
Evaluating and Optimizing I/O Virtualization in
Kernel-based Virtual Machine (KVM)

Binbin Zhang1, Xiaolin Wang1, Rongfeng Lai1, Liang Yang1, Zhenlin Wang2,
Yingwei Luo1 and Xiaoming Li1

1) Dept. of Computer Science and Technology, Peking University, Beijing, China, 100871
2) Dept. of Computer Science, Michigan Technological University, Houghton, USA

{wxl, lyw}@pku.edu.cn, zlwang@mtu.edu

Abstract. I/O virtualization performance is an important problem in KVM. In
this paper, we evaluate KVM I/O performance and propose several
optimizations for improvement. First, we reduce VM Exits by merging
successive I/O instructions and decreasing the frequency of timer interrupt.
Second, we simplify the Guest OS by removing redundant operations when the
guest OS operates in a virtual environment. We eliminate the operations that are
useless in the virtual environment and bypass the I/O scheduling in the Guest
OS whose results will be rescheduled in the Host OS. We also change NIC
driver’s configuration in Guest OS to adapt the virtual environment for better
performance.

Key words: Virtualization, KVM, I/O Virtualization, Optimization

1. Introduction

Software emulation is used as the key technique in I/O device virtualization in
Kernel-based Virtual Machine (KVM). KVM uses a kernel module to intercept I/O
requests from a Guest OS, and passes them to QEMU, an emulator running on the
user space of Host OS. QEMU translates these requests into system calls to the Host
OS, which will access the physical devices via device drivers. This implementation of
VMM is simple, but the performance is usually not satisfactory because multiple
environments are involved in each I/O operation that results in multiple context
switches and long scheduling latency. In recent versions, KVM tries to reduce the I/O
virtualization overhead by emulating key devices in the KVM kernel module.
However, the main I/O devices are still emulated by QEMU.

In this paper, we evaluate KVM disk and network virtualization overhead and try
to optimize it by reducing the overhead of VM Exits 1 and simplifying the
corresponding virtualization operations in Guest OS.

1 A VM Exit is a context switch from Guest OS to VMM. When a sensitive instruction is

executed in the Guest OS, a VM Exit will happen. After the VMM emulates the sensitive
instruction, the Guest OS can continue to work.

2 Binbin Zhang1, Xiaolin Wang1, Rongfeng Lai1, Liang Yang1, Zhenlin Wang2, Yingwei
Luo1 and Xiaoming Li1

The rest of the paper is organized as follows. Section 2 evaluates disk and network
performance in a KVM guest. Section 3 presents our optimizations and evaluations.
Section 4 discusses related work. And we conclude the paper in Section 5.

2. KVM I/O Performance Evaluation

A software emulation-based I/O virtualization technique, which is used by KVM
and most other host-based VMMs, causes a significant performance overhead. To
analyze the sources of the overhead, we begin with a serial of experimental
evaluations of KVM's disk and network I/O virtualization performance. We use
bonnie++ [6] to evaluate the performance of disk I/O operations, such as
character/block read and write, random/sequential read and write. And we use netperf
[7] to evaluate network I/O performance, including data throughput, latency, and CPU
utilization rate during sending and receiving data using TCP and UDP protocols.
Finally, we use SPECjbb [8] to emulate data warehouse’s I/O workload.

2.1 Disk I/O Performance

Test-bed: Intel Core 2 Quad Q9550, 2.83GHz, 4G RAM, 500G SATA disk, Linux
2.6.27.7, KVM-76 with default configuration, and the virtual machine uses raw disk
image.

Results: We run Bonnie++ which evaluates the file system calls in the Guest OS.
Figure 1 illustrates the throughput of the sequential block write benchmarking, as

well as the CPU utilization rate during the experiments, of the virtual machine and the
native machine.

Sequential Block Writes

0

10000

20000

30000

40000

50000

60000

70000

80000

256B 512B 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M

Block size

T
h
r
o
ug
h
p
u
t
(
K
b
/
s
)

0

10

20

30

40

50

60

70

C
P
U

u
t
i
li
z
a
t
i
o
n
(
%
)

Throughput(Native) Throughput(KVM)

CPU utilization(Native) CPU utilization(KVM)
Fig. 1. Comparison of the performance between Native and KVM - Sequential block writes

Evaluating and Optimizing I/O Virtualization in Kernel-based Virtual Machine (KVM) 3

From Figure 1, it can be observed that the throughput and CPU utilization of
sequential block writes on the virtual machine is only about a half compared to the
native machine.

Figure 2 illustrates the throughput of the sequential block read benchmarking, as
well as the CPU utilization rate during the experiments, of the virtual machine and the
Native machine.

Sequential Block Reads

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

256B 512B 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M
Block size

T
h
r
o
u
g
h
p
u
t

(
K
b
/
s
)

0

10

20

30

40

50

60

70

C
P
U

u
t
i
l
i
z
a
t
i
o
n

(
%
)

Throughput(Native) Throughput(KVM)

CPU utilization(Native) CPU utilization(KVM)
Fig. 2. Comparison of the performance between Native and KVM – Sequential block reads

It can be observed that the throughput of the sequential block read of the virtual
machine is very close to that of the Native machine. However, when the size of the
disk block is less than 4K, the CPU utilization of the virtual machine is much higher
than that of the Native. The reason is that when bonnie++ is reading disk, the data can
be frequently hit in the disk cache instead of actually accessing the actual disk during
such experiments.

From the experimental data shown in Fig.1 and Fig. 2, it can be deduced that the
key to achieve better performance of disk I/O is to improve write throughput and
reduce the CPU overhead during disk-reading.

2.2 Network Performance

Test-bed: Two physical machines, HostA and HostB, both using Gigabit Ethernet.
HostA works with 82566DC NIC and HostB works with 82567LM-2 NIC. One
virtual machine (named GuestB) runs on HostB with KVM-76.

Ping-pong benchmarking: The Round Trip Time (RTT) between HostA and
HostB, between HostB and GuestB and that between HostA and GuestB are measured
and illustrated in Figure 3.

4 Binbin Zhang1, Xiaolin Wang1, Rongfeng Lai1, Liang Yang1, Zhenlin Wang2, Yingwei
Luo1 and Xiaoming Li1

Ping-pong Benchmarking

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

HostA ping
HostB

HostB ping
GuestB

HostA ping
GuestB

HostB ping
HostA

GuestB
ping HostB

GuestB
ping HostA

R
T
T
(
m
s
)

RTT
Fig. 3. Ping-pong benchmarking results

Based on Figure 3, we are able to estimate the additional network overhead
brought by virtualization. Packet transmission time from HostA to GuestB is 0.378
ms, which is equivalent to the transmission time form HostA to HostB (0.234 ms)
plus the transmission time from HostB to GuestB (0.126 ms). That is true when the
transmission reverses, from GuestB to HostA. That means transmission time between
HostB and GuestB can be considered as the virtualization overhead. More accurately,
this time overhead accounts for 33% of the transmission time between HostA and
GuestB.

Netperf Tests: The throughput and latency between the client and the server is
measured using Netperf, and illustrated in Figure 4.

Experiments: 1. Run the netperf server on remote HostA. 2. HostB tests using
netperf client. 3. GuestB tests using netperf client, with various configurations, e.g.
different virtual NIC and different drivers. Figure 4 shows the result.

Netperf

0

0.2

0.4

0.6

0.8

1

1.2

TCP Stream(Mb/s) UDP Stream(Mb/s) TCP RR(Trans/s) Udp RR(Trans/s)

Native(e1000e) KVM(e1000) KVM(e1000+NAPI) KVM(rtl8139)

Fig. 4. Netperf benchmark test, Guest OS used different NIC configurations - virtual e1000
NIC (e1000 driver, e1000 driver with NAPI support), virtual rtl8139 NIC

Evaluating and Optimizing I/O Virtualization in Kernel-based Virtual Machine (KVM) 5

According to the conclusion in Experiment 1 based on ping-pong benchmarking,
the throughput on the virtual machine should be 2/3 of that of the Native. In other
words, the throughput should be approximately 600Mb/s, not at the level of 400Mb/s
as measured. This gap indicates that data processing in the VMM and the Host OS
may cause an additional overhead.

From Figure 4, it can be also observed that the virtual device capability greatly
influences network performance in a virtual environment.

2.3 Instruction Level Evaluation

To further analyze the reasons of such performance degradation, we intercept the
operations issued by Guest OS that result in VM Exits during the SPECjbb and
Netperf tests. The top 5 functions, named the hot functions which result in most VM
Exits, are listed in Table 1 and Table 2. It can be observed that I/O operations have a
certain hot code effect, that is, a small number of instructions cause lots of VM Exits.
So we can optimize these hot functions to decrease the virtualization overheads.

Table 1. Hot functions during SPECjbb test on KVM VM

 Trap address Trap count Trap time(s)/percentage(%) Trap function
1 0xc041be3f 607251 4.29 / 17.66 ack_ioapic_irq
2 0xc042ffa6 602546 0.10 / 0.41 __do_softirq
3 0xc0407cf9 600625 0.38 / 1.55 timer_interrupt
4 0xc041add2 600223 8.57 / 35.28 smp_apic_timer_interrupt
5 0xc0407cf7 600092 3.08 / 12.68 timer_interrupt

Table 2. Hot functions during Netperf test on KVM VM

 Trap address Trap count Trap time(s)/percentage(%) Trap function
1 0xc04ee0fc 16545487 101.64 / 26.03 ioread16
2 0xc04ee0d1 14317411 85.33 / 21.85 iowrite16
3 0xc04ee153 7636364 62.26 / 15.94 ioread32
4 0xc04edfe4 6045896 44.53 / 11.40 ioread8
5 0xc0623d05 4401573 0.73 / 0.19 _spin_lock_irqrestore

Additionally, in the SPECjbb test, the timer interrupt routine is one of the top 5
time consumers. Therefore, optimization on timer interrupts will improve SPECjbb
performance.

We also intercept hot functions in the Bonnie++ benchmark, and the top 5 hot
functions are shown in Table 3. Because these functions are frequently called here
and there, we further intercepted the caller functions.

Table 3. Hot functions during Bonnie++ test on KVM VM

 Trap address Trap function Caller function address Caller function
1 0xc06442dd acpi_pm_read 0xc06442e7 verify_pmtmr_rate
2 0xc0547047 iowrite8 0xc05e8fe3 ata_sff_dev_select
3 0xc0546f3c ioread8 0xc05eaa44 ata_bmdma_status
4 0xc05470ff iowrite32 0xc05ea9c2 ata_bmdma_setup

We observe that the top caller function verify_pmtmr_rate is used to read the clock
on motherboard. It is redundant in the virtual environment and thus can be eliminated.

6 Binbin Zhang1, Xiaolin Wang1, Rongfeng Lai1, Liang Yang1, Zhenlin Wang2, Yingwei
Luo1 and Xiaoming Li1

3. Optimization and Evaluation

Based on the experiment results in Section 2, we focus on reducing context
switches and simplifying the Guest OS to optimize KVM I/O virtualization. We
discuss our optimization methods in this section.

3.1 Reducing the Context Switching

There are multiple occasions for context switching at each I/O operation in KVM,
including the context switching among the Guest OS, KVM, and the Host OS. Most
switches are caused by the KVM architecture, but the switches between the Guest OS
and KVM depend on the behavior of the Guest OS, which may lead to other context
switches. If we can modify Guest OS’ behavior and remove some VM Exits, the
context switches will be reduced. From the instruction test results in Section 2.3, it
can be observed that I/O operations in Guest OS are clustered to a certain extent.
Some I/O instructions bring a lot of VM Exits, and it can be further optimized.

3.1.1 Merging Successive I/O Instructions
When an I/O instruction is executed in a Guest OS, it will cause a VM exit to

KVM. In the Guest OS disk driver, some code fragments include successive I/O
instructions, which will cause multiple consecutive VM Exits. If we merge these
instructions into a single operation, only a single VM Exit is needed to handle the
multiple Guest I/O instructions.

We merge the successive I/O instructions to a single vmcall, which will exit to
KVM actively. The method is to put information of each instruction into a queue,
including IN/OUT, port number, and the value. The address and the length of the
queue are passed to KVM as the parameters of vmcall. KVM will get information of
each instruction from the queue, and emulate them one by one.

For example, Figure 5 is a code fragment in a function (__ide_do_rw_disk) in the
disk driver code (/driver/ide/ide-disk.c).

/driver/ide/ide-disk.c
hwif->OUTB(tasklets[1], IDE_FEATURE_REG);
hwif->OUTB(tasklets[3], IDE_NSECTOR_REG);
hwif->OUTB(tasklets[7], IDE_SECTOR_REG);
hwif->OUTB(tasklets[8], IDE_LCYL_REG);
hwif->OUTB(tasklets[9], IDE_HCYL_REG);
hwif->OUTB(tasklets[0], IDE_FEATURE_REG);
hwif->OUTB(tasklets[2], IDE_NSECTOR_REG);
hwif->OUTB(tasklets[4], IDE_SECTOR_REG);
hwif->OUTB(tasklets[5], IDE_LCYL_REG);
hwif->OUTB(tasklets[6], IDE_HCYL_REG);
hwif->OUTB(0x00|drive->select.all,IDE_SELECT_REG);

Fig. 5. A code fragment including successive I/O instructions

Evaluating and Optimizing I/O Virtualization in Kernel-based Virtual Machine (KVM) 7

11 I/O instructions will be executed concecutively which yield 11 VM Exits. Our
approach merges them into one vmcall as the following. The fragment after
replacement is illustrated in Figure 6.

/driver/ide/ide-disk.c
struct io_insn io_out[11]; // the queue to restore instruction information
usigned long io_gpa, io_len;
#define IO_OUT(x, _type, _val, _port) \
 io_out[x].type = _type, \
 io_out[x].port = _port, \
 io_out[x].val = _val

//put information of I/O instructions into the queue:
IO_OUT(0, OUTB, tasklets[1], IDE_FEATURE_REG);
IO_OUT(1, OUTB, tasklets[3], IDE_NSECTOR_REG);
IO_OUT(2, OUTB, tasklets[7], IDE_SECTOR_REG);
IO_OUT(3, OUTB, tasklets[8], IDE_LCYL_REG);
IO_OUT(4, OUTB, tasklets[9], IDE_HCYL_REG);
IO_OUT(5, OUTB, tasklets[0], IDE_FEATURE_REG);
IO_OUT(6, OUTB, tasklets[2], IDE_NSECTOR_REG);
IO_OUT(7, OUTB, tasklets[4], IDE_SECTOR_REG);
IO_OUT(8, OUTB, tasklets[5], IDE_LCYL_REG);
IO_OUT(9, OUTB, tasklets[6], IDE_HCYL_REG);
IO_OUT(10, OUTB, 0x00|drive->select.all, IDE_SELECT_REG);

//because the address space is different between KVM and Guest OS, we should translate

io_insn address into physical address:
io_gpa = virt_to_phys((unsigned long)io_out);
io_len = 11; // the number of I/O instructions we have replaced
vmcall(XKVM_IO_COALESCE, io_gpa, io_len, 0); // vmcall to exit into KVM, the

parameters include the address and the length of io_insn.

Fig. 6. The code fragment - The successive I/O instructions are replaced into a vmcall

We have modified two fragments which include successive port I/O instructions.
And the number of VM Exits caused by I/O instructions is reduced. We count the
number of VM Exits caused by inb and outb, and the result is in Table 4:

Table 4. The number of VM Exits caused by inb and outb

Instruction address Before modification After modification
0xc054fcc0 111050 17226
0xc054ecf0 15864 2343

This method is actually borrowed from para-virtualization[5], which reduces
context switches between the Guest OS and the VMM via modifying the Guest OS.
We now only implement static modification. In the future we will try to implement
dynamic modification, which is to replace the code fragments on the fly when the
Guest OS is running. One method is to monitor Guest OS execution, locate the
fragment which present lots of VM Exits caused by I/O operations, merge the

8 Binbin Zhang1, Xiaolin Wang1, Rongfeng Lai1, Liang Yang1, Zhenlin Wang2, Yingwei
Luo1 and Xiaoming Li1

successive I/O instructions and produce the new fragment, then insert jump
instructions to replace the old fragment. Another method is to prefetch following
instructions after a VM Exit occurs. If there are I/O instructions following the current
one, emulate them all at once, and then switch back to Guest OS.

We evaluate the performance of our optimization. Unfortunately, the result is not
promising. The CPU overhead is somewhat reduced, but I/O throughput is nearly the
same. This may be because we only reduce the overhead brought by context switches,
but the operation after VM Exit is not modified. Therefore the cost of VM Exit and
VM Entry is not the main reason for the performance overhead.

3.1.2 Reducing the Timer Interrupts
Timer interrupt is another cause of VM Exits. When a timer interrupt happens, a

VM Exit will occur. For non-real-time applications, we can reduce the timer
frequency to reduce VM Exits.

KVM emulates a PIT (Programmable Interval Timer) for each Guest. The PIT can
trigger timer interrupts at a programmed frequency. A PIT consists of an oscillator
which produces clock signal at the frequency of (roughly) 1193182HZ. When a clock
signal generated, the counter in PIT channel 0 is decreased by 1. When the counter
reaches 0, PIT will generate a timer interrupt. The virtual PIT works in a similar way.
So if we modify the initial value of the counter in PIT channel 0, the timer frequency
is modified. For example, if the counter in PIT channel 0 is initialized 1193, the timer
frequency is 1000HZ (1193182/1193). And if the counter is initialized 11932, the
timer frequency is 100HZ. If the value initialized by the Guest OS is modified, the
timer frequency is modified transparently to Guest OS. The implementation is simple:
We only need to modify pit_load_count function.

We decrease the Guest actual timer frequency to 100HZ, and we compared its I/O
performance to the Guest when the timer frequency is 1000HZ.

Bonnie++

0.9

0.95

1

1.05

1.1

1.15

1.2

putc write rewrite getc s create r createvHZ1000

vHZ100

SPECjbb

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

1 2 3 4 5 6 7 8 average
Warehouses

vHZ1000

vHZ100
(a) Bonnie++ (b) SPECjbb

Fig. 7. Timer Interrupt Evaluation

It can be observed in Figure 7 that the lower timer frequency results up to 15%
performance improvement.

Evaluating and Optimizing I/O Virtualization in Kernel-based Virtual Machine (KVM) 9

3.2 Simplifying Guest OS

A virtual environment is different from a native one. There may be some Guest OS
operations that become redundant when the OS operates in a virtual environment. If
these redundant operations are removed, the Guest OS can be more efficient.

3.2.1 Removing the Redundant Operations
We try to locate and remove redundant operations in a Guest OS. An example is

verify_pmtmr_rate. This function causes the most VM Exits during bonnie++ running
(see Section 2.3). It is used to adjust timer on the motherboard, which is useless in a
virtual environment. We modify the Guest OS by simply removing this function.

The result is illustrated in Figure 8. The write performance is improved across all
block sizes.

Block Write Throughput

10200

10300

10400

10500

10600

10700

10800

10900

11000

11100

11200

256B 512B 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K

Block size

T
hr

ou
gh

p
ut

(K
b/

s
)

before after
Fig. 8. Write performance (before and after verify_pmtmr_rate removed)

Another redundant operation is I/O scheduling in the Guest OS, because all the I/O
requests scheduled by the Guest OS will always rescheduled in the Host OS. The
scheduler in the Guest OS is thus redundant. For one thing, the Guest OS is unaware
of the physical disk information, therefore the results of this scheduler may not be
helpful anyway. For another, when multiple Guest OSes operate simultaneously, the
Host OS must reschedule I/O requests from all Guest OSs and try to maximize the
whole system performance. We remove the I/O scheduler in the Guest OS, and I/O
requests are directly submitted to drivers. After our optimization, the throughput of
block writes on the virtual machine increases by 6.01%; while throughput of block
reads increases by 5.64% (the Host OS uses CFQ I/O scheduler [12] by default). The
disadvantage is that all the I/O requests will be submitted in the order of FIFO when
the I/O scheduling is eliminated. We cannot arrange set up performance quotas
without the I/O scheduler.

3.2.2 Optimizing NIC Driver in Guest OS
A NAPI function is used to reduce interrupt frequency via interrupt masking. But

in a virtual environment, a virtual NIC can’t generate interrupts directly. So the NAPI
support in the NIC driver in the Guest OS is useless and time-consuming. We remove

10 Binbin Zhang1, Xiaolin Wang1, Rongfeng Lai1, Liang Yang1, Zhenlin Wang2, Yingwei
Luo1 and Xiaoming Li1

the NAPI support from the NIC driver in the Guest OS, and evaluate the performance.
The result is illustrated in Figures 9.

Netperf

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

TCP Stream UDP Stream TCP RR UDP RR

KVM(e1000+NAPI) KVM(e1000)
Fig. 9. Netperf performance (with/without NAPI support)

It can be observed that this optimization improves network throughput. In TCP
/UDP Stream and UDP Request/Response test, after NAPI support is removed from
the NIC driver, the throughput is increased by more than 60%.

4. Related Work

This section discusses the related work that focuses on reducing context switching
overhead and modifying Guest OS.

4.1 Reducing the Context Switching Overhead

There are two ways to reduce context switching cost. One is to lower the frequency
of such operations, and the other is to reduce the cost of each switching.

Submission in batch is one way to reduce context switch frequency. And another
way is to reduce device interrupt if possible. Sugerman et al. [1] have implemented
batch submission based VMware Workstation. When the context switch frequency
exceeds a certain threshold, the requests will be queued in a cache until the next
interrupt happens, and then all queued requests can be handled at one time. This
method can also reduce the IRQ transfer cost because only one IRQ is needed once
the batch of requests is complete. Another optimization by Sugerman et al. [1] is to
improve the Guest driver protocol. They design an interface suitable for a virtual
environment. For example, this interface avoids the I/O instructions accessing device
status. And it can reduce the number of virtual IRQs which cause context switching
between a VMM and a VM. Virtio (R. Russell [4]) is a general device driver which
provides the same operation process for block and network devices. Virtio uses para-
virtualization for reference, and can be used by various VMMs. The implementation
is to maintain buffer rings based on shared memory between a Guest OS and a VMM.
One of them posts to the rings, while the other consumes them. And an event

Evaluating and Optimizing I/O Virtualization in Kernel-based Virtual Machine (KVM) 11

notification mechanism is implemented. When buffers are added to the ring, the other
side will be notified. This notification can be masked, to facilitate batching and reduce
context switching.

Reduce the cost of each switch is to simplify the operations during each switching.
Sugerman et al. [1] modify the process switch operation in a Guest OS on VMware
Workstation. When switching to the idle task, the page table is not reloaded, since the
idle task is a kernel thread, and can use any process’s page table. This optimization
cuts the virtualization overhead caused by MMU by a half.

In addition, Sugerman et al. try to optimize VMware Workstation via Host OS
bypassing. The optimization is to make the VMM access hardware device directly,
and thus avoid context switching between the VMM and the Host OS. This method is
employed by full virtualization systems, e.g., VMware ESX Server.

Another cost is due to TLB misses and cache misses after context switches.
Aravind Menon et al. [2] enhance the Guest OS in Xen and make it support advanced
virtual memory management, e.g. superpage and global page mapping, which greatly
reduces TLB misses caused by context switches.

4.2 Simplifying Guest OS

Ram et al. [3] manage to reduce the overhead in a Guest OS in three aspects.
Firstly, they implement LRO (Large Receive Offload) which combines a number of
data packets into one large-sized TCP/IP packet, so that a large amount of data can be
handled during a single protocol stack process. Secondly, they reduce the buffer size
to half-page which can reduce the working set and thereby reduce the TLB miss rate.

Menon et al. [2] improve Xen’s virtual network interface to support offload
features which is supported by most NICs (if the hardware does not support offload,
then the Driver domain can simulate it, which can also improve performance).
Offload functions include scatter/gather I/O, TCP/IP checksum offload, TCP
segmentation offload (TSO). Scatter/gather I/O supports continuous DMA operation
with non-contiguous memory. TSO reduces the number of packets to be processed.
Checksum offload reduces the Guest OS loads.

Most other optimizations specifically focus on the architecture of Xen, which are
not very helpful to other VMMs.

A series of hardware assistance and specifications try to assist device virtualization
from the hardware level, including Intel VT-d [9], AMD IOMMU [10], and PCI-SIG
IOV [11]. VT-d and IOMMU are similar. They ensure the isolation of I/O address
space between different VMs. An I/O MMU, similar to MMU, is installed on the PCI
bridge to translate DMA addresses to machine memory addresses. And an IOTLB
accelerates this translation. PCI-SIG IOV includes ATS (Address Translation
Services), SR-IOV (Single Root IOV), and MR-IOV (Multi-Root IOV). A series of
specifications help I/O address translation and let the devices provide multiple
interfaces for multiple VMs direct access.

These new technologies and specifications help a guest to access hardware devices
directly, avoiding virtualization overhead and simplifying implementation of I/O
virtualization. Future research on optimizing I/O virtualization must try to focus on
how to optimize the Guest OS to make it more efficient in the virtual environment.

12 Binbin Zhang1, Xiaolin Wang1, Rongfeng Lai1, Liang Yang1, Zhenlin Wang2, Yingwei
Luo1 and Xiaoming Li1

Another direction is to examine how to make the Guest OS, the VMM, and the Host
OS work better in coordination with each other.

5. Conclusion

We evaluate KVM I/O performance and propose some methods to optimize it. We
reduce VM Exits by merging successive I/O instructions and decreasing the frequency
of timer interrupt. And we simplify Guest OS by removing redundant operations in
the virtual environment.

Guest OS simplification will be an important direction in future research to
optimize VMM performance. We will continue to research on how to make a Guest
OS more efficient in a virtual environment and how to make the Guest OS, the VMM,
and the Host OS coordinate with each other better.

Acknowledgement

This work is supported by the National Grand Fundamental Research 973 Program
of China under Grant No. 2007CB310900, National Science Foundation of China
under Grant No.90718028 and No. 60873052, National High Technology Research
863 Program of China under Grant No.2008AA01Z112, and MOE-Intel Information
Technology Foundation under Grant No. MOE-INTEL-08-09. Zhenlin Wang is also
supported by NSF Career CCF0643664.

References

[1] Jeremy, Sugerman, Ganesh, Venkitachalam and Beng-Hong, Lim. Virtualizing I/O Device
on VMware Workstation's Hosted Virtual Machine Monitor. Proceddings of the 2001
USENIX Annual Technical Conference. June 2001.

[2] Aravind Menon, Alan L. Cox, Willy Zwaenepoel, Optimizing network virtualization in Xen,
Proceedings of the Annual Technical Conference on USENIX'06 Annual Technical
Conference , 2006

[3] K. K. Ram, J. R. Santos, Y. Turner, A. L. Cox and S. Rixner, Achieving 10 Gb/s using safe
and transparent network interface virtualization. Proceedings of the 2009 ACM
SIGPLAN/SIGOPS international conference on Virtual execution environments, 2009.

[4]R. Russell, virtio: Towards a De-Facto Standard For Virtual I/O Devices. Operating System
Review, Volume 42 , Issue 5, p. 95–103, 2008.

[5] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt, and
A. Warfield. Xen and the Art of Virtualization. Proceedings of the 19th ACM SOSP, 2003.

[6]bonnie++. [Online] http://www.coker.com.au/bonnie++/
[7]netperf. [Online] http://www.netperf.org/netperf/
[8]SPEC JBB2005. [Online] http://www.spec.org/jbb2005/
[9] Intel Corporation. Intel® Virtualization Technology for Directed I/O Architecture

Specification, 2007.

Evaluating and Optimizing I/O Virtualization in Kernel-based Virtual Machine (KVM) 13

[Online] http://download.intel.com/technology/computing/vptech/Intel(r)_VT_for_Direct_IO.pdf
[10]Advanced Micro Devices, Inc. ADM I/O Virtualization Technology (IOMMU)

Specification, 2007
[Online] http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/34434.pdf

[11]PCI-SIG. I/O Virtualization, 2007, [Online] http://www.pcisig.com/specifications/iov/
[12]J. Axboe, Time Sliced CFQ I/O Scheduler, [Online] http://kerneltrap.org/node/4406.

