wine - insertion of new modules

Month

From the Cathedral to the Bazaar 11

4 Related work

In this section the present work is related to various fields, specifically empirical
studies on software systems and effort evaluation. Since this work is in a larger
research context, related to the study of the evolution of OSS systems, empirical
studies of OSS are also relevant to this research.

The earliest studies of the evolution of software systems were achieved through
the proprietary operating system OS/360 [4]. The initial studied observed some 20
releases of OS/360, and the results that emerged from this investigation, and
subsequent studies of other proprietary commercial software [20], included the SPE
program classification and a set of laws of software evolution.

The present research has been conducted similarly, but evaluating both the input
(as effort) provided, and the output (as changes made to the code base) achieved. The
research questions which this paper is based upon derives from [29], and is based on
the presence of two distinct phases in the software lifecycle of OSS systems, namely
the cathedral phase and the bazaar phase [28]. This in contrast with Raymond's
suggestion that the bazaar is the typical style of open source projects [15, 28]: an
empirical evaluation was achieved by studying the lifecycle of two large free software
projects, of which only one has made the transition to the bazaar phase and attracted
a large community of developers. It is believed by the authors that too much
emphasis has been put on highly popular projects in the past which are not
necessarily representative of the OSS community as a whole [13, 15, 16, 26]. Few
projects make a transition to the bazaar, attracting a large and active developer
community along the way.

Having a large bazaar surrounding a project has several advantages, such as the
ability to incorporate feedback from a diverse base of users and developers.
Nevertheless, this is not to say that projects which are not in the bazaar phase are
necessarily failures – they neither have to be unsuccessful nor of low quality.

Interestingly enough, in contrast to Raymond's model, there are a number of
applications, such as GNU coreutils and tar, which form a core part of every Linux
system and which clearly follow the cathedral. Similarly, there are many projects
entirely developed by a single, extremely competent developer which show high
levels of quality. Due to the lack of better theories and empirical research, quality in
OSS projects is explained through the bazaar with its peer review [1, 26, 28].
However, not every project with high quality actually exhibits a large bazaar and
significant peer review.

A project in the cathedral phase can be highly successful and of high quality [31].
However, there are some restrictions a project in the cathedral phase faces as well as
a number of potential problems which are less severe if the project had a large
developer community. For example, while it is possible for a single developer to
write an application with a limited scope (such as a boot loader), only a full
community can complete a project with a larger scope (such as a full desktop
environment). Furthermore, a project written by one developer may be of high
quality but it also faces a high risk of failure due to the reliance on one person who is
a volunteer [23, 25]. Having a large community around a project makes the project
more sustainable.

12 Andrea Capiluppi1, and Martin Michlmayr2

This discussion shows the lack of research in a number of areas related to OSS
projects. While a uniformed model for all OSS projects has been assumed in the past,
it is increasingly becoming clear that there is a great variety in terms of development
processes [9, 19, 14]. Better theories about success and quality in OSS projects are
needed [24], as are further comparisons between projects with different levels of
success and quality. Finally, it should not be assumed that the bazaar is necessarily
the optimal phase for every project, or that it is not associated with any problems.
There is a general assumption that it is beneficial for a OSS project to be open, but
too much openness can also be harmful when it leads to incompetent developers or
people who demotivate important contributors getting involved [9].

5 Conclusions and future work

Successful OSS projects have been studied and characterized in the past, but an
empirical demonstration on how they achieved their status has not been proven yet. In
order to tackle this missing link, this paper has presented an empirical exploration of
two OSS projects, Arla and Wine, to illustrate different phases in their lifecycle, their
development processes and the communities which formed around them. Their
ChangeLog records were analyzed and all the changes and additions, performed by
the developers over the years, were recorded.

The assumption underpinning this paper is that the `cathedral' and `bazaar'
phases, as initially proposed and depicted by Raymond in [28], are not mutually
exclusive: OSS projects start out in the cathedral phase, and potentially move to a
bazaar later. The cathedral phase is characterized by closed development performed
by a small group or developer, with much in common with traditional software
development. The bazaar phase exploits a larger number of volunteers who
contribute to the development of the software through defect reports, additional
requirements, bug fixes and features. The transition between the two phases was
argued to be by itself a phase too, which has to be accommodated by specific, active
actions of the core developers or project author. It was also argued that this transition
is a necessary factor for truly successful and popular projects.

A first research question has proposed the study of the difference between the
cathedral and the bazaar phases: the first system (Arla) has remained, through its
lifecycle, an effort of a limited number of developers, or in a cathedral phase. It was
also argued that this should not be interpreted as a sign of the overall failure of an
OSS project, but as a potentially missed opportunity to establish a thriving
community around a project. On the contrary, the second system (Wine) only shows
an initial phase that is similar to what observed in the Arla system: a second, longer
phase (bazaar) has a growing amount of active developers and a continuous
expansion of the system.

Through a second research question, the focus was moved to the preferences of
new developers joining an OSS project: results on both the systems show that new
developers prefer to work on newly added modules, rather than older ones. In the
Wine system, existing developers eased the transition phase by adding many new
modules which new developers could work on. On the other hand, new developers in

From the Cathedral to the Bazaar 13

Arla, although eager to work on new code, were not yet given enough new directions
of the project, and an overall poor ability in recruiting new developers was resulting.

The future work has been identified in a replication of the study with other OSS
projects, especially those belonging to the same application domain: the results as
obtained in this study have analyzed the creation of a community from a neutral point
of view, that is, without considering exogenous drivers. Our next step is to introduce
these drivers into the research, and analyze large projects which currently compete
with each other for the scarce resource of developers.

References

[1] A. Aoki, K. Hayashi, K. Kishida, K. Nakakoji, Y. Nishinaka, B. Reeves, A. Takashima, and
Y. Yamamoto. A case study of the evolution of jun: an object-oriented open-source 3d
multimedia library. In Proceedings of the 23rd International Conference on Software
Engineering, pages 524-533, Toronto, Canada, 2001.

[2] B. Arief, C. Gacek, and T. Lawrie. Software architectures and open source software –
where can research leverage the most? In Proceedings of the 1st Workshop on Open Source
Software Engineering, Toronto, Canada, 2001.

[3] R. Austen and G. Stephen. Evaluating the quality and quantity of data on open source
software projects. In Proceedings of 1st International Conference on Open Source Systems,
Genova, Italy, June 2005.

[4] L. A. Belady and M. M. Lehman. A model of large program development. IBM Systems
Journal, 15(3):225-252, 1976.

[5] M. Bergquist and J. Ljungberg. The power of gifts: Organising social relationships in open
source communities. Information Systems Journal, 11(4):305-320, 2001.

[6] A. Capiluppi. Models for the evolution of OS projects. In Proceedings of International
Conference on Software Maintenance, pages65-74, Amsterdam, Netherlands, 2003.

[7] A. Capiluppi, P. Lago, and M. Morisio. Evidences in the evolution of OS projects through
changelog analyses. In Proceedings of the 3rd Workshop on Open Source Software
Engineering, Portland, OR, USA, 2003.

[8] A. Capiluppi, M. Morisio, and J. F. Ramil. Structural evolution of an open source system:
A case study. In Proceedings of the 12th International Workshop on Program
Comprehension (IWPC), pages 172-182, Bari, Italy, 2004.

[9] K. Crowston and J. Howison. The social structure of free and open source software
development. First Monday, 10(2), 2005.

[10] M. Fischer, M. Pinzger, and H. Gall. Populating a release history database from version
control and bug tracking systems. In Proceedings of International Conference on Software
Maintenance, pages 23-32, Amsterdam, Netherlands, 2003.

[11] K. F. Fogel. Open Source Development with CVS. The Coriolis Group, Scottsdale,
Arizona, 1st edition, 1999.

[12] D. M. German. An empirical study of fine-grained software modifications. pages 316-
325, Chicago, IL, USA, 2004.

[13] D. M. German. Using software trails to reconstruct the evolution of software. Journal of
Software Maintenance and Evolution:Research and Practice, 16(6):367-384, 2004.

[14] D. M. German and A. Mockus. Automating the measurement of open source projects. In
Proceedings of the 3rd Workshop on Open Source Software Engineering, Portland, OR,
USA, 2003.

14 Andrea Capiluppi1, and Martin Michlmayr2

[15] M. W. Godfrey and Q. Tu. Evolution in open source software: A case study. In
Proceedings of the International Conference on Software Maintenance, pages 131-142, San
Jose, CA, USA, 2000.

[16] J. Howison and K. Crowston. The perils and pitfalls of mining SourceForge. In
Proceedings of the International Workshop on Mining Software Repositories (MSR 2004),
pages 7-11, Edinburgh, UK, 2004.

[17] K. Johnson. A descriptive process model for open-source software development. Master's
thesis, Department of Computer Science,University of Calgary, 2001.
http://sern.ucalgary.ca/students/theses/KimJohnson/thesis.htm

[18]N. Jørgensen. Putting it all in the trunk: Incremental software engineering in the FreeBSD
open source project. Information Systems Journal, 11(4):321-336, 2001.

[19] S. Koch and G. Schneider. Effort, cooperation and coordination in an open source
software project: GNOME. Information Systems Journal, 12(1):27-42, 2002.

[20] M. M. Lehman and L. A. Belady, editors. Program evolution: Processes of software
change. Academic Press Professional, Inc., San Diego, CA, USA, 1985.

[21] L. Lopez, J. G. Barahona, I. Herraiz, and G. Robles. Applying social network analysis
techniques to community-driven libre software projects. International Journal of
Information Technology and Web Engineering, 11(4):321-336, 2006.

[22] T. Mens, J. F. Ramil, and M. W. Godfrey. Analyzing the evolution of large-scale software:
Guest editorial. Journal of Software Maintenance and Evolution, 16(6):363-365, 2004.

[23] M. Michlmayr. Managing volunteer activity in free software projects. In Proceedings of
the 2004 USENIX Annual Technical Conference, FREENIX Track, pages 93-102, Boston,
USA, 2004.

[24] M. Michlmayr. Software process maturity and the success of free software projects. In K.
Zielinski and T. Szmuc, editors, Software Engineering: Evolution and Emerging
Technologies, pages 3-14, Krakow, Poland, 2005. IOS Press.

[25] M. Michlmayr and B. M. Hill. Quality and the reliance on individuals in free software
projects. In Proceedings of the 3rd Workshop on Open Source Software Engineering, pages
105-109, Portland, OR, USA, 2003.

[26] M. Michlmayr, F. Hunt, and D. Probert. Quality practices and problems in free software
projects. In M. Scotto and G. Succi, editors,Proceedings of the First International
Conference on Open Source Systems, pages 24-28, Genova, Italy, 2005.

[27] A. Mockus, R. T. Fielding, and J. D. Herbsleb. Two case studies of open source software
development: Apache and Mozilla. ACM Transactions on Software Engineering and
Methodology, 11(3):309-346, 2002.

[28] E. S. Raymond. The Cathedral and the Bazaar. O'Reilly & Associates, Sebastopol, CA,
USA, 1999.

[29] A. Senyard and M. Michlmayr. How to have a successful free software project. In
Proceedings of the 11th Asia-Pacific Software Engineering Conference, pages 84-91,
Busan, Korea, 2004. IEEE Computer Society.

[30] N. Smith, A. Capiluppi, and J. F. Ramil. Agent-based simulation of open source
evolution. Software Process: Improvement and Practice, 11(4):423-434, 2006.

[31] I. Stamelos, L. Angelis, A. Oikonomou, and G. L. Bleris. Code quality analysis in open-
source software development. Information Systems Journal, 12(1):43-60, 2002.

[32] L. Torvalds. The Linux edge. In C. DiBona, S. Ockman, and M. Stone, editors, Open
Sources: Voices from the Open Source Revolution, pages 101-111. O'Reilly & Associates,
Sebastapol, CA, USA, 1999.

http://sern.ucalgary.ca/students/theses/KimJohnson/thesis.html

