
TCP traffic analysis for timer-based burstifiers
in OBS networks

Kostas Ramantas1, Kyriakos Vlachos1, Óscar González de Dios2 and Carla Raffaelli3

1Computer Engineering and Informatics Dept., and Research Academic Computer
Technology Institute, University of Patras, Rio, Greece (email: kvlachos@ceid.upatras.gr)

2Telefónica I+D, Emilio Vargas 6, Madrid, Spain
 3Dep. of Electronics, Computer Science and Systems, University of Bologna, Italy

Abstract. The purpose of this paper is to assess the impact of timer-based burst
assembly algorithms for TCP traffic. We present an analysis for short, medium
and long assembly times and investigate segment and flow distribution over the
assembled bursts. Further, we also analyze their impact on the congestion
window evolution and on the effective throughput achieved. It has been found
out that short assembly times are ideally suitable for sources with small
congestion windows, allowing for a speed up, while large assembly times yield
a lower throughput variation among the individual assembled flows. For long
assembly times, the transfer of more segments from the same source is trading
off the increase of the burstification delay but no throughput gain is obtained.
However, large assembly times smooth out individual flow performance and
provide a significant lower variation of throughput. To this end, in this paper,
we propose a new adaptive burst assembly algorithm that dynamically assigns
flows to different burstifiers based on their instant window size.

Keywords: Optical burst switching, transport control protocol, burst assembly

1. Introduction
Optical burst switching (OBS) [1] has been introduced to combine both strengths of
packet and circuit switching and is the most promising technology for next generation
optical Internet. An OBS network consists of a set of optical core routers, with edge
routers at its edges that are responsible for the burst assembly/disassembly function.
In OBS networks, an optical burst is constructed at the network edge, from an integer
number of variable size packets. Two distinct burst assembly algorithms have been
proposed in the literature: the timer-based and the threshold-based. In the timer-based
method, also denoted as TMAX in the literature, [2], [3] a time counter starts any time a
packet arrives and when the timer reaches a time threshold (TMAX), a burst is created;
the timer is then reset to 0 and it remains so until the next packet arrival at the queue.
Hence, the ingress router generates periodically bursts, every TMAX time,
independently of the yielding burst size. In the second scheme, [4], a threshold is used
to determine the end of the assembly process. In most cases the threshold used is the
burst length denoted in the literature as BMAX. In that case, bursts are thought as
containers of a fixed size BMAX, and as soon as the container is completely filled with
data, the burst is transmitted.

The timer-based method limits the delay of packets to a maximum value TMAX but
may generate undesirable burst length, while the burst-length based method generates
bursts of equal size, but may result in long delays when the traffic load is light. To
address the deficiency associated with these assembly algorithms, hybrid (mixed
time/threshold based) assembly algorithms were proposed [5], where bursts are
created when either the time limit or the burst-size limit is reached, whichever
happens first. Apart from the aforementioned assembly schemes, other more complex
schemes have been also proposed, which are usually a combination of the timer -
based, and the threshold-based methods [6].

The performance of TCP over OBS networks has been studied in previous works
 [7]- [9] where it has been observed that the burst assembly process at the edge nodes
has a significant impact on the end-to-end performance of TCP, mainly because it
introduces an unpredictable delay, [10], that challenges the window mechanism used
by TCP protocol for congestion control. TCP performance is also challenged by the
burst lost ratio that results in multiple segment losses for multiple sources. A useful
insight on TCP traffic statistics is given in [11], [12]. In particular, it was found that
short assembly times yield a higher throughput to TCP sources primarily because they
reduce the total end-to-end delay associated with the round trip-time delay. Long
assembly times, are more efficient especially for fast TCP flows [11], since they allow
the transmission of multiple segments from the same flow per burst. However, this
throughput gain may be canceled by the large burstification delay.

In this paper, we present a thorough analysis of TCP traffic over OBS networks.
We first analyze how segments and flows are distributed over the assembled bursts
for various assembly times and further analyze their effect in the number of
transmitted and lost bursts per flow. It is shown that the short assembly times result in
a significant increase in the number of bursts needed for a transfer completion, while
for larger assembly times, this is relative constant. Furthermore, it is investigated how
congestion window increases and what its effect is in average throughput. We argue
in this paper that the characterization of a flow as slow, medium or fast depends on its
instant congestion window size and we show that a mix burst assembly timer, where
burstification delay varies with the size of the congestion window yields a higher
throughput together with a smaller variance. For the performance evaluation and
traffic analysis, we have developed a comprehensive and detailed TCP over OBS
simulator based on ns-2 tool, capable of simulating ~hundreds of active TCP sources
per edge node.

The rest of the paper is organized as follows. Section 2 provides an overview of
TCP variants and most suitable assembly schemes, whiles Section 3 presents a
flow/segment analysis of TCP traffic over OBS. Section 4 discusses the effect of
burstification delay on the congestion window expansion and the yielding throughput,
and finally Section 5 presents the performance of a new assembly scheme based on
the flow congestion window size.

2. Overview of TCP variants and aggregation schemes for OBS
networks

There are a number of TCP versions such as Tahoe, Vegas, Reno, New Reno and
SACK, combined with a number of different burst assembly strategies. The most
interesting are the three last ones. The main differences among them are the

algorithms that they employ when congestion is detected. TCP Reno refers to TCP
with Slow Start, Congestion Avoidance, Fast Retransmit and Fast Recovery
algorithms. When Reno starts, it enters the Slow Start phase first with a congestion
window of one segment size and an exponential increase, upon the acknowledgement
of all the packets transmitted. When the window reaches a certain threshold of w, it
enters the Congestion Avoidance phase, according to which the window is now
increasing only by one segment after all segments have been acknowledged.

In TCP Reno, there are two kinds of losses identified; the Time Out (TO) and
Triple Duplicate (TD) loss. In the Triple Duplicate (TD) case, the sender receives
three duplicates ACKs, that acknowledge a new segment, but not the one with the
highest sequence number. In that case TCP Reno enters the Fast Retransmit phase,
and starts transmitting the lost segments. For every successful transmission of these
segments, the sender halves its congestion window and receives a TD ACK message
for the next lost segment in the burst. In Reno, the maximum number of recoverable
segment losses in a congestion window without timeout is limited to one or two
segments in most cases. In the case of a Time Out (TO) loss case, no ACK is received
in a certain time period, denoted by the expiration of a timer. In that case TCP Reno
enters the Slow Start phase, and resets its window back to one segment size. TCP
New Reno is a slight modification according to which the sender retransmits one lost
segment per round-trip-time upon receiving a partial ACK message, without waiting
for a TD ACK and without halving its window until all lost segments are successfully
acknowledged.

On the other hand, SACK (Selective Acknowledgment) TCP implements a
different ACK message, where the non-contiguous set of data that have been received
are stored. To this end, the sender is aware of the lost packets which are transmitted
altogether. In that case the congestion window is halved, before linearly increasing
again. Detailed SACK performance in OBS networks is clearly superior, as shown in
 [11], since all the segments that were employed in a burst that was dropped can be
identified and subsequently retransmitted at the same round.

TCP’s performance (e.g., throughput) depends heavily on burst assembly time due
to the extra delay enforced (denoted as burstification delay). Therefore TCP
mechanism adjusts its window mechanism upon a burst transmission or reception and
thus timer-based assembly schemes may perform better than size-based algorithms.
For the timer (TMAX) threshold there could exist an optimal value that maximizes
throughput performance in a TCP over OBS network [11]. In [4], it has been shown
that optimal performance can also be achieved with an optimal burst length algorithm,
while in [6], it is shown that a dynamic assembly algorithm that adjusts the threshold
values (e.g., time, burst-length or both) according to traffic statistics can achieve an
even better performance.

3. Segment and Flow distribution
In this section, a segment and flow analysis of TCP traffic is presented when OBS

is used as the underlying transport technology. Work presented hereinafter concerns
TCP-SACK variant and timer-based assembly schemes that although it is the most
promising combination, very few works exist on providing an in-depth analysis of
how segments, flows and their parameters vary with burstification delay. We have
developed a dedicated TCP-over-OBS simulator using ns-2 platform capable of

simulating ~hundreds of active sources per edge node. Such a scenario is close to
reality, but requires significant amount of memory and CPU resources. We have
modified the raw ns-2 code to efficiently manipulate TCP flows and available CPU
resources. The experiments were carried out on the NSF network topology, with 8
edge and 6 core nodes, where each link was employing a single wavelength at
10Gbps. Access rate was set to 100Mbps, equal for all sources. TCP arrivals were
modeled with an exponential process with a mean of λ=50 flows/sec, while flow file
size was modeled with a Pareto distribution of p load and a minimum ON size of
40KByte. Using this set of metrics, it was possible to vary the TCP arrival rate and/or
the mean file size, and obtain measurements for a different number of active sources.
Fig. 1(a) displays the number of active sources at each edge node versus the average
file size for three different assembly timers namely 1, 5 and 10msec, while Fig. 1(b)
displays the corresponding burst loss ratio. Results shown hereinafter correspond to
the steady state (constant number of active sources) of the experiments, which took
place after 200sec of simulation time.

From Fig. 1(a), it can be seen that the number of active sources in the case of 5 and
10msec timer is close, while in the case of 1msec, it is 200 more for all flow sizes
above 600KB. It must be noted here that the number of active sources measured is a
dynamic parameter of the simulating experiment that can vary when burst losses
occur and thus we argue that this corresponds to a real, instant picture of the network
under study. An important issue noticed is that the simulating scenario was entering
the steady state much earlier in the case of 5 and 10msec timers, than in the case of
1msec.

In what follows we have selected a mean file size of 700KB, which corresponds to
a burst loss ratio of 2% and 600 or 800 active source respectively for 5, 10 and 1msec
timers. Using these as reference, we have measured two basic statistics; the
distribution of segments and the distribution of flows over the assembled bursts. Fig.
2 displays the cumulative density function (CDF) of (a) the number of segments and
(b) the number of different TCP flows per transmitted burst. The results shown
correspond to all the bursts transmitted in the network, for all source-destination pairs.
Fig. 2 provides a useful insight of how many TCP sources will experience a segment
loss from a single burst loss as well as how many segments will be lost. The exact
number of lost segments per source is the conjugate probability of Fig. 1(b), Fig. 2(a)
and Fig. 2(b).

0

200

400

600

800

1000

1200

1400

1600

200 400 600 800 1000 1200

Average TCP filesize

O
N

 T
C

P
so

ur
ce

s

Tmax=1ms
Tmax=5ms
Tmax=10ms 0

0,005

0,01

0,015

0,02

0,025

0,03

250 450 650 850 1050

Avg TCP file size (KB)

B
ur

st
 lo

ss
 r

at
io

Tmax =10ms
Tmax =5ms
Tmax =1ms

Fig. 1. (a) Number of simultaneous active TCP sources at each edge node versus average file
size. (b) Corresponding burst loss ratio.

(a) (b)

 The sharp increases in Fig. 2(a) are due to the finite access rate that does not allow
more segments to be sent within the burstification time delay. To this end, in the case
of 1msec assembly time up to 13 segments can be loaded onto a single burst,
independent of the flow window size. If TCP sources have more segments to send,
these are transmitted with a next burst. To this end, it can be easily derived that the
congestion window of a high number of sources is incompatible larger than the 1msec
assembly time. For larger assembly times, this sharp increase is shifted to higher
numbers of segments.

Furthermore from Fig. 2(b) and in the case of 1msec timer, it can be seen, that the
80% of the transmitted bursts employ segments from only 2 different sources, while
for 5 and 10msec, this increases to 4 and 6 respectively. To this end, it is clear that
large aggregation times may result in the transfer of a higher number of sources and
segments per burst that in turns may lead to smaller completion times, fewer bursts
generated but with the trade off that more sources will be potentially affected. The
latter is the side effect when upon a burst loss a higher percentage of sources (see Fig.
2(b) will face a multiple segment loss. Thus, more sources will halve their window
and then either time-out and enter a slow-start phase or try to recover from the loss
and linearly increase their window. However, at which point the network will balance
is still unknown but it is reflected in the segment and flow distribution, shown in Fig.
2 and the number of active sources, shown in Fig. 1.

We have also measured the actual number of bursts (transmitted and lost) per flow
which are necessary to complete a flow transfer. Fig. 3(a) and (b) shows the
corresponding cumulative density functions (cdf) for a single (randomly selected)
source-destination pair, independently of the flow size. The selection of a single
source-destination pair allows for fair conclusions since all bursts are transmitted over
the same network path and thus with the same round-trip-time delay and blocking
probability.

From Fig. 3, it is clear that small assembly times result in a significant increase in
the number of bursts needed to a complete a transfer, while the lost bursts per flow
vary much less. In particular, in the case of 1msec timer, 80% of the flows need on
average up to 80 bursts to complete their transfer, while only 40 and 34 are needed in
the case of 5 and 10msec respectively. The corresponding lost bursts are 5 and 4. Of
course the number of bursts needed to complete a transfer depends heavily on the

0

0,2

0,4

0,6

0,8

1

0 15 30 45 60 75 90 105 120
Segments per burst

%
 B

ur
st

s
(c

df
)

Tmax=1ms
Tmax=5ms
Tmax=10ms

0

0,2

0,4

0,6

0,8

1

1,2

1 3 5 7 9 11 13 15
TCP sessions per burst

%
bu

rs
ts

 (c
df

)

Tmax=1ms
Tmax=5ms
Tmax=10ms

Fig. 2. (a) Segment and (b) flow distribution over the transmitted bursts for 1, 5 and 10msec
burstifiers.

(a) (b)

amount of data to be transferred. Therefore, in Fig. 4, we have further analyzed the
transmitted and lost bursts per flow with respect to the corresponding flow size.

From Fig. 4(a), it can be seen that the number of transmitted bursts increase almost
linearly with flow size, while 1msec curve diverges rapidly. In particular, for the
maximum flow size of 2MB, 3.5 times more bursts are needed in the case of 1msec
timer. This was however expected, since the corresponding 80% of that bursts were
carrying less than 13 segments from only 2 flows at most. However, this does not
result to smaller throughputs or higher completion times, as shown in the next section.
The behavior of the number of lost bursts per flow size is similar (see Fig. 4(b)) but
the difference between the curves diverges at a smaller rate.

Based on the above analysis, we may conclude that small assembly times increase
the network overhead but potentially constrain individual flow performance due to
limited number of segments per flow per burst transmitted. The latter may result to
longer file transfer times that in turns leads to more flows remaining active. However,
on average burstification delay is by default smaller and thus it is expected that short
assembly time to result in higher throughputs as discussed in the next section. Further,
they may also result to less Time-Out events since it is unlikely a single flow to
employ its complete window onto a single (lost) burst. On the other hand, large
assembly times service more flows at a time, carrying more segments from each
individual flow. This smoothes out any traffic instabilities in the sense that individual
flow throughput is absorbed and diluted but however impose such a burstification
delay that constrain throughput performance.

To conclude, it is not yet clear if small aggregation times result in a higher
throughput or eventually in a worse performance, or if large assembly times are
capable of canceling the large burstification delay imposed. In the next section, we
investigate how throughput varies for an individual flow and how congestion window
expands.

0

0,2

0,4

0,6

0,8

1

1,2

0 50 100 150 200

Number of Bursts per session

%
 s

es
si

on
s

(c
df

)

Tmax=1ms
Tmax=5ms
Tmax=10ms

0

0,2

0,4

0,6

0,8

1

1,2

0 5 10 15 20
Lost bursts per session

%
se

ss
io

ns
 (c

df
)

Tmax=1ms
Tmax=5ms
Tmax=10ms

Fig. 3. Distribution of (a) number of bursts needed to complete a TCP session and (b) number of
lost bursts per session for 1, 5 and 10msec burstifiers for a single source-destination pair.

0

50

100

150

200

250

300

200 700 1200 1700 2200

TCP sources file size

B
ur

st
s

pe
r

 fl
ow

Tmax=1ms
Tmax=5ms
Tmax=10ms

0

1

2

3

4

5

6

7

8

200 700 1200 1700 2200
TCP sources file size

Lo
st

 b
ur

st
s

pe
r T

C
P

flo
w

Tmax=1ms
Tmax=5ms
Tmax=10ms

Fig. 4. Number of bursts needed to complete a TCP session and (b) number of lost burst per
session versus file size for 1, 5 and 10msec burstifiers for a single source-destination pair.

(a) (b)

(a) (b)

4. Efficient Throughput and Congestion Window expansion
In order to qualitatively investigate the performance of the different assembly

timers, we have measured the average throughput achieved along with its variance, its
maximum and minimum value. In general, TCP performance depends on the TCP
variant used in combination with the number of segments lost and further depends on
the flow access rate. A TCP source is characterized as slow, medium or fast,
depending on its access rate. From [11], it can be inferred that a flow with a slow
access rate (slow flow) must be accompanied with a small assembly time while flows
with a large access bandwidth (fast flows) with relatively larger assembly timers.
However, in most cases, access rate for all flows at the edge node is the same and
service is differentiated by other means.

Fig. 5(a) displays the average throughput and variance for all flows of a single
source-destination for different burstifiers, while Fig. 5(b) shows its maximum and
minimum value. From Fig. 5(a), it can be seen that there is no throughput gain for
large assembly times albeit delay first loss (DFL) gain is maximized [11]. This is also
clear by Fig. 5(b), where maximum throughputs higher than >60Mbps were measured
only for 1 and 5msec timers. As a result, flow transfer time increases with assembly
time and specifically, it was found to increase from 1.25sec for 1msec timer to 1.6sec
and 6,7sec for 10msec and 100msec respectively. However, performance (throughput)
variance drops also fast with assembly time (see Fig. 5a) and this is because
individual flow performance is diluted via the long burstification delay process. To
this end, we may argue that large assembly times can provide a higher notion of
fairness among the aggregated flows and smooth out any performance instabilities.

In order to further analyze this, we have measured the evolution of the congestion
window of three lossless flows transmitted over the same source-destination route and
with a similar file size. Fig. 6(a) displays in detail the rising edge of their congestion
window, while Fig. 6(b) displays the sequence number (modulo 132) of the
transmitted segments. The results shown correspond to 1msec (left column), 5msec
(middle column) and 10msec (right column) burstifiers.

0
2
4
6
8

10
12
14
16
18

0 20 40 60 80 100
Assembly Time (msec)

Th
ro

ug
hp

ut
 (M

pb
s)

0

10

20

30

40

50

60

70

80

Va
ri

an
ce

0

10

20

30

40

50

60

70

80

0 20 40 60 80 100
Assembly Time (msec)

M
A

X
th

ro
ug

hp
ut

 (M
bp

s)

0

0,1

0,2

0,3

0,4

M
IN

 th
ro

ug
hp

ut
 (M

bp
s)

Fig. 5. (a) Average and variance of throughput of all flows of a single source-destination pair
versus burst aggregation time. (b) Corresponding maximum and minimum values measured.

(a) (b)

From Fig. 6(a), it can be seen that the congestion window rises faster for 1msec
timer rather than for 5 or 10msec. In this particular case, a 500segment window is
reached within 0,171sec, while for 5 and 10msec timers in 0,290 and 0,38sec. The
highest speed up gain is noticed for a window increase from 1 to 100segments. This is
the result of a higher number of burst transmissions over the same time period. In
particular, in the case of 1msec, 6 bursts are transmitted within 0,15sec (see counts of
segment sequence number in Fig. 6(b), left column), while only 5 and 4 in the rest.

A significant finding is that the maximum instant throughput measured for all three
burstifiers was 92Mbps, and which was achieved when window size was
128segments wide for all cases. However this was obtained much faster in the case of
1msec, and thus the average yielding throughput was much higher. In particular,
average throughput was found to be 23Mbps whereas only 17 and 14Mbps in the
cases of 5 and 10msec timers. However, it must be clearly noted that the yielding,
instant throughput was equal for all three different timers and we may argue that the
resulting average throughput actually depends on the flow size and the burst per flow
losses.

A second important finding is that after having reached the maximum throughput
and before flow completion, instant throughput was constant to its maximum value
(92Mbps) only in the case of the 10msec burstifier. In the rest and especially for
1msec burstifier, this was instantly varying from 50Mbps to 90Mbps. This instability
was primarily due to fact that segment distribution over the assembled bursts was not
constant due to the short burstification delay. On the contrary, this was varying

0

100

200

300

400

500

51,7 51,95 52,2
time

w
in

do
w

 (l
os

sl
es

s
so

ur
ce

)

0

100

200

300

400

500

51,4 51,65 51,9

time

w
in

do
w

 (l
os

sl
es

s
so

ur
ce

)

0

100

200

300

400

500

57,85 58,1 58,35

Time (sec)

C
on

ge
st

io
n

w
in

do
w

 (l
os

sl
es

s
so

ur
ce

)

0

20

40

60

80

100

120

140

51,8 51,9

time
se

qu
en

ce
 m

od
 1

32

0

20

40

60

80

100

120

140

51,45 51,55

time

se
qu

en
ce

 m
od

 1
32

0

20

40

60

80

100

120

140

57,85 57,94

time

se
qu

en
ce

 m
od

 1
32

Time (sec)

Time (sec)

Fig. 6. (a) Congestion window evolution and (b) Sequence number of the transmitted

segments under identical timescales of three different, lossless flows with similar files sizes
for 1msec (left column), 5msec (middle column) and 10msec (right column) assembly times.

(a)

(b)

significantly and thus a steady segment per burst transmission rate could not be
obtained albeit the higher number of burst created.

It is therefore clear that measuring averaging throughputs is not indicative for TCP
performance. Further, a fixed assembly time does not provide maximum performance
but only optimal performance for individual flows with similar characteristics (i.e.
flow size, loss ratio, etc.). Large assembly times offer an advantage of carrying more
segments but only when flows can send more segments, otherwise they constrain
throughput performance. In order to truly enhance TCP performance, the instant
congestion window is a metric to be considered for determining the optimum
assembly time. For example, short assembly times should be applied to sources with a
relatively small congestion windows (<100segments), while larger timers to sources
with larger windows. In the next section, we analyze such a scheme and investigate its
performance gains.

5. Congestion Window-based Burst Assembly Scheme
In this section, we propose a new adaptive burst assembly scheme that assigns

different burstification delays to flows based on their congestion window size. In
particular, we define burst assembly time (BATT) as follows:

≤10
<≤5
<≤1

=
 windowcongestion Cifmsec

 segmentsC windowcongestion Bifmsec
 segmentsB windowcongestion 1ifmsec

TBAT

In our scheme, we propose the characterization of a flow as slow or medium, when
its instant congestion window is less than B or C segments wide and as a fast flow
when it is even higher. Thus, slow TCP flows with a congestion window of less than
B segments are aggregated together under 1msec delay. When their congestion
windows reach the limit of B segments, the flows are upgraded to medium rate flows
and their segments are assembled under a 5msec timer. Similarly, when their
congestion windows reach the C segments limit, these flows are upgraded again to
fast flows and their assembly time is increased to 10msec. In this way, each flow is
treated separately and thus upon a burst loss only the flows that will suffer from a
segment loss will be downgraded to medium flows or even to slow flows if they time
out.

The implementation of the proposed assembly scheme requires three different
queues per destination, one for each type of flow, as well as the communication of the
window size to the burstifier. Albeit the latter require a modification of the TCP
mechanism, we have implemented the scheme in ns-2 platform to particularly
measure the yielding throughput and variance for various B, C values. TABLE 1
summarizes our findings, where the performance of the simple cases of 1, 5 and
10msec burstifiers is also denoted for comparison. The cases with no B value means
that the intermediate transition to 5msec assembly is omitted. From TABLE 1, it can
be seen that best performance is obtained for B, C values of 32 and 100 segments. In
that case, average throughput is increased to 11Mbps, while variance is dropped
significantly to 50. This combination merges the optimum operation points of all three
cases providing fast transmission times for slow sources that are in an early slow-start
phase, medium rates for flows with up to 100 segments window size and slow
transmission rates, (large assembly delays) for the rest.

TABLE 1. Average throughput and variance for various combinations of the proposed
congestion-window based, burst assembly scheme

B C Average Throughput (Mbps) Variance
100 200 8,4 60
32 100 11,2 50
- 32 9,1 55
- 200 7,7 59

1msec 8,8 62
5msec 9,0 71

10msec 7,4 41

In the rest cases, performance either approximates the performance of 1msec
timer, when B is too high (B = 100, C = 200) or 10msec, when C is too high
(B = C = 200). However, best performance is obtained upon the optimum
combination of both values. It must be noted here however, that these depend on the
actual flow and segment distribution and thus can be different for different arrival
rates and burst loss ratios.

6. Conclusions
 In this paper, an analysis of TCP traffic over OBS networks was presented for

various timer-based burstifiers. It was found that short assembly times provide a
higher average throughput but result to a significant performance variation of the
individual aggregated flows. On the other hand, large assembly times are capable of
smoothing out performance differences but eventually lead to poor throughputs.
However, it was found that the yielding instant throughputs were the same in all cases
and large assembly times are beneficial only when there are pending segments to be
sent. Otherwise they delay burst transmission unnecessarily. In order to truly enhance
individual TCP performance, we proposed a mixed timer-based algorithm that assigns
flows to different timer-based burstifiers based on their instant window size. It was
found that short assembly times provides a significant performance speed up when
windows sizes are less than 100segments, and thus a mixed algorithm can combine
the advantages of both a fast throughput increase along with a low performance
variation among the individual flows.

Acknowledgments. This work has been supported by EC through the NoE E-
Photon/ONe+ project via the Joint Project on Optical Burst Switching (JP-B).

References
[1] C. Qiao and M. Yoo, J. High Speed Networks, vol. 8, no. 1, pp. 69–84, 1999.
[2] F. Callegati and L. Tamil, IEEE Commun. Lett, Vol 4, pp. 98-100, Mar. 2000.
[3] M. Düser and P. Bayvel, J. Lightwave Technol., vol. 20, pp. 574–585, Apr. 2002.
[4] V. Vokkarane, K. Haridoss, and J.P. Jue, in Proceeding of Opticomm, pages 125-136, 2002.
[5] X. Yu, Y. Chen, and C. Qiao, in Proc. Opticomm, 2002, pp. 149–159.
[6] X. Cao, J. Li, Y. Chen, and C. Qiao, in Proc. IEEE GLOBECOM, vol. 3, pp. 2808–2812, Nov. 2002,.
[7] M. Casoni, E. Luppi and M. Merani, in Proceedings of Workshop on Optical Burst Switching.
[8] S. Malik and U. Killat, in Proc. of ONDM, 2005.
[9] A. Detti and M. Listanti, in Proc. IEEE, INFOCOM 2002.
[10] M. Izal and J. Aracil, IEEE Globecom 2002, Taipei, Taiwan, November 2002.
[11] Xiang Yu et al. J. of Lightwave Technology, vol. 22, no. 12, pp. 2722 – 2738, Dec. 2004.
[12] Óscar González de Dios, Ignacio de Miguel, Víctor López, in Proceedings of ONDM 2005.

