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Abstract: In this paper a comparative study of two pump control schemes for
suppressing transient gain excursions in EDFA’s is presented. The first
control scheme is based on the traditional feedforward/feedback control,
while the second scheme is new and uses multiplication to combine the
feedforward and feedback blocks. The controller parameters are designed
using linearised (small-signal) EDFA model derived from the nonlinear
state-space model of Bononi and Rusch. When the controller design is
applied to the nonlinear EDFA plant, the new scheme is shown to display
some important performance improvements over the traditional scheme.

1. INTRODUCTION

Erbium-doped fibre amplifiers (EDFA’s) are widely used in multi-
channel optical communications systems based on the wavelength-division
multiplexing (WDM) technology. The EDFA’s are usually operated in deep
saturation so that high output powers are achieved. As a consequence, the
gain provided by the EDFA to each channel is susceptible to changes in the
total input signal power. Transient gain excursions in the surviving
channels adversely affect the quality of service that the optical network
operators can guarantee [1,2], and these unwanted gain excursions need to
be mitigated. In literature, there is a large body of work reported on the
transient control of EDFA’s (see for example [3—8]). The approaches taken
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generally fall into one of the following three groups: pump control [3-5],
link control [6] and all-optical control [7,8]. In the work reported in this
paper, two schemes for implementing the transient control of EDFA’s
based on the pump control approach are compared. Both schemes use the
closed-loop control architecture of Figure 1 but the difference between the
two schemes is in the type of the pump-control block in Figure 1. The two
types of the pump-control block are:

* Multiplicative type, where P (1)=U ;(t)(1+U , (1))
e Additive type, where P)" (£) =U ; (£) + U (1)

The additive pump-control block represents the traditional way of
combining the feedforward and feedback blocks in the transient control of
EDFA’s (see for example [3]). The transient control of EDFA’s using the
closed-loop architecture with the multiplicative pump-control block is
investigated for the first time in this paper.
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Figure 1. Using measurements of the total input signal power and the total output signal
power, the control architecture produces the necessary pump power to maintain the EDFA
gain constant. 4, is the desired gain, P‘_"" (¢) and P*(¢) are the total input and output
signal powers, respectively, and Pp' "(¢) is the EDFA’s input pump power.
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The feedforward block in Figure 1 realises the following function:
Uy()=K P"(1)+ 0y 6))

For each input signal power there is a corresponding pump power
P,ﬁ" (t)=K;fPS"’l (t)+0;f that maintains the EDFA gain constant (this fact
was utilised in the early successful implementation of the feedforward
approach in [5]). The drawback of the feedforward approach is that in
practical implementations the exact feedforward parameters K;f and 0;7
depend on the EDFA’s operating environment. The chosen feedforward
parameters K , and O are thus unlikely to produce the exact required
pump power [3], and some form of feedback is necessary to provide a
corrective action. The feedback block in Figure 1 contains a proportional-
integral (PI) controller:

Ugy(t) =K e(r) +K, J:e(z')dr )

The PI controller reduces the error e(f) to zero in steady state (this is
achieved by the integral action [9]) and can be designed to minimise the
transient overshoots and undershoots in the output signal power response.

The nonlinear blocks of the closed loop of Figure 1 are the feedforward
block, pump-control block (when it is of the multiplicative type) and the
EDFA itself. The controller parameters K 7o Oﬂ , K » and K, are designed
based on linear approximation of the closed-loop system of Figure 1. The
controller design is then applied to the nonlinear closed-loop system and
the performance of the two schemes is compared.

In the remainder of this report, the design approach is presented for the
closed-loop system that includes the multiplicative pump-control block. A
similar analysis can also be done for the system with the additive pump-
control block but is not included here. Instead, important differences
between the two systems are highlighted. An important assumption in the
modelling of the EDFA is that the EDFA gain does not vary significantly
with wavelength, and hence the total input and output signal power
measurements yield sufficient information to keep the gain of each
individual channel constant.
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2. LINEARISATION OF LOOP COMPONENTS

Under the assumption that the spectral dependence of the EDFA gain is
minimal, the EDFA can be modelled by the following nonlinear state-space
model [10]:

dr _r B.r—A, in B,r-4, in
E_—-r—+(l—e ) (t)+(l—e )Pp )
Psaut (t) - Psin (t)eB_\.r—A_\. (3)

P"(¢) and P (t) are the total input and output signal powers,
respectively, P;” (¢) is the input pump power, » and 7 are the total number
and the mean lifetime of excited erbium ions, respectively, and B, , B,, 4,
and A, are dimensionless constant parameters.

When forming linear approximations of the feedforward block, pump-
control block and the EDFA, the input, state and output variables of these
blocks are treated as small perturbations around their steady-state values
(i.e. a variable x(¢) is treated as x, + 0x(¢)). The linearisation procedure
follows that presented in [9], and involves keeping only the linear terms
from the Taylor series expansion of nonlinear functions. The Laplace-
domain linearised model for the nonlinear blocks of the closed loop of
Figure 1 is given below.

7 r—A. B,r,—A
PS'geB"r" »‘Bs(l—e 10 p)

in _B.ry—A, in Byr—4
s+1/t+Pge” B +Pje™”" "B

SP™(s)= 8P, (s)
p
s+1/r+P"B + PP .
s 0F()
s+1/z+Pge™ "B +Pye" "B

+eerD -4

p
Q i a,s +aq, ;

0 —=2—§P"(s) + ——0 5P

s+b, » ) s+b, ° ()

0G,, ()P (s)+ G, (s)5P" (s)
68U ;(s)=K ;6P (s)
8P ()=U g8U () + U 4o0U 4, (s)
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3. CHARACTERISTICS OF LINEARISED CLOSED
LOOP

The linear approximation of the closed loop in Figure 1 is shown in
Figure 2, where the transfer function of the PI controller is
C(s)=K,+K,/s.

8P (s)
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U] 6o |
& 5P ()t & 5P (s)
3O 6 6 O

Figure 2. Linear approximation of the closed loop in Figure 1

The transfer function between the input signal perturbation and the
output signal perturbation is:

o[ Ko (0/53)-(00/5))),
() =2 _ 4 4 Py +(05/Ky)
SP™(s) 57+ (by + U oK, ) s + U oK,
. U oK ;s + ayU oK 5)

57 +(By + U yoK,, )5+ U oK,

Whenever (O /K ;)= (O}f/K;f), which occurs either when there is
exact knowledge of the ideal feedforward parameters or when the actual
feedforward parameters are in error by an equal proportion, the poles and
zeros of T'(s) coincide and the transfer function reduces to T(s)= 4, . This
leads to an interesting observation, albeit of limited practical value, that the
perfect gain clamping can be achieved even if there are significant errors in
the feed-forward parameters, as long as these parameters are erroneous by
the same proportion. This is not the case when the pump-control block of
Figure 1 is of additive type, as it can be shown that the perfect gain
clamping is only obtained when the ideal feed-forward parameters are
known exactly.
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4. CONTROLLER DESIGN AND PERFORMANCE
EVALUATION

For any fixed K, and O, sufficient degrees of freedom exist in the
controller to allow K, and K; to achieve any desired natural frequency
o, and damping & of the second-order transfer function (5). Similarly, for
the closed-loop system that contains the additive pump-control block, it can
be shown that for any fixed K, and Oy, K, and K; can be adjusted to
produce any @, and & of the transfer function of the linearised closed
loop. In order to compare the performances of the system with the
multiplicative pump-control block and the system with the additive pump-
control block, a reasonable error is introduced in the feedforward
parameters (K, = 2.2K;7 and Oy = O.SO;f) and K, and K; are adjusted
in each system to produce @, =1x10" rad/s and & =0.707 . The controller
design is then applied to the nonlinear closed loop, and the performance
comparisons are based on the signal gain and input pump power responses
of the nonlinear closed loop.

From Figure 3, the closed-loop system that uses the multiplicative
pump-control block is seen to be more effective in minimising the transient
gain excursions. The gain excursions are minimal in spite of reasonable
input signal power changes and errors in the feedforward parameters.

From Figure 4, it can be seen that when the additive pump-control block
is used, the controller can request a negative pump power during the
transient period. As this is not physically possible, an additional element is
added to the system that clamps the EDFA’s input pump power at zero
anytime the controller requests a negative pump power. A detrimental
effect of the pump power clamping on the transient response is seen in
Figure 3, as the largest overshoot/undershoot is observed for the case when
the pump power is clamped at zero during the transient period. From Figure
4, it appears that the system with the multiplicative pump-control block is
much less likely to produce a negative pump power requirement (compare
the curves in Figure 4 for P,(new)=0.3mW ).

In Figure 4, the system with the multiplicative pump-control block is
also seen to produce smaller transients in the input pump power. This last
property is very desirable in practical implementations, as the pump lasers
may not be able to produce the high initial powers that the system with the
additive pump-control block requests.

From Figure 3 and Figure 4, it can be seen that a close agreement is
achieved between the responses of the nonlinear and linearised closed
loops. This observation justifies the approach taken to design the controller
by linearising the closed loop first.
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Figure 3. Transient gain excursions after the input signal power is abruptly switched from
1.0mW to a new value. When the pump-control block is multiplicative, the curves for
P (new) =4.0mW and P (new)=2.0mW are almost indistinguishable on this plot.
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Figure 4. Transient input pump power adjustments after the input signal power is abruptly
switched 1.0mW to a new value. When the pump-control block is additive, the curve for
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P (new) = 0.3mW reveals that the controller requested a negative pump power (when this
happened, an in-loop limiter clipped the input pump power at zero).
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S. CONCLUSIONS

From the simulation results presented in this paper, it is evident that the
new scheme that uses multiplication to combine the feedforward and
feedback blocks has a superior transient performance than the traditional
scheme that uses addition. The new scheme is thus more attractive for
implementation purposes. Validation of these results on an EDFA hardware
platform is currently being conducted as part of this on-going research.
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