
Measuring the Normality of Web Proxies’

Behavior Based on Locality Principles

Yi Xie and Shun-zheng Yu

Department of Electrical and Communication Engineering,
Sun Yat-Sen University, Guangzhou 510275, P.R. China

xieyicn@163.com, syu@sysu.edu.cn

Abstract. Web Proxy and cache play important roles in the modern
Internet. Although much work has been done on them, few studies were
focused on the fact that these trusted intermediaries may be utilized to
launch Web-based attacks and to shield the attackers’ malicious behav-
ior. This paper fills an void in this area by proposing a new server-side
detection scheme based on the behavior characteristics of proxy-to-server
Web traffic. Proxy’s access behavior is extracted from the temporal lo-
cality and the bytes of the requested objects. A stochastic process based
on Gaussian mixtures hidden semi-Markov model is applied to describe
the dynamic variability of the observed variables. The entropies of those
pending Web traffics launched by proxies fitting to the model are used
as the criterion for attack detection. Experiments based on the real Web
traffic and an emulated attack are implemented to valid the proposal.

1 Introduction

Since 1994, Web proxies and caches have been widely deployed to reduce network
traffic and provide better response time for Web accesses. The primary aim of
proxy is to allow users to access the Web within a firewall. This type proxy
runs on a firewall machine and waits for a request from inside the firewall, then,
forwards the request to the remote server outside the firewall, reads the response
and then sends it back to the client. Apart from letting clients access resources
on the Web, proxies have various uses including sharing of various resources,
caching, anonymization, transformation of requests/responses, transfer between
different protocol system, and filtering/modifying requests/responses. Although
many studies have been done on Web proxy, most of them were only focused
on performance improvement (e.g., hit ratio, prefetch algorithm, item update
model) instead of the security issues.

In this paper, we study the server-side security issues caused by Web prox-
ies and explore the early detection for a new type Web-based attack which is
launched by utilizing the vulnerabilities of Web proxy based on HTTP protocol.
Being different from other traditional Web-based attacks whose aim is only to
shut down the victim or steal customs’ privacy information or illegally use Web
applications, such attack usually prevents legitimate users from using the ser-
vice by consuming server’s available CPU slots and memory resources. In order

2

to avoid the server-side detection and Web proxies’ bypassing, attackers may
keep the victim server alive and locate behind proxies during the attack period.
The malicious attack behavior are tunneled to the Web server by utilizing vari-
ous types of HTTP requests (e.g., dynamic Web pages or HTTP requests with
“No-Cache” headers).

The motivations of proposing a scheme for such attack exist in many as-
pects: (i) This type attack utilizes the HTTP and the opening TCP port 80
to pass all low-layer firewalls and anomaly detection systems, thus, most de-
tection methods based on IP header or TCP connection (e.g., those surveyed
in [1]) become invalid. (ii) According to the “request-response” mechanism of
HTTP, Web server has to return response for each incoming request. This work-
ing method creates the chance of attack. Furthermore, attackers may also use
the normal but expensive computational complexity HTTP requests to consume
the server-side resources, thus, it is difficult for those designed for flooding at-
tacks and SQL injection attacks (e.g., [2] [3]) to discover the anomaly signals of
such attack. (iii) Attackers are often unseen to the Web server because of the
anonymization function of hierarchical proxy architecture. (iv) Measuring the
system resource consumption rate (e.g., CPU or memory utilization) maybe a
good way to discover the abnormalities caused by such attack. However, this
method is not conducive to the early detection or realtime monitoring because
when the monitor finds the system resources are occupied abnormally, attack has
been successfully going on for a very long time. To the best of our knowledge,
few work has been done on this field. This paper proposes a novel server-side
anomaly detection scheme to meet this new challenge and fills an void in this
area based on proxies’ access behavior. The remainder of this paper is orga-
nized as follows. In section 2, we introduce rational of our scheme. We valid the
proposal by the experiments in section 3 and conclude this work in section 4.

2 Rationale of the Proposed Scheme

Much previous work has approved that statistics is a good method for anomaly
detection. Thus, our scheme is also based on statistical methods. One differ-
ence between our method and other existing anomaly detection systems is that
we implement the anomaly detection by measuring the normality of proxies’
application-layer access behavior instead of the IP headers or TCP connections.
In order to achieve this aim, we introduce a new way based on temporal locality
to extract the access behavior of Web proxies. Then a stochastic process based
on Gaussian mixtures hidden semi-Markov Model is used to describe the vari-
ety of the normal access behavior and implement the anomaly detection for the
pending proxy-to-sever Web traffic.

2.1 Stack distance model for temporal locality

Temporal locality of reference is one of the cornerstones of computer science.
Primitively, it was born from efforts to make virtual memory systems work well

3

. After that, temporal locality has been widely applied in many fields, e.g., Mem-
ory behavior [4], CPU cache [5], program behavior [6], Characterizing reference
pattern of Web access [7] and Web proxy cache replacement strategy and per-
formance improvement [8].

Intuitively, temporal locality refers to the property/likehood that referencing
behavior in the recent past is a good predictor of the referencing behavior to be
seen in the near future, whereas resource popularity metric only represents the
frequency of the requests without indicating the spacing between the requests,
i.e., the correlation between a reference to a document and the time since it was
last accessed.

The temporal locality of Web traffic can be defined by the following proba-
bility function:

F (t)
def
= Prob[document i is referenced at time

x + t | document i was last referenced at time x]
(1)

Stack distance model is often utilized to capture the temporal locality rela-
tionships in most previous work, e.g., [7]. We denote a reference stream Ri =
{r1, r2, · · · , ri}, where ri denotes the ith requested document’s name. Index
i indicates that i requests have already arrived at a server. We define the
least recently used (LRU) stack Li, which is an ordering of all documents of
a server by recency of usage. Thus, at index i, the LRU stack is given by
Li = {u1, u2, · · · , uN}, where u1, u2, · · · , uN are documents of the server and u1

is the most recently accessed document, u2 the next most recently referenced, etc.
In other words, u1 is just accessed at index i, i.e., ri = u1. Whenever a reference
is made to an document, the stack must be update. Considering that ri+1 = uj ,
then the stack becomes Li+1 = {uj, u1, u2, · · · , uN}. Suppose now that Li−1 =
{u1, u2, · · · , uN} and ri = uj, i.e., the request ri is at distance j in stack Li−1.
Let di denote the stack depth of the document referenced at index i. Then, a
new relation can be obtained by the following equation “if ri = uj then di = j”,
where j denotes the stack depth of the requested document at index i. An ex-
ample of this LRU stack model is shown in Figure 1. Based on the initial stack
(L0 = {C, E, A, D, B}), the final stack distance sequence correspondent to the in-
put reference string (R9 = {A, D, C, A, B, D, E, A, B}) is {3, 4, 3, 3, 5, 4, 5, 4, 4}.
In other words, the reference symbol stream Ri = {r1, r2, · · · , ri} is transformed
to a numerical stream Di = {d1, d2, · · · , di} based on stack distance model.

2.2 Profiling the access behavior

Since we focus on the anomaly detection of proxy-to-server Web traffic, we need
to profile the normal proxy behavior. Much previous work on Web proxy [7] [8]
has approved stack of object references is a good model for characterizing the
behavior of proxies and caches. The main advantage of stack distance model
for describing the Web proxies’ access behavior is that a request string can be
converted into a distance string that preserves the pattern of activity, but does

4

A

B

C

D

E

Request

index

Reference

sequence

LRU

Stack

3

A

B

C

D

E

A D C A B D E A B

Stack distance

0 87654321 9

4

A

B

C

D

E

3

A

B

C

D

E

3

A

B

C

D

E

5

A

B

C

D

E

4

A

B

C

D

E

5

A

B

C

D

E

4

A

B

C

D

E

4

A

B

C

D

E

Fig. 1. Least recently used stack model

not depend on document names. For these reasons, we apply the stack distance
model to extract the proxy behavior characteristics in this paper.

Considering downloading is another main factor affecting the server perfor-
mance, we also take into account the bytes of requested documents. One problem
of obtaining the bytes of requested documents is, if the requests are for dynamic
Web pages, front-end detection system may not know the exact values of bytes
before the server responds the requests. If we put the detection system on the
outgoing path, it will be not conducive to the realtime detection. Thus, we use
a compromise solution to resolve this issue here. We build a database to record
the bytes of previously visited documents or routines (e.g., JAVA scripts). When
a request arrives at the front-end detection system, the system looks up the
database and estimate the bytes of its corresponding response. If the requested
document or routine can not be found in the database, we will use the mean
bytes of the documents/routines recorded in database. In order to avoid confu-
sion between the estimated bytes value and the actual one, we call the response
bytes used in this paper as “prospective return bytes (PRBs)”. The PRBs of the
corresponding document or routine recorded in the database will be updated by
exponential forgetting based on the server’s response if the incoming request is
legitimate:

si(j) = (1 − ρ)si(j − 1) + ρsij , 1 ≥ ρ ≥ 0 (2)

where ρ is the decay rate, si(j) and sij is the new PRBs and the real response
bytes value of the ith object (document/routin) requested at the jth time.

Thus, assuming a HTTP reference stream Ri = {r1, r2, · · · , ri}, we have two
corresponding numerical streams:Di = {d1, d2, · · · , di} and Si = {s1, s2, · · · , si},
where si denote the PRBs of the document referenced at index i.

If we use M(t) to denote the set of HTTP requests which appear during
the tth second, and use N(t) to denote the size (i.e., the number of requests) of
M(t), then, the average stack distance value and average PRBs per second can
be respectively calculated by the following equations:

{d̄t, s̄t} =
1

N(t)

∑

∀i:ri∈M(t)

{di, si}, t = 1, 2, ... (3)

5

For brevity of notation, we use ot to denote a time series which is made up of
d̄t and s̄t, i.e., ot = (d̄t, s̄t), where t is the index of second. Previous work [7] [8]
indicated that Web temporal locality streams are statistically self-similar or
long-range dependence and that this property can be used to explain aspects
of the request string that are the result of spatial locality [7]. This means that
correlations between object references can occur at widely varying timescales.
Such characteristics can have a significant impact on profiling the proxy-to-
server traffic. Therefore, better understanding of the nature of the temporal
locality is useful to profile the access behavior of proxy-to-server Web traffic. In
order to achieve this aim, we use a stochastic process to describe the dynamic
variation of stack distance value instead of the traditional ways designed for
proxy performance improvement based on pure statistical method (e.g., mean
or variance).

Among existing stochastic models, hidden semi-Markov Models (HsMMs) [9]
is one of the useful tools to describe most practical stochastic signals without too
many assumptions. A major advantage of using the HsMM is its efficiency in esti-
mating the model parameters to account for an observed sequence. Furthermore,
it can capture various statistical properties of time series, including long-rang
and short-rang dependence, non-stationary and the non-Markovian [10]. Thus,
HsMMs have been widely applied in many areas such as mobility tracking in
wireless networks, activity recognition in smart environments, and inference for
structured video sequences.

In this paper, we assume the time series {o1, o2, · · · , oT } is controlled by an
underlying Markov Chain. Each underlying Markov state represents one type
joint probability distribution of average stack distance value and average PRBs
per second, or say a type of proxy’s access behavior pattern. Transition of the
hidden Markov states implies the change of proxy’s access behavior pattern
from one kind to another one. Residential duration of the Markov state can be
considered as persistence of the request profile.

Let x1, x2, · · · , xM be states of a semi-Markov chain, qt denote the state
of the semi-Markov chain at time t and λ = {πm, amn, bm(ot), pm(d)} be the
parameters of a given HsMM, where πm ≡ Pr[q1 = xm|λ] is the initial state
probability function, amn = Pr[qt = xn|qt−1 = xm, λ] the state transition prob-
ability function, bm(ot) = Pr[output vector of the model is ot|qt = xm, λ] the
output probability function and pm(d) = Pr[duration of qt is d|qt = xm, λ] the
state duration probability function.

The rational and parameter estimation of discrete HsMM can be found in [9].
In this paper, we simplify the HsMM by applying the Gaussian mixtures into
the output probability function bm(ot), i.e.:

bm(ot) =

κ∑

k=1

cmkbmk(ot) =

κ∑

k=1

cmkN (ot, µmk, Σmk), (4)

where κ is known; cmk ≥ 0 for 1 ≤ m ≤ M , 1 ≤ k ≤ κ;
∑κ

k=1 cmk = 1 for 1 ≤
m ≤ M ; and N (o, µ, Σ) denotes the multi-dimensional normal density function

6

of mean vector µ and covariance matrix Σ. We also assume the transition of
hidden states obeys the Birth-death process, i.e., amn = 0 when |n − m| > 1.

We directly use the forward and backward variables and three joint proba-
bility functions defined in [9] , i.e. :

αt(m, d)
def
= P [ot

1, qt = xm, τt = d|λ] (5)

βt(m, d)
def
= P [oT

t+1|qt = xm, τt = d, λ] (6)

ζt(m, n)
def
= P [oT

1 , qt−1 = xm, qt = xn|λ] (7)

ηt(m, d)
def
= P [oT

1 , qt−1 6= xm, qt = xm, τt = d|λ] (8)

γt(m)
def
= P [oT

1 , qt = xm|λ] (9)

where τt denotes the state duration of qt. Then, We define the probability that
the kth component of the mth mixture generated observation ot as

γt(m, k)
def
= Pr(qt = m, Ymt = k|O, λ) (10)

= γt(m)
cmkbmk(ot)

bm(ot)

where Ymt is a random variable indicating the mixture component at time t for
state m. When there are E observation sequences the eth being the length of Te,
the parameters of this parametric HsMM can be iteratively calculated by:

π̂m =

E∑

e=1

γe
1(m)/E (11)

âmn =

∑E

e=1

∑Te

t=1 ζe
t (m, n)

∑E

e=1

∑Te

t=1

∑M

n=1 ζe
t (m, n)

(12)

ĉmk =

∑E

e=1

∑Te

t=1 γe
t (m, k)

∑E

e=1

∑Te

t=1 γe
t (m)

(13)

µ̂mk =

∑E

e=1

∑Te

t=1 γe
t (m, k)oe

t∑E

e=1

∑Te

t=1 γe
t (m, k)

(14)

Σ̂mk =

∑E

e=1

∑Te

t=1 γe
t (m, k)(oe

t − µmk)(oe
t − µmk)T

∑E

e=1

∑Te

t=1 γe
t (m, k)

(15)

p̂m(d) =

∑E

e=1

∑Te

t=1 ηe
t (m, d)

∑E

e=1

∑Te

t=1

∑D

d=1 ηe
t (m, d)

(16)

Most previous work have approved Viterbi algorithm is a good method for
decoding. Thus, we modify the Viterbi algorithm designed for hidden Markov

7

Model [11] for our HsMM based on the following recursion for δt(m), the poste-
rior probability of the best state sequence ending in state m at time t:

δt(m) = max
d

δ∗t−d(m)pm(d)bm(ot−d+1, ..., ot) (17)

δ∗t (m) = max
m

δ∗t (m)amn (18)

2.3 Detection Scheme

We use an average logarithmic likelihood ε(t) (i.e., entropy) of observations (ot
1)

fitting to the given HsMM (λ) as the detection criterion at the tth second. The
ε(t) is defined as Equation (19):

ε(t)
def
=

1

t
log{P [ot

1|λ]} =
1

t
log{

∑

m,d

αt(m, d)} (19)

The whole anomaly detection scheme is outlined in Figure 2. The details are
shown as the following. When a proxy’s reference string reaches the ingress of
the victim Web server, the detection scheme begins to work. First, Information
Extraction (IE) module is performed on the incoming observed data for calculat-
ing the average stack distance and requested file size (i.e., Ot = o1, o2, · · · , ot).
If the data are used for training model, they will be sent to the Iteration Cal-
culation (IC) module which will output the parameters (λ) of the model to
the Forward Process (FP). Otherwise, the observed data may be directly sent
to the FP which will form the decision of pending reference string’s normality
based on its entropy. If the decision is positive, the switch between the Data
Pool (DP) and the Service Queue (SQ) will be kept on opening to prevent those
suspected HTTP requests from entering the SQ module and affecting the Web
server performance. In order to avoid the overflow of DP, we can start a timer
while a new reference stream enters the DP. When the value of timer is zero,
the corresponding reference stream will be deleted. Once, the decision of the
pending request stream is negative, switch will be put on for transmitting the
correspondent reference string to the SQ module where the proxy’s requests are
waiting for Web Server’s response according to the First in First out (FIFO)
policy or other Quality of Service (QoS) strategies.

3 Experiments and numerical results

In this section, we use a 72 hours real Web traffic which includes 258 proxies
to valid our detection scheme. The simulation is implemented in the NS2 sim-
ulator [12] by two application-layer modules (i.e., “Web cache application” and
“PackMime-HTTP: Web Traffic Generation”). There are three phases in our
simulation: the first 24 hours traffics are used for constructing a stable tempo-
ral locality stack for proxies; the second 24 hours traffics are used for model
training and the remaining are used for testing. During the attack period, we let

8

Information

Extraction

Iteration

Calculation

Forward

Process

Web Server

Reference string
r1,r2,…,ri

Training

Parameters

Detection

decision

Service Queue

Responses
Switch

Data Pool

r1,r2,…,ri

,...2,1, to
t

,...2,1, to
t

r
1 ,r

2 ,…
,r
i

r1,r2,…,ri

Fig. 2. Detection scheme for proxy-to-server Web traffic

(a) normal Web traffic (b) emulated attack Web traffic

Fig. 3. joint distribution of stack distance and bytes in different periods

the emulated “bad” clients replay the normal users’ requests, most of which are
for dynamic contents(e.g., database searching) and large byte documents (e.g.,
audio and video). Once the “bad” requests are produced, they are sent to the
proxies. Thus, both the “bad” requests and the “good” requests of proxies are
sent to the victim Web server.

The time unit of the final observation ot is second. This time series is then
blocked into frames. Each frame spans 10 seconds or 10 observed vectors. Consec-
utive frames overlap by 5 seconds. On the other words, each frame is multiplied
by a Hamming Window with width of 10 seconds and applied every 5 seconds.

3.1 Statistical Analysis for observed data

In Figure 3 , we compare the joint distributions of stack distance and PRBs
between period of the normal Web traffic and the emulated attack period. We
can find that most points of both the normal and attack periods fall into the low-
value area. Furthermore, during the emulated attack period, the largest stack
distance value is much smaller than that of the normal period. This result shows
that it is not easy for us to distinguish the attack requests from the normal
requests sent by proxies only by the statistical properties.

9

0 2 4 6 8 10
0

0.08

0.16

0.24

0.32

0.4

logarithmic stack distance values

p
ro

b
a
b
ili

ty
 (

x
=

k
)

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

p
ro

b
a
b
ili

ty
 (

x
>

k
)

(a) normal Web traffic

0 2 4 6 8 10
0

0.08

0.16

0.24

0.32

0.4

logarithmic stack distance values

p
ro

b
a
b
ili

ty
 (

x
=

k
)

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

p
ro

b
a
b
ili

ty
 (

x
>

k
)

(b) emulated attack Web traffic

Fig. 4. marginal distribution of stack distance in different periods

0 3 6 9 12 15
0

0.1

0.2

0.3

0.4

0.5

p
ro

b
a
b
ili

ty
 (

x
=

k
)

0 3 6 9 12 15
0

0.2

0.4

0.6

0.8

1

logarithmic prospective return bytes

p
ro

b
a
b
ili

ty
 (

x
>

k
)

(a) normal Web traffic

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

p
ro

b
a
b
ili

ty
 (

x
=

k
)

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

logarithmic prospective return bytes

p
ro

b
a
b
ili

ty
 (

x
>

k
)

(b) emulated attack Web traffic

Fig. 5. marginal distribution of prospective return bytes in different periods

We plot the distribution of logarithmic stack distance values and PRBs of
different testing data in Figure 4 and Figure 5, respectively. All these figures are
Gaussian-like distributions with similar means and variances. These results also
show, it is ineffective for the pure statistical methods to distinguish the abnormal
requests from the normal ones.

3.2 Detection based on HsMM

A five-state HsMM is used in this experiment. The model parameters are ob-
tained based on the previous HsMM algorithm. In Figure 6 and Figure 7, we
use a 500 seconds Web traffic fragment of one of the sample proxies to show the
stochastic processes of stack distance values and PRBs based on HsMM. Com-
paring both the hidden state processes of normal and emulated attack testing
periods, we can find the obvious differences: dynamic range of state transition of
normal Web traffic is wider and more homogeneous than that of the evaluated
attack Web traffic. This shows the hidden semi-Markov states can be used to
extract the proxy behavior and to recognize the abnormality.

Since the hidden semi-Markov state sequences are different between the nor-
mal proxy traffic and the abnormal one, the distribution of hidden state can be

10

0 100 200 300 400 500
0

40

80

120

160

200

240

q
u
a
n
ti
z
e
d
 i
n
te

rv
a
l
o
f

s
ta

c
k
 d

is
ta

n
c
e
 v

a
lu

e
s

0 100 200 300 400 500
0

1

2

3

4

5

6

index of time(second)

in
d
e
x
 o

f
h
id

d
e
n
 s

ta
te

s

(a) stack distance sequence

0 100 200 300 400 500
0

80

160

240

320

400

480

q
u
a
n
ti
z
e
d
 i
n
te

rv
a
ls

o
f

re
q
u
e
s
ts

’
b
y
te

s

0 100 200 300 400 500
0

1

2

3

4

5

6

index of time (second)

in
d
e
x
 o

f
h
id

d
e
n
 s

ta
te

s

(b) PRB sequence

Fig. 6. profiling the normal proxies behavior by hidden states

0 100 200 300 400 500
0

30

60

90

120

150

180

q
u
a
n
ti
z
e
d
 i
n
te

rv
a
l
o
f

 s
ta

c
k
 d

is
ta

n
c
e
 v

a
lu

e
s

0 100 200 300 400 500
0

1

2

3

4

5

6

index of time(second)

in
d
e
x
 o

f
h
id

d
e
n
 s

ta
te

s

(a) stack distance sequence

0 50 100 150 200 250 300 350 400 450 500
0

90

180

270

360

450

540

q
u
a
n
ti
z
e
d
 i
n
te

rv
a
l

o
f

re
q
u
e
s
ts

’
b
y
te

s

0 50 100 150 200 250 300 350 400 450 500
0

1

2

3

4

5

6

index of time(second)

in
d
e
x
 o

f
h
id

d
e
n
 s

ta
te

s

(b) PRB sequence

Fig. 7. profiling the abnormal proxies behavior by hidden states

1 2 3 4 5
0

0.06

0.12

0.18

0.24

0.3

index of hidden states

p
ro

b
a
b
ili

ty
(x

=
k
)

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1
p
ro

b
a
b
ili

ty
 (

x
>

k
)

(a) normal Web traffic

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

p
ro

b
a
b
ili

ty
(x

=
k
)

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

index of hidden states

p
ro

b
a
b
ili

ty
(x

>
k
)

(b) emulated attack Web traffic

Fig. 8. distribution of hidden states in different periods

used intuitively for the anomaly detection. In Figure 8, we show the histograms
of hidden states.

It is not credible to draw a conclusion only based on the intuitionists results.
In order to build an automatical and numerical detection system, we use the
entropy defined in Equation (19) as the measure criterion. We show the entropy
distribution and the corresponding cumulative distribution of the training data
in Figure 9, from which we find most entropies of normal proxy-to-server Web
traffic are belong to [-10,-7]. Since the entropy distribution of normal proxy-
to-server is concentrated, it can be used as a criterion to achieve the anomaly
detection for the proxy-to-server Web traffic.

Two data sets are used to test the model performance. The first one is used
to validate the False Positive Rate (FPR) of the model. It includes the normal
proxy-to-server Web traffics which occur after the training data and are pro-

11

-16 -14 -12 -10 -8 -6
0

0.1

0.2

Entropy

P
ro

b
a
b
ili

ty
 (

x
=

k
)

-16 -14 -12 -10 -8 -6

0

0.2

0.4

0.6

0.8

1

P
ro

b
a
b
ili

ty
 (

x
<

k
)

Histogram and Cumulative distribution

of training data's entropy

Fig. 9. Entropy of training data

-16 -14 -12 -10 -8 -6
0

0.1

0.2

0.3

0.4

Entropy

P
ro

b
a
b
ili

ty
 (

x
=

k
)

-14 -12 -10 -8 -6

0

0.2

0.4

0.6

0.8

1

P
ro

b
a
b
ili

ty
 (

x
<

k
)

Histogram and Cumulative distribution

of normal data's entropy

Fig. 10. Entropy of normal testing data

Fig. 11. Entropy of emulated attack data Fig. 12. Detection performance

duced by those proxies that never appear in the training process. The second
one including the emulated attacks is used to verify the scheme’s Detection Rate
(DR). Two attack forms are considered in this experiments, which include the
dynamic page attack and the downloading attack. We plot the entropy distribu-
tions and the corresponding cumulative distributions of these two data sets in
Figure 10 and Figure 11, respectively.

Comparing Figure 9 with Figure 10 and Figure 11, we see, although the
sources and the time are quite different between the training data and the normal
test data, most entropies of them fall into the same range . The result means
the statistical properties of our observations does not depend on or bind with
the name of requested documents which are varying with time. Thus, the model
is fairly stable for the normal proxy-to-server Web traffic. However, as shown
in Figure 11, the entropy distribution of the traffic mixed with emulated attack
requests are quite different from those of previous ones, which shows the model
is sensitive to the unusual request pattern. This characteristic is very useful
for detecting the potential abnormity of proxy-to-server Web traffic. In Figure
12, we plot the receive operating characteristic (ROC) curve which shows the
FPR = 0.1% and DR = 98% when the decision threshold of entropy takes the
value of −12.

12

4 Conclusion

An early detection scheme focusing on a Web-based attack which utilizes the
proxy-to-server Web traffic to shield the attack behavior, is proposed in this pa-
per. Based on the stack distance of temporal locality, Gaussian mixtures HsMM
is applied to profile the access behavior characteristics of proxy-to-server traf-
fic and carry out the anomaly detection. The numerical results of experiment
demonstrate that the proposed method is expected to be practical in monitoring
the attacks hidden in the proxy-to-server traffic.

Acknowledgment

This work was supported by the key Program of NSFC-Guangdong Joint Funds
(Grant No.U0735002) and the National High Technology Research and Devel-
opment Program of China (Grant No.2007AA01Z449). It was performed while
the author was with George Mason University as a visiting PHD student.

References

1. Patcha, A., Park, J.: An overview of anomaly detection techniques: Existing solu-
tions and latest technological trends. Computer Networks 51(12) (2007) 3448–3470

2. Ranjan, S., Swaminathan, R., Uysal, M., Knightly, E.: DDoS-Resilient Scheduling
to Counter Application Layer Attacks under Imperfect Detection. Proceedings of
IEEE INFOCOM, Barcelona, Spain, April (2006) 1–13

3. Zhang, L., White, G.: Anomaly detection for application level network attacks
using payload keywords. Computational Intelligence in Security and Defense Ap-
plications, 2007. CISDA 2007. IEEE Symposium on (1-5 April 2007) 178–185

4. Smith, A.: Cache Memories. ACM Computing Surveys (CSUR) 14(3) (1982)
473–530

5. Hill, M., Smith, A.: Evaluating Associativity in CPU Caches. IEEE Transactions
on Computers 38(12) (1989) 1612–1630

6. Spirn, J.: Distance String Models for Program Behavior. Computer 9(11) (1976)
14–20

7. Almeida, V., Bestavros, A., Crovella, M., de Oliveira, A.: Characterizing reference
locality in the WWW. Parallel and Distributed Information Systems, 1996., Fourth
International Conference on (1996) 92–103

8. Mahanti, A., Eager, D., Williamson, C.: Temporal locality and its impact on Web
proxy cache performance. Performance Evaluation 42(2-3) (2000) 187–203

9. Yu, S.Z., Kobayashi, H.: An efficient forward-backward algorithm for an explicit-
duration hidden Markov model. Signal Processing Letters, IEEE 10(1) (2003)
11–14

10. Yu, S.Z., Liu, Z., Squillante, M., Xia, C., Zhang, L.: A hidden semi-Markov model
for web workload self-similarity. Performance, Computing, and Communications
Conference, 2002. 21st IEEE International (2002) 65–72

11. Rabiner, L.: A tutorial on hidden Markov models and selected applications inspeech
recognition. Proceedings of the IEEE 77(2) (1989) 257–286

12. NS2: (Ns2,http://www.isi.edu/nsnam/ns/)

