
CCIndex: a Complemental Clustering Index on
Distributed Ordered Tables for Multi-dimensional Range

Queries

Yongqiang Zou, Jia Liu, Shicai Wang, Li Zha, Zhiwei Xu

Institute of Computing Technology, Chinese Academy of Sciences
Beijing, 100190, China

{zouyongqiang, liujia09, wangshicai}@software.ict.ac.cn, {char, zxu}@ict.ac.cn

Abstract. Massive scale distributed database like Google’s BigTable and
Yahoo!’s PNUTS can be modeled as Distributed Ordered Table, or DOT,
which partitions data regions and supports range queries on key. Multi-
dimensional range queries on DOTs are fundamental requirements; however,
none of existing schemes work well while considering three critical issues: high
performance, low space overhead, and high reliability. This paper introduces
CCIndex scheme, short for Complemental Clustering Index, to solve all three
issues. CCIndex creates several Complemental Clustering Index Tables for
performance, leverages region-to-server information to estimate result size, and
supports incremental data recovery. This paper builds a prototype on Apache
HBase. Theoretical analysis and micro-benchmarks show that CCIndex
consumes 5.3% ~ 29.3% more space, has the same reliability, and gains 11.4
times range queries throughput of secondary index scheme. Synthetic
application benchmark shows that CCIndex query throughput is 1.9 ~ 2.1 times
of MySQL Cluster.

Keywords: Clustering, index, range queries, multi-dimensional

1 Introduction

Massive scale distributed databases like Google’s BigTable [1] and Yahoo!’s PNUTS
[2] gain more and more attention to store data for Internet scale applications. These
systems can be modeled as Distributed Ordered Table, short as DOT, which partitions
continuous keys to regions, replicates regions for performance and reliability,
distributes regions to shared-nothing region servers for scalability, serves as tables
and columns, and supports range queries on keys. Multi-dimensional range queries on
DOT systems are natural requirements. For example, a query needs to find out nearby
restaurants through “latitude > 48.5 and latitude < 48.6 and longitude > 112.5 and
longitude < 112.8 and type = restaurants”. Another example is finding out hottest
pictures in this week in a photo-sharing application, such as Flickr, with a query like
“timestamp > 1267660008 and rank > 1000”. With only DOT’s range queries over
key, a multi-dimensional range query is a table scan over key with predicates on non-
key columns to filter results, which is very ineffective for a low selectivity query on

non-key columns, and the latency is unacceptable in large scale data sets, such as TB
or PB level. This paper refers to selectivity by the percentage of records passing the
predicate. The inefficiency requires index on non-key columns to accelerate multi-
dimensional range queries. However, multi-dimensional range queries over DOT are
big challenges if we considering the three critical issues: high performance, low space
overhead, and high reliability.

None of existing schemes can work well considering all the three issues. Building
secondary indexes for non-key columns through creating ordered tables to store
indexes is common. However, the range query over secondary index is significantly
slow, because random read is slower than scan (eg. In BigTable is 13.7 times). Other
“better” index schemes without clustering data will encounter the same problem as
slow random read. Clustering index reduces the random reads but needs several times
storage, and data recovery is a big issue if the underlying replica mechanism is
disabled. Lacking of statistics on DOTs imposes more difficulties on optimizing
multi-dimensional range queries.

This paper introduces a new scheme CCIndex, short for Complemental Clustering
Index, to support multi-dimensional range queries over DOT while achieving high
performance, low space overhead, and high reliability. CCIndex creates several
Complemental Clustering Index Tables, or CCIT, each for a search column with the
full row data, which makes range query over this column a range scan. CCIndex
leverages the region-to-server mapping information to estimate the result size of each
queries. CCIndex disables the underlying data replica mechanisms to avoid too much
storage overhead, and creates a replicated Complemental Check Table, or CCT, for
each search column to support incremental data recovery.

CCIndex prototype has been built on Apache HBase, a subproject of Hadoop.
Theoretical analysis and experimental evaluations have been given.

The rest of this paper is structured as follows. Section 2 presents related work.
Section 3 describes the CCIndex architecture design, including the construction of the
index. Section 4 presents query processing and optimization. Section 5 gives the fault
tolerant mechanisms. Section 6 gives detailed evaluations. Section 7 concludes the
paper.

2 Related work

Recently, some research focuses on index mechanisms over DOT. Yahoo! focuses on
optimizing range queries on DOT through adaptive parallelizing [3], and multi-
dimensional range queries are done through range scan over primary key with
predicates. This approach is very ineffective with low selectivity queries. Google and
Yahoo! claim the future work on secondary index over DOTs [4, 2]. A currently
available secondary index over DOT is the IndexedTable mechanism in Apache
Hbase [5]. IndexedTable creates a new table for each index column, saves it in the
DOTs in the order of the index value. IndexedTable is more effective for low
selectivity queries than table scan, and has acceptable space overhead and fault
tolerance ability. However, index scan needs random reads on original table which is
very slow. Traverse [6] builds B-tree [7, 8] index for the map-reduce-merge system.

Traverse has the same performance problem as IndexedTable, and is lack of reliability
due to the non-replica B-tree indexes. CCIndex is better than these approaches in
space overhead, reliability, and index scan performance.

Multi-dimensional range queries in databases are topics gaining attentions for more
than 20 years. R-tree [9], R+-tree [10], and their successors extend B-tree, divide the
multi-dimensional space, and store the recursively divided spaces as tree nodes.
Queries walk through the tree to find out the data block. These schemes does not
consider the reliability problem over DOT, unless they are implemented in a scalable
and reliable way, just like the distributed B-tree [11]. Even though, the performance
degradation also exists due to missing clustered data.

DB2 introduces multi-dimensional clustering [12] to form every unique
combination of dimension values as a logical ‘cell’, which is physically organized as
block of pages. Multiple B-tree indexes are built for every dimension and the B-tree
leaves point to the block. This scheme can avoid random read only when the values in
block are dense, and the reliability of the B-tree index is not considered.

Parallel databases [13, 14] support multi-dimensional queries and have good
reliability, such as the MySQL cluster [15]. CCIndex is designed for more scalable
DOTs to get good performance with large dataset and many machines.

DHTs [16, 17, 18, 19] are scalable and reliable for key-value pair storage. Because
the data is partitioned by hashing functions, DHT systems do not support range
queries naturally. MAAN [20] and SWORD [21] use locality preserving hashing and
store attributes in DHT as index to support range queries. However, the logN hop
latency is not good for user-interactive applications.

3 Data layout and management

This section introduces the CCIndex ideas and the underlying data layout.

3.1 Basic idea

The CCIndex is inspired through these observations: (1) There are usually 3 to 5
replica in the DOT systems to assure reliability and improve performance. (2) The
indexes number is usually less than 5. (3) The random reads is significantly slower
than scan. The trick of CCIndex is reorganizing the data to a new layout to accelerate
multi-dimensional range queries. CCIndex introduces several Complemental
Clustering Index Tables, each for a search column with the full row data, to convert
the slow random reads to fast range scan. With multiple tables, a key decision is
determining which table is chosen to scan. CCIndex leverages the region-to-server
mapping information to estimate the result size of each sub queries. CCIndex disables
the underlying data replica mechanisms to get an acceptable storage overhead, and
uses these Complemental Clustering Index Tables to recovery each other to assure
reliability. CCIndex creates a replicated Complemental Check Table for each search
column to support incremental data recovery.

3.2 Data Layout

In DOT systems, tables are very tall and logically ordered by row keys. Physically,
each table is partitioned to regions containing continuous ranges, and each region has
several replicas identical to each other for fault tolerance. CCIndex reorganizes the
underlying data layout as in Fig. 1.

Fig. 1. Data layout of CCIndex. For a logical table has id as the primary key with two index
columns idx1 and idx2, CCIndex creates another two CCIT tables each for a index column and
reorganizes the rows in the order of this column. CCIndex creates replicated CCTs for fast data
recovery.

In the data layout, each logical table has several complemental tables. In Fig. 1,
there is a table to support range queries over id and two index columns idx1 and idx2.
The table CCIT0 is the original table ordered by unique id. CCIT1 and CCIT2 are
ordered by key1 and key2, which are generated by concatenating index column value,
the original id, and the index column value length. The construction of the new key
makes sure the new CCITs are ordered by index column values, and makes the
duplicated values of index columns be unique keys. The index value length field
makes it easy to split the index value and id. With these CCITs, range queries over id
or index columns can be a scan on the corresponding CCITs.

Each CCIT has a corresponding replicated CCT, which contains the primary key
and index columns of the CCIT. CCTs are necessary to help incremental data
recovery of CCITs. The CCITs have no replica but the CCTs have replicas.

Fig. 1 shows the logical view of CCIndex, and these tables are physically stored in
DOT system. Storing CCITs and CCTs in DOT leverages the primary key ordering,
data partition, and various operation optimizations to simplify CCIndex
implementation.

3.3 Index create, update, and delete

The index maintenance is done along with the record insert and delete operations.
When CCIndex creates a table with specified index columns, all CCITs are created.

When a record is written to DOT, the CCIndex first reads the original table to check
whether the index column values are changed, and delete the corresponding records in
CCITs when necessary. After that, the CCIndex writes the records to all CCITs in a
parallel way. The delete operation also involves all the CCITs.

4 Query processing and optimization

The DOT read and scan operation are simply redirecting to the original CCIT. The
index scan is processed by CCIndex.

4.1 Query plan generation and execution

CCIndex introduces a SQL-like syntax to expression multi-dimensional range queries.
The query string is like this:
select rowkey, host, service, time, status from

MonitoringData where host=’node 216’ and service=’CPU
Load’ and (time > 1260610511 and time < 1260610521)

CCIndex translates the SQL expression to a query plan tree, optimizes the tree, and
translates the tree to disjunctive form. Then CCIndex executes the logic OR part in
parallel, and executes each internal AND part by the estimated optimal one query
with predicates of other columns to filter rows.

4.2 Query plan optimization

CCIndex first does simple optimization of query plan tree to eliminate redundant
range queries. For example, the time > 123 and time > 135 could be merged into time
> 135. Furthermore, the important optimization is estimating result size of multiple
AND queries and choosing the minimal one.

In databases, query optimization is based on statistics of tables. However, DOT
systems are lack of statistics, because the statistics are very difficult to gather and
maintain in massive scale tables maintained by thousands of region servers. For
example, there is not any statistics in HBase, and an additional tool must be written to
count table rows.

CCIndex introduces a way to estimate the query result size in the absence of
statistics. CCIndex’s estimation method relies on the region-to-server mapping
information of DOTs. The mapping information is necessary for DOT systems to
record the responsible region server for each region. DHTs have no such information,
because the mapping relationship is deduced by the overlay topology, object ids, and
node ids.

The mapping information can be abstracted in the form of <regionStartKey,
RegionServerInfo>. The regionStartKey is the minimal key in this region and serves
as the region id. The mapping information is gathered together and ordered by the
regionStartKey. CCIndex scans all this mapping information using a binary search,
and finds out the number of covered regions for each range query. CCIndex claims
that the region number determines the result size, because for a DOT containing more
than one region and having 64 MB default region size, each region size must be
between 32 MB and 64 MB. For the first or last region not fully covered in a range,
the coverage ratio is calculated to estimate the result size for the regions.

This policy is more accurate for large query result size, because the average region
size is more accurate when there are lots of regions. For query covering few of
regions, the detailed size is not important, because this result size is small and the
estimation objective is determining a query with small result size to execute.

5 Fault tolerance

In CCIndex, CCITs have no replica to avoid huge storage overhead, and cause the
problem of fault tolerance. The basic idea is that CCITs replicate and recovery each
other in record level. However, when a region of a CCIT is damaged, we can only
reconstruct the whole CCIT if there is lack of ways to gather necessary records to
recovery the region.

CCIndex introduces the CCTs to help recoverying the damaged region. CCIndex
only checks the corresponding CCTs to get the proper keys for CCITs and get the
record data to rebuild the region.

The CCTs imposes additional overhead on inserting or deleting records. CCIndex
maintains the CCTs in an asynchronous way to minimize the overhead. CCIndex
leverages the log of DOTs to update CCTs in batch mode by the background threads.

6 Implementation and Evaluations

This paper implements a CCIndex prototype and evaluates CCIndex through
theoretical analysis, micro benchmarks, and synthetic application benchmarks.

6.1 Implementation

This paper builds a CCIndex prototype based on Apache Hbase, an open-source
implementation of BigTable. Hbase is a sub-project of Apache Hadoop [22], which
has HDFS as the distributed file system and MapReduce as the parallel computing
model. HBase builds on top of HDFS, has one master process called HMaster and
many slave processes called HRegionServer to manage data regions.

The CCIndex prototype uses HBase v0.20.1 as code base, adds clustering index
table package, and implements CCIndex in Java. CCIndex disables the replica of
HDFS by setting the replica factor to one, and creates one CCIT for each search

column. CCIndex builds several CCTs on replicated HFDS files to achieve reliability.
HBase has multiple META regions, and each META region contains mapping of a
number of user regions comprising the tables to HRegionServers. HBase has a ROOT
region to locate all the META regions. CCIndex scans the ROOT and META regions
to get the region-to-server mapping information and estimates the query result size.

The comparable IndexedTable is a built-in index mechanism provided in HBase.
IndexedTable creates a replicated ordered table for each index column and is an
implementation of secondary index scheme. IndexedTable does not provide multi-
dimensional range queries interface or optimization to estimate query result size for
multi-dimensional range queries.

6.2 Theoretical analysis

For the three metrics performance, space overhead, and reliability, the first one is easy
to evaluate through experiments, while the other two are more suitable to do
theoretical analysis to get more insight.

Theorem 1. The space overhead ratio of CCIndex to IndexedTable is

 (N*N+1)/(2*N+(N+1)*L/Ln)
Where N is the number of index columns without primary key, and L/Ln is factor

that total record length divided by the sum of index column lengths and key length,
with the suppose that the replica factor for record data is N+1, and index column and
primary key has the same length.

Proof. In IndexTable, the space for each record is the original table plus index:
Sii=(Lk+Li)*N*F+L*F (1)

Where N is the number of index columns, F is the replica number, Lk is the length
of key, Li is the average length of index columns, and L is the total length of a record.

In CCIndex, the space for each record is the CCITs plus CCTs. The space for
CCTs is:

Sc = (Lk+N*Li)*N*F + (Lk+N*Li)*F = (Lk+N*Li)*(N+1)*F (2)
The total space for CCIndex is:

Scc=Sc+L*(N+1) (3)
If Lk = Li, F = N + 1, the space overhead ratio of CCIndex to IndexedTable is:

(Scc-Sii)/Sii = (N*N+1) / (2*N+L/Lk) (4)
Let Ln=Lk + N*Li, then the formula (4) is:

(Scc-Sii)/Sii = (N*N+1)/(2*N+(N+1)*L/Ln) (5)
□
The equation (5) in theorem 1 can be plotted as Fig. 2.

From Fig. 2, the overhead ratio drop significantly as the L/Ln increases and the N

decreases, which indicates that CCIndex should have less columns to index and all
index columns should have small length to avoid big space overhead. If N changes
from 2 to 4 and the L/Ln changes from 10 to 30, then the overhead changes from 5.3%
to 29.3%.

Fig. 2. The space overhead ratio of CCIndex to IndexedTable. The overhead ratio drops
significantly as the L/Ln increases and the N decreases. If N changes from 2 to 4 and the L/Ln
changes from 10 to 30, then the overhead changes from 5.3% to 29.3%.

Theorem 2. In CCIndex, the probability of being able to recovery a damaged
record is

(1 - f(N+1))2
Where f is the probability of a record damages, N is the indexed column number.

The probability is the same as that of IndexedTable.
Proof.
CCIndex recoveries the data through CCTs and CCITs.

CCTs have N replicas plus another copy in the corresponding columns in CCIT
and the probability of failing to read from all CCTs is f(N+1). The probability of
replicas for a given record in all CCITs are damaged is f(N+1).

So, the probability of being able to recovery a damaged record is (1 - f(N+1))2.
For IndexedTable, data access relies on replicated index and the original table.

The probability is obviously the same as CCIndex.
□

6.3 Micro benchmarks

BigTable introduces a micro benchmark to evaluate the basic operations throughput,
including random read/write, sequential read/write, and scan. The workload is
comprised of a table with 1KB rows, and each row has an additional 10 bytes rowkey.
The throughput is defined as rows per seconds for all clients. HBase implements this
micro benchmark and has single thread client, multi-threads clients, or MapReduce
clients to evaluate the throughput. CCIndex extends the micro benchmark by adding
an “index” column family to contain three columns and each is 10 bytes, and building
three indexes using these columns. CCIndex adds an IndexScan operation to scan
through the first column index.

We setup an experimental environment having two clusters. The small cluster has
3 nodes for micro benchmarks, and the big one has 16 nodes for synthetic application
benchmark. Each node has two 1.8 GHz dual-cores AMD Opteron (tm) Processor 270,
6 GB memory. Each node in the small cluster has 321 GB RAID5 SCSI disks, and

each node in the big cluster has 186GB RAID1 SCSI disks. All nodes in each cluster
are connected by Gigabits Ethernet. Each node uses Red Hat CentOS release 5.3
(kernel 2.6.18), ext3 file system, Sun JDK1.6.0_14, Hadoop v0.20.1, and HBase
0.20.1. The HBase itself uses 3 GB heap memory.

In our experiments, we choose the workloads which have 1 million rows, and run
each tests three times to report the average value. The client uses one of the 3
machines with three concurrent threads. The micro benchmarks use 3 machines.

Fig. 3. Basic Operation Performance of Two Index Schemes. CCIndex throughput is 11.4 times
of IndexTable’s in IndexScan operation. CCIndex random write and sequential write operations
is 54.9% and 121.4% better than that of IndexTable.

We compare CCIndex with IndexedTable in HBase and show results in Fig. 3.
CCIndex’s IndexScan operation throughput is 11.4 times of IndexTable’s, which
shows the benefits of CCIndex through avoiding random reads in primary key.
CCIndex random write and sequential write operations are 54.9% and 121.4% better
than those of IndexTable, which is due to the parallel index updating. The scan,
random read, and sequential read of these two schemes are nearly identical due to the
same logic path.

We compare the throughput of CCIndex with the original table, and the result is in
the Fig. 4. The IndexScan is unavailable for origin table without index. CCIndex
IndexScan throughput is 10.9% more than origin table, which is due to the first
column in the “index” family is moved to the row key, so the data length of CCIndex
table is smaller than original table’s. Fig. 4 further interprets why CCIndex can gain
an order of magnitude improvement over IndexedTable. For IndexedTable, a range
query over an index column should first scan the index table, and then issue multiple
random reads in the original table to get the row data. In IndexedTable, throughput of
scan over index table is nearly the same as scanning the original table. While in
CCIndex, range query over an index column is done by IndexScan, which scans over
corresponding CCIT. The IndexScan throughput for CCIndex is 8.2 times of random
read in original table, and 1.1 times of scan in original table, so the throughput is at
least 9.3 times over IndexedTable, because IndexedTable needs additional time to
parse and wrap intermediate results.

Fig. 4. Basic Operation Performance with Original Table. CCIndex IndexScan throughput is
10.9% more than origin table. The random write and sequential write is significantly lower
than the origin table due to the overhead to maintain index, which is a common issues for both
index schemes.

The throughput of random write and sequential write for CCIndex is significantly
lower than the origin table, because maintaining index needs another random read to
get row data for checking whether to change index column value, and a further delete
and write to update index if is necessary.

Because scanning index to get the matching row data is the most important
functions of building index, we claim that CCIndex significantly outperforms
IndexedTable and is suitable for range queries over indexes. However, we should
carefully choose the workloads having less write operations and choose more stable
index columns to avoid the performance degradation of write, and these are general
guidelines for all two index schemes.

Fig. 5. Index scan latency of all three schemes. CCIndex is 9.2 times faster than IndexedTable
when the result count is larger than 1024.

The following experiments show the index scan latency of all the three schemes in
different result count. We use the scan over primary key to represents the unavailable
index scan of the origin table. The results are illustrated in Fig. 5.

From Fig. 5, the CCIndex latency is significantly smaller than IndexedTable, and
the ratio is stable at 9.2 when the result count is larger than 1024. Another interesting
thing is that the absolute latency of CCIndex is low, and the round-trip latency to get
1024 1KB continuous rows is 42 micro-seconds. The low latency of CCIndex over
HBase shows the ability of serving high user-interactivity applications, such as blog,
wiki, and twitter.

6.4 Synthetic Application benchmarks

Multi-dimensional range queries are not directly supported by IndexedTable, so we
designed a suite of experiments to compare the performance with the memory-based
parallel database MySQL cluster.

There are no common accepted benchmarks for multi-dimensional range queries

over DOTs yet. The well-known benchmarks for database, such as TPC-C [23] and
TPC-H [24], have a majority of operations not supported by DOT, such as
transactions over multiple records and complex queries with joins and aggregations.

This paper designs a synthetic application benchmark by analyzing a well-known
cluster monitoring application Nagios [25]. Nagios supports comprehensive
monitoring of operating systems, applications, network protocols, system metrics, and
network infrastructure through user-configured monitoring items, called “service”, in
a fixed interval on all hosts in a cluster. Nagios records the information about
launching a monitoring item on a host into the log, including timestamp, host, service,
execution time, and the response message for this monitoring item, etc. Nagios
provides a web portal contacting backend CGI programs to read monitoring data and
show various aspects of the cluster. The log information volume is exposing if we
have more monitor items, more hosts, shorter interval, and a longer period of
information to store.

Through analyzing the application logic of the Nagios web portal, we construct a
table ServiceTime using host concatenating service and time as the primary key, and
with service and time as the record. We design two queries for our tests.
 AndQuery: Multi-dimensional range queries with AND operations results in a

big result count. The query likes “select * from ServiceTime where
(primaryKey > K1 and primaryKey < K2) and (time > k3
and time < k4) and (service = ‘CPU Load’)”. The query runs
with multiple clients concurrently, each with different ranges to get load balance.
The result count for each client is about 5 million.

 OrQuery: Multi-dimensional range queries with OR operations results in a big
result count. The query is similar as AndQuery, but uses OR to connect different
dimensions. The result count for each client is about 10 million.

These queries should be run in multiple clients to get the total throughput of all
clients.

We use the 16 node cluster described in the micro benchmarks, and there is totally
64 cores and 96 GB memory. In our experiments, we collect more than 120 million
monitoring records with average record length 118 bytes.

The MySQL cluster is version 7.09, which is configured with 1 management node,
2 SQL nodes, and 14 data nodes. In this test the maximum data node number is 14
because data nodes must not co-located with management node and must be even
number. The HBase regionserver in each node has 3GB heap memory.

In the following tests, we use at most 90 million records because it reaches the
capacity limits of our configured MySQL cluster. We allocate 3 GB as the data
memory for each MySQL data node. MySQL cluster stores all records in data
memory and cannot accept new records when the memory is all consumed.

In the tests, each node runs an instance of client. Fig. 6 shows the results.

Fig. 6. Multi-dimensional range queries throughput for multiple clients. MySQL Cluster
performance is stable when the data sets increases from 30 million to 90 million records. With
the 90 million records, CCIndex AndQuery and OrQuery throughput is 2.1 and 1.9 times of the
memory-based parallel database MySQL Cluster.

CCIndex AndQuery and OrQuery throughput is 2.1 and 1.9 times over MySQL
Cluster with 90 million records dataset, which shows CCIndex performance is
significant better than MySQL Cluster.

In Fig. 6, the MySQL Cluster performance is stable for AND and OR queries when
the data sets increase from 30 million to 90 million records. However, the MySQL
Cluster scalability problem is that the capacity is determined by the total memory for
data, because all the data has a copy in memory, which improves the performance but
limits the capacity.

6.5 Discussion

The CCIndex can be applied to DOT systems with few of columns to index, which
has great impact on the storage overhead. For a table more than 5 columns having

query requirements, the practical solution is identifying the most frequently used
columns to build index with CCIndex, or combines some columns to reduce the
column number.

CCIndex practically does not support adding or removing index after the table is
created, for the reason that creation or deleting of CCIT costs unaffordable time for
massive scale data. Another problem is that CCIndex write operation is slower than
the original table. These two are common problems for many index schemes.

In CCIndex, the probability of being able to recovery a damaged record is fairly
good; however, the data recovery time is longer than IndexedTable scheme. Because
in CCIndex, recovery a region needs gathering all records by random read in other
CCITs, which is slower than copying a 64 MB region data file.

7 Conclusions and future work

This paper models the massive scale databases as Distributed Ordered Table, or DOT,
which partitions continuous keys to regions, replicates regions for performance and
reliability, distributes regions to shared-nothing region servers for scalability, serves
as tables and columns, and supports range queries on keys. This paper formulates the
problem as supporting multi-dimensional range queries over DOT while considering
the three metrics: high performance, low space overhead, and high reliability.

This paper proposes a scheme called CCIndex, short for Complemental Clustering
Index, to tackle this problem. CCIndex introduces Complemental Clustering Index
Tables each for a search column with the full row data to reorganize data and improve
query performance. CCIndex leverages the region-to-server mapping information to
estimate the result size of each query without statistics. CCIndex disables the
underlying data replica mechanisms to avoid too much storage overhead, and
introduces replicated Complemental Check Table to support incremental data
recovery.

CCIndex prototype has been built on Apache HBase. Theoretical analysis shows
that CCIndex consumes 5.3 ~ 29.3% storage more than secondary index scheme in
HBase for typical situations and the probability of failing to recovery bad rows is the
same as secondary index scheme. Micro benchmarks show that CCIndex throughput
of range queries on non-key column is about 11.4 times of secondary index. The
synthetic monitoring application range queries in a 16-node cluster shows that
CCIndex AndQuery and OrQuery throughput is 2.1 and 1.9 times over MySQL
Cluster with 90 million records dataset.

The future work includes further optimization and evaluation the space overhead
and reliability in terms of recovery time. Additional work should be done to optimize
the index updating performance. Some real world application benchmarks should be
involved to evaluate the query performance in real world scenarios. More practical
experiences and lessons should be given.

Acknowledgment

We would like to thank Vega GOS R&D team members and GOS users, especially
Liang Li to help optimizing the query plan. This work is supported in part by the Hi-
Tech Research and Development (863) Program of China (Grant No. 2006AA01A106,
2006AA01Z121, 2009AA01A130), and the National Basic Research (973) Program
of China (Grant No. 2005CB321807).

References

1. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M., Chandra, T.,
Fikes, A., Gruber, R.E.: Bigtable: a distributed storage system for structured data. In: 7th
USENIX Symposium on Operating Systems Design and Implementation. vol. 7, pp. 205--
218. USENIX Association, Berkeley (2006)

2. Cooper, B.F., Ramakrishnan, R., Srivastava, U., Silberstein, A., Bohannon, P., Jacobsen,
H-A., Puz, N., Weaver, D., Yerneni, R.: PNUTS: Yahoo!'s hosted data serving platform.
In: Proc. VLDB Endow. vol. 1, pp. 1277--1288. VLDB Endowment (2008)

3. Vigfusson, Y., Silberstein, A., Cooper, B.F., Fonseca, R.: Adaptively parallelizing
distributed range queries. In: Proc. VLDB Endow. vol. 2, pp. 682--693. VLDB
Endowment (2009)

4. Cafarella, M., Chang, E., Fikes, A., Halevy, A., Hsieh, W., Lerner, A., Madhavan, J.,
Muthukrishnan, S.: Data management projects at Google. SIGMOD Rec. 37(1), 34--38
(2008)

5. Apache Hbase project, http://hadoop.apache.org/hbase
6. Yang, H.C., Parker, D.S.: Traverse: Simplified Indexing on Large Map-Reduce-Merge

Clusters. In: DASFAA 2009. LNCS, vol. 5463, pp. 308--322. Springer, Heidelberg (2009)
7. Bayer, R., McCreight, E.: Organization and maintenance of large ordered indexes. Acta

Informatica. 1(3), 173--189 (1972)
8. Comer, D.: Ubiquitous B-Tree. ACM Computing Surveys (CSUR). 11(2), 121--137 (1979)
9. Guttman, A.: R-Trees: A Dynamic Index Structure for Spatial Searching. In: Proceedings

of the 1984 ACM SIGMOD international conference on Management of data. vol. 13, pp.
47--57. ACM, New York (1984)

10. Sellis, T.K., Roussopoulos, N., Faloutsos, C.: The R+-tree: A dynamic index for multi-
dimensional objects. In: Proceedings of the 13th International Conference on Very Large
Data Bases. vol. 13, pp. 507--518. Morgan Kaufmann, San Francisco (1987)

11. MacCormick, J., Murphy, N., Najork, M., Thekkath, C.A., Zhou, L.D.: Boxwood:
abstractions as the foundation for storage infrastructure. In: Proceedings of the 6th
USENIX on Symposium on Operating Systems Design and Implementation. vol. 6, pp.
105--120. USENIX Association, Berkeley (2004)

12. Padmandabhan, S.,Bhattacharjee, B., Malkemus, T., Cranston, L., Huras, M.: Multi-
dimensional clustering: a new data layout scheme in DB2. In: Proceedings of the 2003
ACM SIGMOD international conference on Management of data. vol. 32, pp. 637--641.
ACM, New York (2003)

13. DeWitt, D.J., Gerber, R.H., Graefe, G., Heytens, M.L., Kumar, K.B., Muralikrishna, M.:
GAMMA - A High Performance Dataflow Database Machine. In: Proceedings of the 12th
International Conference on Very Large Data Bases. vol. 12, pp.228--237. Morgan
Kaufmann, San Francisco (1986)

14. Fushimi, S., Kitsuregawa, M., Tanaka, H.: An Overview of The System Software of A
Parallel Relational Database Machine GRACE. In: Proceedings of the 12th International

http://hadoop.apache.org/hbase

Conference on Very Large Data Bases. vol 12, pp. 209--219, Morgan Kaufmann, San
Francisco (1986)

15. Ronström, M., Oreland, J.: Recovery principles of MySQL Cluster 5.1. In: Proceedings of
the 31st international conference on Very large data bases. vol. 31, pp. 1108--1115. VLDB
Endowment (2005)

16. Stoica, I., Morris, R., Karger, D., Kaashoek, F., Balakrishnan, H.: Chord: A scalable peer-
to-peer lookup service for internet applications. In: Proceedings of the 2001 conference on
Applications, technologies, architectures, and protocols for computer communications. pp.
149--160. ACM, New York (2001)

17. Sylvia, R., Francis, P., Handley, M., Karp, R., Schenker, S.: A scalable content-
addressable network. In: Proceedings of the 2001 Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communications. pp. 161--172.
ACM, New York (2001)

18. Rowstron, A., Druschel, P.: Pastry: Scalable, Decentralized Object Location and Routing
for Large-Scale Peer-to-Peer Systems. In: Guerraoui, R. (eds) Middleware 2001. LNCS,
vol. 2218, pp. 329--350. Springer-Verlag, Heidelberg (2001)

19. Zhao, B.Y., Kubiatowicz, J.D., Joseph, A.D.: Tapestry: An Infrastructure for Fault-tolerant
Wide-area Location and Routing. Technical report, University of California at Berkeley.
(2001)

20. Cai, M., Frank, M., Chen, J., Szekely, P.: MAAN: A Multi-Attribute Addressable Network
for Grid Information Services. Journal of Grid Computing. 2, 3--14 (2004)

21. Albrecht, J., Oppenheimer, D., Vahdat, A., Patterson, D.A.: Design and implementation
trade-offs for wide-area resource discovery. ACM Trans. Interet Technol. 8(4), 1--44
(2008)

22. Apache Hadoop project, http://hadoop.apache.org
23. TPC Benchmark C, www.tpc.org/tpcc
24. TPC Benchmark H, www.tpc.org/tpch
25. Nagios project, http://www.nagios.org

