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Abstract. The purpose of this paper is to assess the impact of timer-based burst 
assembly algorithms for TCP traffic. We present an analysis for short, medium 
and long assembly times and investigate segment and flow distribution over the 
assembled bursts. Further, we also analyze their impact on the congestion 
window evolution and on the effective throughput achieved. It has been found 
out that short assembly times are ideally suitable for sources with small 
congestion windows, allowing for a speed up, while large assembly times yield 
a lower throughput variation among the individual assembled flows. For long 
assembly times, the transfer of more segments from the same source is trading 
off the increase of the burstification delay but no throughput gain is obtained. 
However, large assembly times smooth out individual flow performance and 
provide a significant lower variation of throughput. To this end, in this paper, 
we propose a new adaptive burst assembly algorithm that dynamically assigns 
flows to different burstifiers based on their instant window size.  
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1.  Introduction 
Optical burst switching (OBS)  [1] has been introduced to combine both strengths of 
packet and circuit switching and is the most promising technology for next generation 
optical Internet. An OBS network consists of a set of optical core routers, with edge 
routers at its edges that are responsible for the burst assembly/disassembly function. 
In OBS networks, an optical burst is constructed at the network edge, from an integer 
number of variable size packets. Two distinct burst assembly algorithms have been 
proposed in the literature: the timer-based and the threshold-based. In the timer-based 
method, also denoted as TMAX in the literature,  [2], [3] a time counter starts any time a 
packet arrives and when the timer reaches a time threshold (TMAX), a burst is created; 
the timer is then reset to 0 and it remains so until the next packet arrival at the queue. 
Hence, the ingress router generates periodically bursts, every TMAX time, 
independently of the yielding burst size. In the second scheme,  [4], a threshold is used 
to determine the end of the assembly process. In most cases the threshold used is the 
burst length denoted in the literature as BMAX. In that case, bursts are thought as 
containers of a fixed size BMAX, and as soon as the container is completely filled with 
data, the burst is transmitted.  



The timer-based method limits the delay of packets to a maximum value TMAX but 
may generate undesirable burst length, while the burst-length based method generates 
bursts of equal size, but may result in long delays when the traffic load is light. To 
address the deficiency associated with these assembly algorithms, hybrid (mixed 
time/threshold based) assembly algorithms were proposed  [5], where bursts are 
created when either the time limit or the burst-size limit is reached, whichever 
happens first. Apart from the aforementioned assembly schemes, other more complex 
schemes have been also proposed, which are usually a combination of the timer -
based, and the threshold-based methods  [6].  

The performance of TCP over OBS networks has been studied in previous works 
 [7]- [9] where it has been observed that the burst assembly process at the edge nodes 
has a significant impact on the end-to-end performance of TCP, mainly because it 
introduces an unpredictable delay,  [10], that challenges the window mechanism used 
by TCP protocol for congestion control. TCP performance is also challenged by the 
burst lost ratio that results in multiple segment losses for multiple sources. A useful 
insight on TCP traffic statistics is given in  [11], [12]. In particular, it was found that 
short assembly times yield a higher throughput to TCP sources primarily because they 
reduce the total end-to-end delay associated with the round trip-time delay. Long 
assembly times, are more efficient especially for fast TCP flows  [11], since they allow 
the transmission of multiple segments from the same flow per burst. However, this 
throughput gain may be canceled by the large burstification delay.  

In this paper, we present a thorough analysis of TCP traffic over OBS networks. 
We first analyze how segments and flows are distributed over the assembled bursts 
for various assembly times and further analyze their effect in the number of 
transmitted and lost bursts per flow. It is shown that the short assembly times result in 
a significant increase in the number of bursts needed for a transfer completion, while 
for larger assembly times, this is relative constant. Furthermore, it is investigated how 
congestion window increases and what its effect is in average throughput. We argue 
in this paper that the characterization of a flow as slow, medium or fast depends on its 
instant congestion window size and we show that a mix burst assembly timer, where 
burstification delay varies with the size of the congestion window yields a higher 
throughput together with a smaller variance. For the performance evaluation and 
traffic analysis, we have developed a comprehensive and detailed TCP over OBS 
simulator based on ns-2 tool, capable of simulating ~hundreds of active TCP sources 
per edge node. 

The rest of the paper is organized as follows. Section  2 provides an overview of 
TCP variants and most suitable assembly schemes, whiles Section  3 presents a 
flow/segment analysis of TCP traffic over OBS. Section  4 discusses the effect of 
burstification delay on the congestion window expansion and the yielding throughput, 
and finally Section  5 presents the performance of a new assembly scheme based on 
the flow congestion window size. 

2. Overview of TCP variants and aggregation schemes for OBS 
networks 

There are a number of TCP versions such as Tahoe, Vegas, Reno, New Reno and 
SACK, combined with a number of different burst assembly strategies. The most 
interesting are the three last ones. The main differences among them are the 



algorithms that they employ when congestion is detected. TCP Reno refers to TCP 
with Slow Start, Congestion Avoidance, Fast Retransmit and Fast Recovery 
algorithms. When Reno starts, it enters the Slow Start phase first with a congestion 
window of one segment size and an exponential increase, upon the acknowledgement 
of all the packets transmitted. When the window reaches a certain threshold of w, it 
enters the Congestion Avoidance phase, according to which the window is now 
increasing only by one segment after all segments have been acknowledged.  

In TCP Reno, there are two kinds of losses identified; the Time Out (TO) and 
Triple Duplicate (TD) loss. In the Triple Duplicate (TD) case, the sender receives 
three duplicates ACKs, that acknowledge a new segment, but not the one with the 
highest sequence number. In that case TCP Reno enters the Fast Retransmit phase, 
and starts transmitting the lost segments. For every successful transmission of these 
segments, the sender halves its congestion window and receives a TD ACK message 
for the next lost segment in the burst. In Reno, the maximum number of recoverable 
segment losses in a congestion window without timeout is limited to one or two 
segments in most cases. In the case of a Time Out (TO) loss case, no ACK is received 
in a certain time period, denoted by the expiration of a timer. In that case TCP Reno 
enters the Slow Start phase, and resets its window back to one segment size. TCP 
New Reno is a slight modification according to which the sender retransmits one lost 
segment per round-trip-time upon receiving a partial ACK message, without waiting 
for a TD ACK and without halving its window until all lost segments are successfully 
acknowledged.  

On the other hand, SACK (Selective Acknowledgment) TCP implements a 
different ACK message, where the non-contiguous set of data that have been received 
are stored. To this end, the sender is aware of the lost packets which are transmitted 
altogether. In that case the congestion window is halved, before linearly increasing 
again.  Detailed SACK performance in OBS networks is clearly superior, as shown in 
 [11], since all the segments that were employed in a burst that was dropped can be 
identified and subsequently retransmitted at the same round.  

TCP’s performance (e.g., throughput) depends heavily on burst assembly time due 
to the extra delay enforced (denoted as burstification delay). Therefore TCP 
mechanism adjusts its window mechanism upon a burst transmission or reception and 
thus timer-based assembly schemes may perform better than size-based algorithms. 
For the timer (TMAX) threshold there could exist an optimal value that maximizes 
throughput performance in a TCP over OBS network  [11]. In  [4], it has been shown 
that optimal performance can also be achieved with an optimal burst length algorithm, 
while in  [6], it is shown that a dynamic assembly algorithm that adjusts the threshold 
values (e.g., time, burst-length or both) according to traffic statistics can achieve an 
even better performance.  

3. Segment and Flow distribution 
In this section, a segment and flow analysis of TCP traffic is presented when OBS 

is used as the underlying transport technology. Work presented hereinafter concerns 
TCP-SACK variant and timer-based assembly schemes that although it is the most 
promising combination, very few works exist on providing an in-depth analysis of 
how segments, flows and their parameters vary with burstification delay. We have 
developed a dedicated TCP-over-OBS simulator using ns-2 platform capable of 



simulating ~hundreds of active sources per edge node. Such a scenario is close to 
reality, but requires significant amount of memory and CPU resources. We have 
modified the raw ns-2 code to efficiently manipulate TCP flows and available CPU 
resources. The experiments were carried out on the NSF network topology, with 8 
edge and 6 core nodes, where each link was employing a single wavelength at 
10Gbps. Access rate was set to 100Mbps, equal for all sources. TCP arrivals were 
modeled with an exponential process with a mean of λ=50 flows/sec, while flow file 
size was modeled with a Pareto distribution of p load and a minimum ON size of 
40KByte. Using this set of metrics, it was possible to vary the TCP arrival rate and/or 
the mean file size, and obtain measurements for a different number of active sources. 
Fig. 1(a) displays the number of active sources at each edge node versus the average 
file size for three different assembly timers namely 1, 5 and 10msec, while Fig. 1(b) 
displays the corresponding burst loss ratio. Results shown hereinafter correspond to 
the steady state (constant number of active sources) of the experiments, which took 
place after 200sec of simulation time. 

From Fig. 1(a), it can be seen that the number of active sources in the case of 5 and 
10msec timer is close, while in the case of 1msec, it is 200 more for all flow sizes 
above 600KB. It must be noted here that the number of active sources measured is a 
dynamic parameter of the simulating experiment that can vary when burst losses 
occur and thus we argue that this corresponds to a real, instant picture of the network 
under study. An important issue noticed is that the simulating scenario was entering 
the steady state much earlier in the case of 5 and 10msec timers, than in the case of 
1msec.  

In what follows we have selected a mean file size of 700KB, which corresponds to 
a burst loss ratio of 2% and 600 or 800 active source respectively for 5, 10 and 1msec 
timers. Using these as reference, we have measured two basic statistics; the 
distribution of segments and the distribution of flows over the assembled bursts. Fig. 
2 displays the cumulative density function (CDF) of (a) the number of segments and 
(b) the number of different TCP flows per transmitted burst. The results shown 
correspond to all the bursts transmitted in the network, for all source-destination pairs. 
Fig. 2 provides a useful insight of how many TCP sources will experience a segment 
loss from a single burst loss as well as how many segments will be lost. The exact 
number of lost segments per source is the conjugate probability of Fig. 1(b), Fig. 2(a) 
and Fig. 2(b). 
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Fig. 1. (a) Number of simultaneous active TCP sources at each edge node versus average file 
size. (b) Corresponding burst loss ratio. 

(a)                                                                         (b) 



 The sharp increases in Fig. 2(a) are due to the finite access rate that does not allow 
more segments to be sent within the burstification time delay. To this end, in the case 
of 1msec assembly time up to 13 segments can be loaded onto a single burst, 
independent of the flow window size. If TCP sources have more segments to send, 
these are transmitted with a next burst. To this end, it can be easily derived that the 
congestion window of a high number of sources is incompatible larger than the 1msec 
assembly time. For larger assembly times, this sharp increase is shifted to higher 
numbers of segments. 

Furthermore from Fig. 2(b) and in the case of 1msec timer, it can be seen, that the 
80% of the transmitted bursts employ segments from only 2 different sources, while 
for 5 and 10msec, this increases to 4 and 6 respectively. To this end, it is clear that 
large aggregation times may result in the transfer of a higher number of sources and 
segments per burst that in turns may lead to smaller completion times, fewer bursts 
generated but with the trade off that more sources will be potentially affected. The 
latter is the side effect when upon a burst loss a higher percentage of sources (see Fig. 
2(b) will face a multiple segment loss. Thus, more sources will halve their window 
and then either time-out and enter a slow-start phase or try to recover from the loss 
and linearly increase their window. However, at which point the network will balance 
is still unknown but it is reflected in the segment and flow distribution, shown in Fig. 
2 and the number of active sources, shown in Fig. 1.   

We have also measured the actual number of bursts (transmitted and lost) per flow 
which are necessary to complete a flow transfer. Fig. 3(a) and (b) shows the 
corresponding cumulative density functions (cdf) for a single (randomly selected) 
source-destination pair, independently of the flow size. The selection of a single 
source-destination pair allows for fair conclusions since all bursts are transmitted over 
the same network path and thus with the same round-trip-time delay and blocking 
probability.  

From Fig. 3, it is clear that small assembly times result in a significant increase in 
the number of bursts needed to a complete a transfer, while the lost bursts per flow 
vary much less. In particular, in the case of 1msec timer, 80% of the flows need on 
average up to 80 bursts to complete their transfer, while only 40 and 34 are needed in 
the case of 5 and 10msec respectively. The corresponding lost bursts are 5 and 4. Of 
course the number of bursts needed to complete a transfer depends heavily on the 
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Fig. 2. (a) Segment and (b) flow distribution over the transmitted bursts for 1, 5 and 10msec 
burstifiers. 

(a)                                                                       (b)



amount of data to be transferred. Therefore, in Fig. 4, we have further analyzed the 
transmitted and lost bursts per flow with respect to the corresponding flow size.   

From Fig. 4(a), it can be seen that the number of transmitted bursts increase almost 
linearly with flow size, while 1msec curve diverges rapidly. In particular, for the 
maximum flow size of 2MB, 3.5 times more bursts are needed in the case of 1msec 
timer. This was however expected, since the corresponding 80% of that bursts were 
carrying less than 13 segments from only 2 flows at most. However, this does not 
result to smaller throughputs or higher completion times, as shown in the next section. 
The behavior of the number of lost bursts per flow size is similar (see Fig. 4(b)) but 
the difference between the curves diverges at a smaller rate.  

Based on the above analysis, we may conclude that small assembly times increase 
the network overhead but potentially constrain individual flow performance due to 
limited number of segments per flow per burst transmitted. The latter may result to 
longer file transfer times that in turns leads to more flows remaining active. However, 
on average burstification delay is by default smaller and thus it is expected that short 
assembly time to result in higher throughputs as discussed in the next section. Further, 
they may also result to less Time-Out events since it is unlikely a single flow to 
employ its complete window onto a single (lost) burst. On the other hand, large 
assembly times service more flows at a time, carrying more segments from each 
individual flow. This smoothes out any traffic instabilities in the sense that individual 
flow throughput is absorbed and diluted but however impose such a burstification 
delay that constrain throughput performance.  

To conclude, it is not yet clear if small aggregation times result in a higher 
throughput or eventually in a worse performance, or if large assembly times are 
capable of canceling the large burstification delay imposed. In the next section, we 
investigate how throughput varies for an individual flow and how congestion window 
expands.  
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Fig. 3. Distribution of (a) number of bursts needed to complete a TCP session and (b) number of 
lost bursts per session for 1, 5 and 10msec burstifiers for a single source-destination pair. 
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Fig. 4. Number of bursts needed to complete a TCP session and (b) number of lost burst per 
session versus file size for 1, 5 and 10msec burstifiers for a single source-destination pair.  

(a)                                                                        (b) 

(a)                                                                          (b) 



4. Efficient Throughput and Congestion Window expansion 
In order to qualitatively investigate the performance of the different assembly 

timers, we have measured the average throughput achieved along with its variance, its 
maximum and minimum value. In general, TCP performance depends on the TCP 
variant used in combination with the number of segments lost and further depends on 
the flow access rate. A TCP source is characterized as slow, medium or fast, 
depending on its access rate. From  [11], it can be inferred that a flow with a slow 
access rate (slow flow) must be accompanied with a small assembly time while flows 
with a large access bandwidth (fast flows) with relatively larger assembly timers. 
However, in most cases, access rate for all flows at the edge node is the same and 
service is differentiated by other means.  

Fig. 5(a) displays the average throughput and variance for all flows of a single 
source-destination for different burstifiers, while Fig. 5(b) shows its maximum and 
minimum value. From Fig. 5(a), it can be seen that there is no throughput gain for 
large assembly times albeit delay first loss (DFL) gain is maximized  [11]. This is also 
clear by Fig. 5(b), where maximum throughputs higher than >60Mbps were measured 
only for 1 and 5msec timers. As a result, flow transfer time increases with assembly 
time and specifically, it was found to increase from 1.25sec for 1msec timer to 1.6sec 
and 6,7sec for 10msec and 100msec respectively. However, performance (throughput) 
variance drops also fast with assembly time (see Fig. 5a) and this is because 
individual flow performance is diluted via the long burstification delay process. To 
this end, we may argue that large assembly times can provide a higher notion of 
fairness among the aggregated flows and smooth out any performance instabilities.  

In order to further analyze this, we have measured the evolution of the congestion 
window of three lossless flows transmitted over the same source-destination route and 
with a similar file size. Fig. 6(a) displays in detail the rising edge of their congestion 
window, while Fig. 6(b) displays the sequence number (modulo 132) of the 
transmitted segments. The results shown correspond to 1msec (left column), 5msec 
(middle column) and 10msec (right column) burstifiers. 
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Fig. 5. (a) Average and variance of throughput of all flows of a single source-destination pair 
versus burst aggregation time. (b) Corresponding maximum and minimum values measured. 

(a)                                                                          (b) 



From Fig. 6(a), it can be seen that the congestion window rises faster for 1msec 
timer rather than for 5 or 10msec. In this particular case, a 500segment window is 
reached within 0,171sec, while for 5 and 10msec timers in 0,290 and 0,38sec. The 
highest speed up gain is noticed for a window increase from 1 to 100segments. This is 
the result of a higher number of burst transmissions over the same time period. In 
particular, in the case of 1msec, 6 bursts are transmitted within 0,15sec (see counts of 
segment sequence number in Fig. 6(b), left column), while only 5 and 4 in the rest. 

A significant finding is that the maximum instant throughput measured for all three 
burstifiers was 92Mbps, and which was achieved when window size was 
128segments wide for all cases. However this was obtained much faster in the case of 
1msec, and thus the average yielding throughput was much higher. In particular, 
average throughput was found to be 23Mbps whereas only 17 and 14Mbps in the 
cases of 5 and 10msec timers. However, it must be clearly noted that the yielding, 
instant throughput was equal for all three different timers and we may argue that the 
resulting average throughput actually depends on the flow size and the burst per flow 
losses. 

A second important finding is that after having reached the maximum throughput 
and before flow completion, instant throughput was constant to its maximum value 
(92Mbps) only in the case of the 10msec burstifier. In the rest and especially for 
1msec burstifier, this was instantly varying from 50Mbps to 90Mbps. This instability 
was primarily due to fact that segment distribution over the assembled bursts was not 
constant due to the short burstification delay. On the contrary, this was varying 
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Fig. 6. (a) Congestion window evolution and (b) Sequence number of the transmitted 

segments under identical timescales of three different, lossless flows with similar files sizes 
for 1msec (left column), 5msec (middle column) and 10msec (right column) assembly times. 
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significantly and thus a steady segment per burst transmission rate could not be 
obtained albeit the higher number of burst created.  

It is therefore clear that measuring averaging throughputs is not indicative for TCP 
performance. Further, a fixed assembly time does not provide maximum performance 
but only optimal performance for individual flows with similar characteristics (i.e. 
flow size, loss ratio, etc.). Large assembly times offer an advantage of carrying more 
segments but only when flows can send more segments, otherwise they constrain 
throughput performance. In order to truly enhance TCP performance, the instant 
congestion window is a metric to be considered for determining the optimum 
assembly time. For example, short assembly times should be applied to sources with a 
relatively small congestion windows (<100segments), while larger timers to sources 
with larger windows. In the next section, we analyze such a scheme and investigate its 
performance gains. 

5. Congestion Window-based Burst Assembly Scheme 
In this section, we propose a new adaptive burst assembly scheme that assigns 

different burstification delays to flows based on their congestion window size. In 
particular, we define burst assembly time ( BATT ) as follows:  

≤10
<≤5
<≤1

=
  windowcongestion  Cifmsec

  segmentsC  windowcongestion  Bifmsec
 segmentsB   windowcongestion  1ifmsec

TBAT
 

In our scheme, we propose the characterization of a flow as slow or medium, when 
its instant congestion window is less than B or C segments wide and as a fast flow 
when it is even higher. Thus, slow TCP flows with a congestion window of less than 
B segments are aggregated together under 1msec delay. When their congestion 
windows reach the limit of B segments, the flows are upgraded to medium rate flows 
and their segments are assembled under a 5msec timer. Similarly, when their 
congestion windows reach the C segments limit, these flows are upgraded again to 
fast flows and their assembly time is increased to 10msec. In this way, each flow is 
treated separately and thus upon a burst loss only the flows that will suffer from a 
segment loss will be downgraded to medium flows or even to slow flows if they time 
out.  

The implementation of the proposed assembly scheme requires three different 
queues per destination, one for each type of flow, as well as the communication of the 
window size to the burstifier. Albeit the latter require a modification of the TCP 
mechanism, we have implemented the scheme in ns-2 platform to particularly 
measure the yielding throughput and variance for various B, C values. TABLE 1 
summarizes our findings, where the performance of the simple cases of 1, 5 and 
10msec burstifiers is also denoted for comparison. The cases with no B value means 
that the intermediate transition to 5msec assembly is omitted. From TABLE 1, it can 
be seen that best performance is obtained for B, C values of 32 and 100 segments. In 
that case, average throughput is increased to 11Mbps, while variance is dropped 
significantly to 50. This combination merges the optimum operation points of all three 
cases providing fast transmission times for slow sources that are in an early slow-start 
phase, medium rates for flows with up to 100 segments window size and slow 
transmission rates, (large assembly delays) for the rest.  



TABLE 1. Average throughput and variance for various combinations of the proposed 
congestion-window based, burst assembly scheme 

B                C Average Throughput (Mbps) Variance 
100 200 8,4 60 
32 100 11,2 50 
- 32 9,1 55 
- 200 7,7 59 

1msec 8,8 62 
5msec 9,0 71 

10msec 7,4 41 

In the rest cases, performance either approximates the performance of 1msec 
timer, when B is too high (B = 100, C = 200) or 10msec, when C is too high 
(B = C = 200). However, best performance is obtained upon the optimum 
combination of both values. It must be noted here however, that these depend on the 
actual flow and segment distribution and thus can be different for different arrival 
rates and burst loss ratios. 

6. Conclusions  
 In this paper, an analysis of TCP traffic over OBS networks was presented for 

various timer-based burstifiers. It was found that short assembly times provide a 
higher average throughput but result to a significant performance variation of the 
individual aggregated flows. On the other hand, large assembly times are capable of 
smoothing out performance differences but eventually lead to poor throughputs. 
However, it was found that the yielding instant throughputs were the same in all cases 
and large assembly times are beneficial only when there are pending segments to be 
sent. Otherwise they delay burst transmission unnecessarily. In order to truly enhance 
individual TCP performance, we proposed a mixed timer-based algorithm that assigns 
flows to different timer-based burstifiers based on their instant window size. It was 
found that short assembly times provides a significant performance speed up when 
windows sizes are less than 100segments, and thus a mixed algorithm can combine 
the advantages of both a fast throughput increase along with a low performance 
variation among the individual flows. 
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