
Online Balancing Two Independent

Criteria

Savio S.H. Tse

Department of Computer Engineering,
Bilkent University,

Ankara 06800, Turkey.
sshtse@cs.bilkent.edu.tr

http://www.cs.bilkent.edu.tr/∼sshtse

Abstract. We study the online bicriteria load balancing problem in
this paper. We choose a system of distributed homogeneous file servers
located in a cluster as the scenario and propose two online approximate
algorithms for balancing their loads and required storage spaces.
We first revisit the best existing solution for document placement, and
rewrite it in our first algorithm by imposing some flexibilities. The sec-
ond algorithm bounds the load and storage space of each server by less
than three times of their trivial lower bounds, respectively; and more im-
portantly, for each server, the value of at least one parameter is far from
its worst case. The time complexities for both algorithm are O(log M).

Keywords: Approximate, Distributed, Online algorithm; Load balanc-
ing, Scheduling; Distributed file server; Document placement.

1 Introduction

Load balancing is a technique to achieve better coordination between en-
tities such that the load burdened on each entity should not differ too
much from that on others. In other words, load balancing is to prevent
overwhelming any small subset of entities. The problem becomes NP-hard
if we aim at evenly distributing the workload to all entities which provide
the same services, or minimizing the difference between them. Therefore,
approximate solutions are expected. The load on an entity can be its
access rate, the number of execution of some important steps for each ac-
cess, the number of bits transferred for each request, etc.. There are some
different types of approximate solutions for load balancing. A common
one is to bound the load of each entity by a limit [4, 12, 14]. Its variant is
to set the limit according to the capacity of each individual entity [3]. In
this paper, we choose the first type. In reality, there are often more than
one parameter needed to be balanced. For example, execution time and
memory utilization are two common parameters requiring simultaneous

balancing. In this paper, we address the online bicriteria load balancing
problem, and the two criteria are independent. We consider a system of
distributed homogeneous file servers in a cluster, and the parameters to
be balanced are the load and storage space. Hereafter, the single word
“load” is referred to a parameter while “load balancing” is referred to the
classical problem. The load of a document stored in the file server system
can be one of the quantities discussed above, and the storage space can be
its physical size, or the memory space needed to process the document.
The system designer can also take any other reasonable choices.

1.1 Related Works

With applying a limit to a set of homogeneous servers for bounding their
loads, the single criterion load balancing problem is basically the NP-hard
multiprocessor scheduling problem, which is reduced from the classical
problem PARTITION [8]. Many heuristics have been proposed for solving
it. The latest result was given by Fleischer and Wahl [7], which is an online

(1+
√

1+ln 2

2
)-competitive algorithm. (An online algorithm is c-competitive

if the parameter needed to be minimized is bounded by c times its optimal
values.) It is asymptotically the best known upper bound result. The
latest lower bound result is by Rudin et al. [13], which shows that no
c-competitive algorithm exists if c < 1.88.

For bicriteria load balancing, as there is one more constraint to tackle,
higher upper bounds for both load and storage space are expected. In
2001, Chen et al. gave two offline algorithms, and one of them balances
both the load and storage space [4]. It bounds the load by 4L using at
most 4S storage space, where L and S (defined in Section 2) are commonly
used as the trivial worst case lower bounds for load and storage space,
respectively. In 2005, we proposed some algorithms [14], including an
O(log M)-time online algorithm which bounds the load and storage space
of each server by klL and ksS, respectively, where kl > 2, ks > 2, and

1

kl−1
+ 1

ks−1
≤ 1. In 2006, Bilǒ et al. gave a (2M−k

M−k+1
, M+k−1

k
)-competitive

algorithm [2], where k can be any integer from 1 to M . It bounds the
load and storage space by 2M−k

M−k+1
L and M+k−1

k
S, respectively. It slightly

improves the result for the online algorithm in [14], especially for small
values of M . This is the best known result which can be generalized for
balancing multi-parameters. Note that kl < 3 ⇔ ks > 3, and 2M−k

M−k+1
<

3 − 4

M+1
⇔ M+k−1

k
> 3 − 4

M+1
. Therefore, asymptotically (M → ∞),

there is no result which can bound the load by hlL, and the storage space
by hsS, where hl and hs are any positive real numbers less than three.

1.2 Our Contribution

By modifying a technique in [14], we improve slightly on their last result in
our first algorithm. This result is essentially the same as, but more flexible
than, the upper bound result in [2]. The bounds of the load and storage
space in our first result are tlL and tsS, respectively, where tl, ts > 1 are
real numbers satisfying both 1

tl−1
+ 1

ts−1
≤ 1 + 2

M−1
and [M−1

tl−1
, M−1

ts−1
6∈

I+] =⇒ [bM−1

tl−1
c + bM−1

ts−1
c < M]. Comparing with the algorithm in [2],

practically, the advantage of our algorithm is the flexibility in choosing
suitable servers. An example in Section 3.2 shows the possibility of finding
a server which can allow us to gain a lot in storage space at the expense
of little sacrifice on load. However, we improve the searching algorithm
only for bicriteria load balancing, which is a special case for multi-criteria
load balancing tackled in [2].

We present our result in two equations, in which we can easily see the
tradeoff between the upper bounds of load and storage space, and their
symmetry and asymptotic behaviour (as M → ∞). This representation
has more theoretical benefit.

The last algorithm bounds the load and storage space of each server
by (3 − 2

M
)L and (3 − 2

M
)S, respectively, with a feature that dictates if

the load is higher than (5

2
− 3

2M
)L, then the storage space is less than

(5

2
− 3

2M
)S (and vice versa). In other words, at most one of load and

storage space in each server can get close to their upper bounds. It is
another style of load balancing, which does not exist in the literature [4,
12, 14], as far as we know.

2 Definitions and Models

Each document has two fundamental independent attributes, namely load
and size. For the convenience of discussion, assume the load of a document
to be the product of its access rate and its size plus the number of execu-
tion of some specific I/O steps. There are M servers and N documents.
The value of N changes accordingly upon each placement and deletion.
If server insertion is considered, The value of M will also increase by one
on each server insertion. For every i ∈ {1, . . . , N}, the ith document has
positive load li and size si. For convenience, assume the indices of docu-
ments will automatically shift up upon each document deletion. The load
and storage space of a server is the summation of loads and sizes of all
documents stored, respectively. For all j ∈ {1, . . . ,M}, the load of the jth
server is denoted as Lj and the storage space as Sj. We do not assume
any fixed limit on their values.

Let L and S be the average load and storage space of all servers in

the system. Therefore, L =

∑

i∈{1,...,N}
li

M
, and S =

∑

i∈{1,...,N}
si

M
. As S

is highly related to the upper bound of the cost of document recolloca-
tion, in order to keep its value reasonably small, M is assumed to be
large enough although our algorithms also work for small M . Let L be
max(maxi∈{1,...,N} li, L) and S be max(maxi∈{1,...,N} si, S). Note that L,

S, L and S only depend on the existing documents stored and the num-
ber of servers. These algorithm-independent quantities are used in the
descriptions of the upper bounds of Lj and Sj , for all j ∈ {1, . . . ,M},
respectively, for all algorithms in this paper. Clearly, L and S are trivial
lower bounds on the highest load and storage space of each server, re-
spectively. For completeness, assume L = S = 0 and L = S = 0 when
there is no document in the server system. We define the capacity index
Cj for the jth server to be

Lj

L
+

Sj

S
, for each j ∈ {1, . . . ,M}. It is a metric

that measures the combined effect of the loads and storage spaces of the
servers, and the trivial lower bound of its worst case is obviously two. It
is basically the sum of the normalized load and normalized storage space,
and therefore, less affected by absolute values of two individual parame-
ters. Obviously,

∑

j∈{1,...,M} Cj ≤ 2M . The purpose of the capacity index
is to enhance further balancing among servers. For example, if Lj ≤ 3L,
Sj ≤ 3S, and Cj < 4, for all j ∈ {1, . . . ,M}, one can conclude that al-
though the worst case of the load and storage space can be three times
of L and S, respectively, only of them can be close to its worst case.

Let tl, ts ∈ (1,M] be two real numbers satisfying both

1

tl−1
+ 1

ts−1
≤ 1 + 2

M−1
, and (1)

[M−1

tl−1
, M−1

ts−1
6∈ I+] =⇒ [bM−1

tl−1
c + bM−1

ts−1
c < M]. (2)

These two values are used throughout the paper to reflect the tradeoff
between the bounds of loads and storage spaces for all servers. The rela-
tionship between tl and ts for all feasible pairs of values and the intuition
of these two equations will be discussed later in Section 3.1. Fact 1 below
will be used in some proofs in this paper.

Fact 1 Suppose x1, x2 ∈ I+ such that x1 < M−1

tl−1
and x2 < M−1

ts−1
. Then,

x1 + x2 < M .

Proof. If both M−1

tl−1
and M−1

ts−1
are integers, then (let) y = x1 + x2 ≤

(M−1

tl−1
− 1) + (M−1

ts−1
− 1) < M . If the former one (say) is an integer, then

y ≤ (M−1

tl−1
− 1) + bM−1

ts−1
c = (M−1

tl−1
− 1) + (dM−1

ts−1
e − 1) ≤ M + 1 − 2 < M .

If both of them are not integers, then y ≤ bM−1

tl−1
c + bM−1

ts−1
c < M .

We apply a tree structure like B+-tree [11] which is widely employed
for storing the information of the servers in this paper. We call it B0-tree,
as [14]. A B0-tree stores a set {(l, s)|l, s ∈ R+}. In each order pair (l, s),
l and s are referred to load and storage space of a server, respectively.
We assume the elements stored in a B0-tree are unique. (Precisely, the
set can be organized as (B1, B2, . . . , BM ′), where Bj = (l, s) for some
l, s ∈ R+, ∀j ∈ {1, . . . ,M ′}, M ′ ≤ M .) Like B+-tree, data (keys) are
stored in leaves, and all leaves are located at the bottom level. Except for
the root, each internal node has K

2
to K children. The root has 1 to K

children. Like B+-tree, the data in the bottom level are sorted according
to s-values, and unlike B+-tree, a parent node stores a copy of one of its
children with smallest l-value. If there are two children having the smallest
l-value, choose the one with smaller s-value. Hence, the root contains the
copy of the data with minimum l-value. The normal operations are similar
to those of B+-tree. To keep the time for maintenance in O(log t), where
t is the number of data stored in the tree, there is an auxiliary B+-tree
for storing the s-values only. For simplicity, we skip the discussion of
those necessary but trivial steps for operations, like lookup, insertion and
deletion on the data structure.

Let SEEK be the algorithm for performing searching and updating
on a B0-tree. This algorithm will be used in the following sections. For
any input (X,Y), where X,Y ∈ R+, SEEK can search an element (l, s)
in a B0-tree and perform updating within O(log t) time, where s is the
smallest possible value such that l ≤ X. If there are two l’s with smallest
s-value, choose the smaller one. In the case that l > X for each (l, s)
in the tree, SEEK will output false. The next step is to check s ≤ Y . If
true, output (l, s); otherwise, output false. That means, if output is (l, s),
then l ≤ X and s ≤ Y . In other words, SEEK is used for searching a
server with load and storage space inclusively bounded by certain values,
respectively, and storage space is as less as possible.

By the similar construction, we can easily obtain an algorithm SEEK∗

such that if output is (l, s), then l < X and s < Y . In other words, SEEK∗

is used for searching a server with load and storage space exclusively
bounded by certain values, respectively, and storage space is as less as
possible.

For conciseness, all B0-trees used in this paper will be automatically
updated and maintained, unless specified.

Let TA be {(Lj ,Sj)|j ∈ {1, . . . ,M}} which is stored in a B0-tree. That
is, it stores the loads and storage spaces of all servers. The reallocation

cost of a document is defined as its size. In particular, if all documents in
the ith server are reallocated, the cost will be Si.

Lastly, our results are for synchronous networks; that is, before the
completion of updating the data structures and reallocating the necessary
documents for the previous operation, the next operation will not be
performed.

3 The First Result

We consider document placement into a distributed file server. Our aim is
to bound the loads and storage spaces of all servers by tlL and tsS, respec-
tively. With smaller values of tl and ts, the upper bounds are tightened
and imply better balancing on load and storage space, respectively. The
bounds are loosened slowly with M according to Equations (1) and (2).
This matches with the fact that it is more difficult to coordinate more
resources. However, such difficulty is not unlimited, as the bounds asymp-
totically tend to the result in [14]. We now apply tighter equations for tl

and ts and analyse on the upper bounds.

Algorithm FIRST:
1. Upon the arrival of a document d with load l and size s

1.1 Perform SEEK on TA with input (M
M−1

(tl − 1)L, M
M−1

(ts − 1)S)

and get output (Lj ,Sj);
1.2 Place d into the jth server;
1.3 Update L and S;

Theorem 1 The new document can be placed into a server, and after

placement, the load and storage space of the server are no more than tlL

and tsS, respectively.

Proof. If the server system is initially empty, the algorithm can place the
document and give the bounds L and S, respectively.

Assume there are some documents in the server system. Before placing
the document d, there are less than M−1

tl−1
servers with load more than

M
M−1

(tl − 1)L, otherwise, the total load will exceed ML. Similarly, there

are less than M−1

ts−1
servers with storage space more than M

M−1
(ts − 1)S.

By Fact 1, the number of servers exceeding the load bound or the storage
space bound is less than M . Hence, there exists one server with load and
storage space at most M

M−1
(tl − 1)L and M

M−1
(ts − 1)S, respectively, and

SEEK will output such a server as the jth server in Step 1.1.

Suppose that the average load is L
′
after Step 1.2. Then, L

′
= L+ l

M
.

Lj is then at most M
M−1

(tl−1)L+ l = M
M−1

(tl−1)(L
′
− l

M
)+ l = M

M−1
(tl−

1)L
′
+ (1 − tl−1

M−1
)l. The result for load follows as L

′
and l are no more

than the final L. By using similar arguments, the result for storage space
follows.

3.1 The Feasible Region for values of t
� and t �

We discuss the feasible region for values of tl and ts satisfying Equa-
tions (1) and (2). The purpose is to provide more information to the
system designer to choose values for tl and ts for different situations.

For the case that 1

tl−1
+ 1

ts−1
≤ 1 + 1

M−1
, Equations (1) and (2) are

always true. The region for this case is labeled as A in Figure 1.
For the case that 1

tl−1
+ 1

ts−1
= 1 + 2

M−1
, if M−1

tl−1
and M−1

ts−1
are non-

integers, then bM−1

tl−1
c + bM−1

ts−1
c = M , which implies that Equation (2) is

false. Then, we cannot use Fact 1 to guarantee the existence of a server for
placement. In order to keep Equation (2) true, one of M−1

tl−1
and M−1

ts−1
must

be an integer. As M−1

tl−1
+ M−1

ts−1
= M + 1, both M−1

tl−1
and M−1

ts−1
are integers

between 1 and M , inclusively. In other words, there are M feasible pairs
of tl and ts on the curve 1

tl−1
+ 1

ts−1
= 1 + 2

M−1
, satisfying Equation (2).

Let k = M−1

ts−1
. Then, M−1

tl−1
= M −k+1. Rewriting the result in Theorem 1

in terms of M and k, our load bound tlL = 2M−k
M−k+1

L, and storage space

bound tsS = M+k−1

k
S. This matches exactly with the (2M−k

M−k+1
, M+k−1

k
)-

competitive algorithm in [2]. In other words, if we equalize the inequality
in Equation (1), the algorithm FIRST has identical upper bounds as in
[2]. As k is ranged from 1 to M , there are M feasible points for (tl, ts) on
the curve 1

tl−1
+ 1

ts−1
= 1 + 2

M−1
.

Claims 3.1 and 3.1 below investigate the structure for tl and ts satis-
fying 1 + 1

M−1
< 1

tl−1
+ 1

ts−1
< 1 + 2

M−1
.

Claim. For all tl, ts ∈ R+ satisfying 1 + 1

M−1
< 1

tl−1
+ 1

ts−1
< 1 + 2

M−1
,

Equation (2) is true if and only if there exists a k ∈ {1, 2, . . . ,M} such
that ts ≥

M+k−1

k
and tl ≥

2M−k
M−k+1

.

Proof. Suppose Equation (2) is true. If one of M−1

tl−1
and M−1

ts−1
is an integer,

without loss of generality, assume that M−1

ts−1
is an integer, and let k =

M−1

ts−1
. Then ts = M−1

k
+ 1. As M−1

tl−1
+ M−1

ts−1
< M + 1, we have M−1

tl−1
<

M +1−k, and result follows. If both M−1

tl−1
and M−1

ts−1
are non-integers, then

bM−1

tl−1
c+ bM−1

ts−1
c < M . Let k = bM−1

ts−1
c. Then M−1

tl−1
−1 < bM−1

tl−1
c < M −k,

and result follows.

Suppose Equation (2) is false. Then, both M−1

tl−1
and M−1

ts−1
are non-

integers and bM−1

tl−1
c + bM−1

ts−1
c = M . For all k ∈ {1, 2, . . . ,M}, we have

ts ≥ M+k−1

k
⇔ k ≥ M−1

ts−1
> bM−1

ts−1
c ⇔ M − k < bM−1

tl−1
c ⇔ M − k + 1 ≤

bM−1

tl−1
c < M−1

tl−1
⇔ tl < 2M−k

M−k+1
. Result follows.

Claim. For all k ∈ {1, 2, . . . ,M − 1}, the point (2M−k−1

M−k
, M+k−1

k
) is on

the curve 1

tl−1
+ 1

ts−1
= 1 + 1

M−1
.

We skip the trivial proof for Claim 3.1. Recalling the M feasible points
is on the curve 1

tl−1
+ 1

ts−1
= 1 + 2

M−1
, and together with Claims 3.1

and 3.1, the whole feasible region is now clear and is shown in Figure 1.
In the figure, the feasible and infeasible regions are separated by the solid

st

lt

+1

t −1l

1

t −1s

2

M−1
= 1 +

+1

t −1l

1

t −1s

1

M−1
= 1 +

M−k+1

2M−k M+k−1

k
(,)

(,)M+k

k+1M−k

2M−k−1

(,)M+k+1

k+2M−k−1

2M−k−2

x

z

y

v

u
A

Feasible region

Infeasible region

Fig. 1. Feasible Region for values of tl and ts.

zigzag (-horizontal-vertical-) line which is bounded tightly by two dotted
curves 1

tl−1
+ 1

ts−1
= 1+ 1

M−1
and 1

tl−1
+ 1

ts−1
= 1+ 2

M−1
, and the vertices

of the zigzag line touch the curves alternatively. The feasible region is
divided into two types of sub-regions. The largest sub-region is the open-
ended one bounded below by the upper curve. We label it as A. The sub-
regions of the second type, which are disjoint, spread over the gap between
two curves. The ones labeled as x, y and z are examples. The values inside
the sub-regions of this type satisfy Equation (2). In contrast, the points
between two adjacent sub-regions turn Equation (2) false. Examples are u

and v in the figure. It is easily seen that the M feasible points in the lower
curve are the best in the whole feasible region. Precisely, for every other
point in the feasible region, there is a better choice from these M feasible
points. Since the two curves will narrow and become one as M → ∞, the
sub-regions of the second type diminish with M , and the M best points
will coincide with the upper curve.

From the feasible region, we have some suggestions to the system
designer. First if M is unchanged, we can use one of the M best points
on the lower curve. After the system designer chooses a point, he can
proceed to check if both Equations (1) and (2) remain true. If yes, he can
apply his values. Otherwise, use binary search to find a point out of the
M best points, which is nearest to his original choice. The time needed
is O(log M). Binary search can be used because of the convex nature of
the feasible region.

If M can be increased by server insertion, the previous M points
may become infeasible as the lower curve shifts upwards. Even when M

decreases by server deletion, some points may fall into infeasible region
when the two curves shifts down. One can easily see from the figure that
there are no two consecutive points staying in the feasible region as M

decreases by 1. In order not to put burden on the system maintenance,
we suggest to use the points, satisfying 1

tl−1
+ 1

ts−1
≤ 1, in the region A,

if M can change. These points, used in [14], are independent of M , and
is suitable for a system in which the number of servers is changing.

3.2 Remarks on Algorithm FIRST

Comparing Algorithm FIRST with the result in [2], our algorithm has two
advantages. First, our upper bounds can spread through the continuous
feasible region, not only the M best points. The second advantage comes
from the difference of searching algorithms. The algorithm in [2] ignores
the servers of the first M − k highest load, k ∈ {1, . . . ,M}. In the case
that the loads of some of these ignored servers are not very high but the
storage spaces of them are very low, our algorithm is beneficial. Take for

an example. For all j ∈ {1, . . . ,M − k − 1}, Lj = L + δ and Sj = MS−δ
M−1

;

LM−k = L and SM−k = δ; and for all j ∈ {M − k + 1, . . . ,M}, Lj =

L − M−k−1

k
δ and Sj = MS−δ

M−1
, where δ is extremely small. Then, one of

the last k servers will be chosen by the algorithm in [2], but algorithm
SEEK will choose the (M − k)th one. The former have little advantage
on load but pays much higher price on storage space. Nevertheless, the
searching algorithm in [2] can be easily generalized for balancing more

than two criteria. Although SEEK is better, it is designed for two criteria
only. Further research can be done on finding better searching algorithms
for multi-criteria load balancing problem.

4 The Second Result

In this section, we study the capacity index which measures the integrated
effect of load and storage space on each server. Our aim is to bound the
load, the storage space and the capacity index of each server by (3− 2

M
)L,

(3 − 2

M
)S, and 5 − 3

M
, respectively, after each document placement.

Consider the algorithm FIRST. We choose tl = ts = 3− 4

M+1
for odd

M . For even M , we choose tl = 3 − 2

M
, and ts = 3 − 6

M+2
, or vice versa.

Then, a trivial upper bound 6− 8

M+1
on the capacity index can be obtained

immediately. In this section, by using algorithm SECOND, the capacity
index is improved to 5 − 3

M
, at the expense of a slightly higher upper

bound(s) for load and/or storage space, respectively. In other words, if
we sacrifice the asymptotically nothing in the upper bounds of load and
storage space, respectively, then we gain much more in capacity index in
return.

Directly from the definition, the capacity index 5− 3

M
implies that for

each server, at most one of the two parameters, load and storage space,
can be close to its upper bound of worst case. For example, if the load
in a server gets very close to (3 − 2

M
)L, then its storage space keeps a

distance of nearly S from the upper bound (3− 2

M
)S. In other words, by

using algorithm SECOND, the worst cases of load and storage space are
shared by more servers. However, by using algorithm FIRST, the load
and storage space can both simultaneously reach their upper bounds,
respectively. Therefore, algorithm SECOND beats FIRST when tl and ts
are chosen close to three.

The improvement in capacity index also gives hope that both parame-
ters could be very close to 2.5 of their trivial lower bounds simultaneously.
If succeed, it will then an important step towards the asymptotic latest
known upper bound of 1.9201 [7] and the lower bound of 1.88 [13] for
balancing a single parameter.

As there always exists a j ∈ {1, . . . ,M} such that Lj ≤ 2L, Sj ≤ 2S,
and Cj ≤ 2 (otherwise,

∑

j=1,...,M Cj > 2M), an O(M)-time algorithm
can be applied to search this server in order to obtain a better upper
bound on capacity index. For small M , the average storage space is large,
and this trivial approach is a better choice. However, when M is large,
an O(log M)-time algorithm CAPACITY will be given. Its idea is as

follows: Upon the arrival of a new document d, if there is a server in
which load and storage space are bounded by L and 2S, respectively,
Step 1.1 of the algorithm will find it and Step 1.2.1 will place d into it.
After placement, the load, the storage space, and the capacity index are
kept under the mentioned bounded. The details are shown in Theorem 2.
Suppose no such server exists in the system. We aim at a server in which
load and storage space are bounded by 2L and S, respectively. It such a
server exists, Step 1.3.1 will find it out and Step 1.3.2 will place d into it.
The correctness proof is based on the observation that if Step 1.1 fails in
searching a server, then Step 1.3.1 will succeed.

The algorithm SECOND is given below, and is followed by Theorem 2.

Algorithm SECOND:
1. Upon the arrival of a document d with load l and size s

1.1 Perform SEEK∗ on TA with input (L, 2S) and get output;
1.2 If output is (Lj ,Sj);
1.2.1 Place d into the jth server;
1.3 If output is false
1.3.1 Perform SEEK∗ on TA with input (2L, S)

and get output (Li,Si);
1.3.2 Place d into the ith server;
1.4 Update L and S;

Theorem 2 The new document can be placed into a server, and after

placement, the load and storage space of the server are less than (3− 2

M
)L

and (3 − 2

M
)S, respectively, and the capacity index less than 5 − 3

M
.

Proof. Assume for contradiction that for all j ∈ [1,M], Lj ≥ 2L, Sj ≥ 2S,
or [Lj > L and Sj > S]. Suppose there are M1 servers which loads are at
least 2L, M2 servers which storage spaces are at least 2S, and M3 servers
which loads are more than L, and storage spaces more than S. Obviously,
M1+M2+M3 ≥ M . If M1 = 0, total storage space will exceed MS. Hence
M1 6= 0. Similarly, M2 6= 0. Consider that M3 = 0. Since all servers have
positive loads, total load is greater than 2M1L, which implies M1 < M2.
On the other hand, since all servers have positive storage spaces, total
storage space is greater than 2M1S, which implies M2 < M1. Hence,
M3 6= 0. Considering

∑M
j=1[

Lj

L
+

Sj

S
] > 2M1 +2M2 +2M3 ≥ 2M , which is

a contradiction. Therefore, there exists a j ∈ [1,M], such that Lj < 2L,
Sj < 2S, and [Lj ≤ L or Sj ≤ S]. Rewriting it, we have either [Lj ≤ L

and Sj < 2S] or [Sj ≤ S and Lj < 2L]. We assume the former case while
the argument for the latter one is similar.

After placing d into the server, the average load becomes L
′
= L+ l

M
,

the average storage space becomes S
′
= S + s

M
, and the values of L and

S become L′ and S′. Then, Li ≤ L
′
− l

M
+ l = L

′
+(1− 1

M
)l ≤ (2− 1

M
)L′.

For storage space, Si < 2(S
′
− s

M
) + s = 2S

′
+ (1 − 2

M
)s ≤ (3 − 2

M
)S′.

Hence, Ci < 5 − 3

M
.

References

1. G.C. Amita, “Incremental data allocation and reallocation in distributed database
systems”, Data warehousing and web engineering, 137–160, 2002.

2. V. Bilǒ, M. Flammini, and L. Moscardelli, “Pareto Approximations for the Bicrite-
ria Scheduling Problem”, Journal of Parallel and Distributed Computing, vol. 66,
No. 3, 393-402, 2006.

3. A. Brinkmann, K. Salzwedel and C. Scheideler, “Compact, Adaptive Placement
Schemes for Non-Uniform Requirements”, Proceedings of ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA’02), Winnipeg, Manitoba,
Canada, August 2002.

4. L.C. Chen and H.A. Choi, “Approximation Algorithms for Data Distribution with
Load Balancing of Web Servers”, Proc. of IEEE International Conference on Clus-
ter Computing, 274–281, Newport Beach, CA, USA, October, 2001.

5. T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, “Introduction to Algo-
rithms”, McGraw-Hill, New York, 2nd Edition, 2001.

6. M.L. Fisher and D.S. Hochbaum, “Database Location in Computer Networks”,
Journal of ACM, vol. 27, 718–735, 1980.

7. R. Fleischer and M. Wahl, “Online scheduling revisited”, Journal of Scheduling,
Special Issue on Approximation Algorithms for Scheduling Algorithms (part 2),
vol. 3 (6), 2000, pp. 343-353.

8. M.R. Garey and D.S. Johnson, “Computers and Intractability: A Guide to the
Theory of NP-Completeness”, W.H. Freeman, 1979.

9. E. Haddad, “Runtime reallocation of divisible load under processor execution dead-
lines”, Proceedings of the Third Workshop on Parallel and Distributed Real-Time
Systems, 30–31, April 1995.

10. H. Harada, Y. Ishikawa, A. Hori, H. Tezuka, S. Sumimoto, and T. Takahashi,
“Dynamic home node reallocation on software distributed shared memory”, Pro-
ceedings of the Fourth International Conference/Exhibition on High Performance
Computing in the Asia-Pacific Region, Vol. 1, 158–163, May 2000.

11. D.E. Knuth, “The Art of Computer Programming, Vol. 3: Sorting and Searching,
Section 6.2.4”, Addison-Wesley, 1973.

12. B. Narendran, S. Rangarajan and S. Yajnik, “Data Distribution Algorithms for
Load Balanced Fault-Tolerant Web Access”, Proc. of the 16th Symposium on Re-
liable Distributed Systems, 97–106, Durham, NC, USA, October, 1997.

13. J.F. Rudin III, “Improved bounds for the online scheduling problem”, PhD thesis,
The University of Texas at Dallas, 2001.

14. S.S.H. Tse, “Approximation Algorithms for Document Placement in Distributed
Web Servers”, IEEE Transactions on Parallel and Distributed Systems, vol. 16,
No. 6, 489–496, June 2005.

