
A Data Storage Mechanism for P2P VoD based on
Multi-Channel Overlay*

Xiaofei Liao, Hao Wang, Song Wu, Hai Jin

Services Computing Technology and System Lab
Cluster and Grid Computing Lab

School of Computer Science and Technology
Huazhong University of Science and Technology, Wuhan, 430074, China

{xfliao, wusong, hjin}@hust.edu.cn

Abstract. It is a big challenge to provide Video-on-Demand streaming services
over Internet in a scalable way. Currently, many researchers use a single
channel overlay to implement the scalability of on-demand streaming services.
However, in a real application environment, various channels in a P2P VOD
system have different popularities, which probably cause the imbalance of data
storage-capability of the whole system. It results in a problem that a mass of
unpopular channels’ caching capability can not be used to satisfy the data
requirements of the whole system. In order to solve the problem, this paper
proposes a new data-storage mechanism, which constructs a multi-channel
overlay to optimize the whole system’s caching-capability and greatly improves
unpopular channel’s caching efficiency. The experimental results show that this
mechanism can achieve significant effects.

1. Introduction

When designing a P2P streaming media system, the basic principle is to organize the
nodes watching or serving the same program as a single channel overlay, no matter it
is tree [1, 2, 3, 4] or mesh topology [5, 6, 7, 8]. Nodes in a single channel overlay
store media data to construct P2P network storage. Nodes request and gain media
from neighbor peers while they are playing media, in order to reduce the pressure of
source server. When the scale of a single channel overlay grows up to a certain size,
the P2P network can store most of data to meet all the requirements, minimize direct
data requests to the source server.

Based on the analysis of existing P2P Video-on-Demand system, called GridCast
[9], the study found that different channels’ network scale meet the Zipf distribution.
Some popular channels can assemble a large amount of nodes, and P2P network’s
data storage capability can meet the data request. But most P2P network channels’

* This work was supported in part by China National Natural Science Foundation (NSFC)

grants No.60703050, No.60673174, No.60433040, No.60731160630, the Research Fund for
the Doctoral Program of Higher Education grants No.20050487040, Wuhan Chengguang
Plan with No.200850731350 and Program for New Century Excellent Talents in University
under Grant NCET-07-0334.

sizes are small, the single channel overlay only store part of the channel’s media, this
channel still causes a lot of data sources requests. To effectively improve the load
capacity of the entire P2P VoD system, to solve the insufficient data storage
capability problem of most unpopular P2P network channels, is particularly important
to reduce the pressure on the data source server.

Based on the above analysis, this paper presents a data storage mechanism based on
multi-channel overlay, improving unpopular channels’ data storage when popular
channels’ nodes joining unpopular ones. The simulation result proves that this
approach can greatly improve the system load capacity.

The rest of paper is organized as follows. Section 2 describes the system
architecture. In section 3, how to organize the multi-channel overlay is presented.
Section 4 gives the experiments and results. In section 5, related works are described.
Section 6 concludes this paper.

2. System Overview

Just like other P2P content distribution systems, GridCast uses a set of source servers
to release media files to participating peers, who asynchronously are playing the files
while exchanging data among themselves. Unlike file downloading and live streaming,
a node is more selfish in the sense that it only cares about contents after its current
playing position, which is often different from other nodes. Most of the time, a node’s
downloading targets are those whose playback positions are ahead, and it can only
help those that are behind. However, a node can also change its playing position at
any time. These characteristics make a VoD system harder to optimize, rendering
globally optimal strategies such as rarest first employed in BitTorrent [14]
inapplicable.

Fig. 1 Architecture overview

To cope with the above problem, the node of GridCast maintains a routing table,
which consists of nodes placed in a set of concentric rings with power law distribution
distanced using relative playback positions, and uses gossips to keep the routing table
up-to-date. This architecture allows a node to find a new group of position-close
partners in logarithmic steps after it seeks to a new playing position. The tracker can
be considered as a stationary node whose playback position stays fixed at time zero.

The tracker’s job is to keep track of its membership view, which bootstraps any new
nodes.

3. Multi-Channel Overlay

3.1 Network scale distribution

In P2P VoD System (Gridcast [9]) based on single channel overlay, each channel’s
data storage consists of two parts: the P2P network data storage and data server. After
one VoD node joins P2P network, it connects with other P2P nodes which are
watching the same program to construct a single channel overlay, and exchanges
stored data information using Gossip [11] protocol. When the node requests media
data, it checks if other nodes in the single channel have stored the data first. If so, it
directs request data from the P2P network, and stores data in local cache. Assume that
the total media playing time is T, each node stores data with length of time t in local
cache. A single channel overlay at least needs T/t nodes to completely stores media
data.

The popularities of different programs meet the Zipf distribution [12]. Assuming
that the system has n program channels, the probability of user options listed S1, S2,…
Sn, its choice of probability pi= P{X=Si} (i = 1, 2,… n), {p1, p2,…. pn} with Zipf
distribution, n

1 1
j 1

1 1
()

i jiP θ θ− −
=

= ∑ (θ is the Zipf constant). The collected log data of

GridCast shows that θ closes to 0.25. During normal system runtime, the system
distributed more than 50% of overall nodes in 20% of the most popular channels, but
most channels’ network scale fail to achieve stable size. In popular channels, because
of the large scale P2P networks, program data stored in the P2P networks are more
than data needs. Correspondingly, there are fewer nodes in the unpopular channels;
the data storage capability is unable to meet the data needs. There still are a lot of data
requests to the data source server.

3.2 Data storage status maintenance

GridCast system uses tracker server to maintain the data storage status of whole P2P
network. It keeps track on all of the nodes currently joined GridCast system. A node
has been represented as an item that holds nodes GUID, address, port, bandwidth,
playing time and so on. In order to maintain the information of all nodes, the tracker
needs to update the playing position of each node. Each node will send one UDP
message to synchronize its buffer status in every minute.

Tracker server uses a hash table to index one channel’s storage status. The length of
this hash table is the duration of this channel. Every element of this hash table is a
double-link list and it maintains information of each node who has stored the
corresponding media data. Figure 2 gives a sketch map of the tracker server. When a
P2P node requests data status from tracker server, it sends the ID of requested channel

and the playing time of the requested data. Tracker server searches the channel’s
corresponding hash table and acquires the related nodes’ information.

Fig.2 Data structure of tracker server

P2P node uses a host-list to maintain data storage status of known nodes. The host-
list is divided into two levels: neighbors list and nodes list. The neighbors list
maintains information of neighbor nodes which are connected with local nodes, and
neighbor nodes use directional gossip protocol to exchange information of data
storage status. The basic idea of directional gossip protocol is that every node just
forwards gossip messages to the neighbors which can retrieve data from source node
or send data to source node. Suppose the playing time of one message from some
sources is tsource and the current playing time of traversed nodes is tforward, then we
have the following formula: tsource-m≤tforward≤tsource+m, here m represents the total time
length in caches.

Neighbor Nodes
B D F

B

D

F

A

C
E

G

P

Known Nodes
A

B

C

D F

GE

 H
 O
 S
 T

 L
 I
 S
 T

Fig.3 Host list

3.3 Multi-channel overlay

This paper presents the data storage mechanism from the two areas: 1) constructing a
multi-channel overlay network to balance data storage capability between the
different kinds of channels; 2) improving utility efficiency of each node’s data cache

and using idle data storage capacity to raise unpopular channels’ data storage
capability.

The multi-channel overlay network (Figure 4) is constructed on single channel
mesh topology. Compared with the traditional single channel overlay, node can join
two kinds of channels in multi-channel overlay: the main channel and the service
channel. One node in the main channel plays media, stores data and serves other
nodes, and in service channel one node only stores data and serves other nodes. Each
node has only one main channel and can choose several service channels. In Figure 4,
node K’s main channel is channel A, and service channels are channel B and channel
C. Node M’s main channel is channel A and service channel is channel B. Node L’s
main channel is channel B, and have no service channel.

Fig.4 Multi-channel overlay

Media data will be divided into L data blocks according to granularity τ. Assuming
that the total program’s duration time is T, The value of L is ⎡ ⎤/T τ . Data of playing-
time Ti will be classified into /iT τ⎡ ⎤⎢ ⎥ data block, and uses a serial number /iT τ⎡ ⎤⎢ ⎥ to
identify the data blocks. The data storage capability of a node can be described as the
ability to store several pieces of data blocks: ()⎣ ⎦/N D k τ= × (D is the node physical
storage capability; k is the encoding rate of media file).

When nodes join the system, in accordance with its own storage capabilities and
channel’s network scale. The node will decide the number of data blocks stored of the
main channel. If it still has idle data blocks, the newly joined node chooses channels
that cause the most data source server request, and joins them as its own service
channels. The node provides data storage capacity and stores service channels’
program data. Throughout the process of accession, node use caching optimization
strategy (see section 3.4) to determine the number of data blocks stored in the main
channel and service channels.

After joining into the network, the node maintains its data store and elutriation
according to program playing process or data storage state of the whole channel’s P2P
network. The data storage state of one node in one channel can be described as a state
of the attribute set Sp=(Cid, Pc, Np). Cid is the channel’s identifier. Pc is the initial
location of data blocks. Np is the number of data blocks stored locally. Nodes in its
main channels choose the starting block Pc= /pos τ⎡ ⎤⎢ ⎥ . Pos is the program playing time.
The node in its service channels uses neighborhood nodes’ data storage state to

maintain its own data in local cache. Nodes exchange data storage state information
through gossip protocol. The node can gather data storage information of
neighborhood nodes as a set π(P1, P2, P3, …PN), calculate amount N1 of nodes which
have store data block Pc and amount N2 of nodes which have store data block Pc+Np.
If N1>N2, it means the data stored of other nodes in P2P network are sliding forward.
So the node must slide forward its own data blocks.

3.4 Optimization strategy

In a stable P2P VoD system, after nodes join the P2P network, it can not change the
data block number of its own data storage. Otherwise, when node’s data block
number decreases, it will cause the whole P2P networks’ data loss. So each node in
the main channel of P2P network should determine its number of data blocks
according to the node status and channel’s data storage state, and optimize the number
of data blocks in the storage of the node to optimize whole channel’s data storage
capability.

The data storage status of a channel can be described as a set Ω(C1, C2, C3, …CL). L
means total data blocks of the program. Ci (i=1, 2, 3……L) means the number of
nodes which store data block i.

When a node joins its main channel, it requests channel’s data storage status Ω, and
calculates the data blocks number Np that should be stored, according to the data
storage status Ω, node’s maximum data storage capability N and program’s playing
time P. The algorithm is as follow:

Input: Data storage status Ω, maximum data storage
capability N, playing time P

Output: Data blocks number Np

for i = 0 to N do

 CurrentPos = N+P;

 SelectPos=i+P;

 if CCurrentPos < CSelectPos

then Np = i;

 end if;

end for i;

After a node joins its main channel, if it finds still has idle data blocks, the node
distributes the idle data blocks to unpopular channels, according to the data requests
of data source server. Distribution conforms to the following principles: a) priority to
store data blocks that requesting more data at data source server to reduce system load;
b) to reduce the possibility of the same data storage duplication between nodes.

The requesting status of one data block can be described as attribute set Q=(Cid,
Pos, Req), Cid is the channel identifier, Pos is the location of data block, Req is the
current data request number at data source server.

The distribution process of node P is as follow:

Step1: Node P acquires systems current requesting data blocks set Ψ(Q1, Q2,
Q3, …QM) at data source server from tracker server;

Step2: Node P sorts set Ψ according to the requesting number Req, and get a new
set Ψ;

Step3: In order to avoid conflict between nodes choice, node P sets a selection
probability α to choose data block. Sequence checks data blocks in set Ψ, and uses
selection probability α to choose whether select or not. When a data block is
selected, go to next step;

Step4: Choose channel according to the information of selected data block. Set the
selected data block as node P’s initialize position of data storage, archive channel’s
data storage status S from tracker server;

Step5: Calculate data block number Np using the same method as above;
Step6: Node P joins the selected channel, and sets it at node P’s service channel.

4. Performance Measurement and Analysis

4.1 Simulation environment

Simulation programs use GT-ITM [13] topology generator to create a network based
on transit-stub model. The network consists of 5 transit domains, each with 20 transit
nodes and one transit node connects to 10 stub domains, each with 10 stub nodes.
Each stub node offers 35MB physical data storage capability. Set program video’s
encoding rate to 480kbps. Stub node is able to store 10 minutes of program data. Set
system total channel count as 100, with each channel duration 90 minutes. Set
granularity size as one minute. We divide program data into 90 data blocks.
According to Zipf distribution, set the Zipf constant of the network scale distribution
of channels as 0.25. The simulation program test duration is 300 minutes, the start
time of nodes in the same channel in accordance with the Poisson distribution. By
comparing the simulation based on single channel overlay data storage and multi-
channel overlay data storage, we analyze the network scale difference and directly
data source requests of the two data storage models, and analyze new multi-channel
overlay data storage mechanism performance.

4.2 Network scale difference

As showed in Figure 5, in single channel overlay, more than 80% of the total
channels’ nodes number is below 100. We classify channels of this type as unpopular
channels, and classify the opposite 20% channels as popular channels. By building
multi-channel overlay network, the network scale of most unpopular channels is
upgraded. The node number of smallest channel is 74 nodes. 80% channels’ node
number of entire system are more than 100, 70% channels’ node number of entire
system are between 100 and 200. We can see that by building a multi-channel overlay

network, unpopular channels’ network scale are greatly upgraded, the entire system’s
nodes distribution is more balanced than single channel overlay.

0 20 40 60 80 100

0

200

400

600

800

1000

1200

N
od

e
nu

m
be

r

Channels

 Single Channel
 Multi-Channel

Fig.5 Node number per channel

4.3 System performance

By observing the requests number of data source server during the test period, we
analyze the performance difference of single channel overlays and multi-channel
network. Figure 6 gives each channel’s data source server request number during test
period. In single channel network, the direct data source server request number of
unpopular are more than 600 in general, the average number of data source server
request is 890, and the maximum is 1236. The average number of popular channels’
data source server request is 442.4. In multi-channel overlay network, the average
direct data source server request number of unpopular is 476.1, a decrease of 46.5%,
the maximum is 1236, a decrease of 37.5%. The average number of popular channels’
data source server request is 403.8, a decrease of 8.7%. We can see that providing
some popular channels’ idle data storage ability to store unpopular channels’ program
data can substantially reduce direct requests to data source server. Meanwhile, the
reasonably decrease of popular channels’ data storage capability does not cause the
increase of direct data source server request, but cause the decrease of direct data
source server request by decreasing duplicate data request to source server.

Figure 7 gives source server request per minute during test period. We can observe
that in the initial period, compared with single channel overlay networks. The source
server request pressure is increasing because the number of nodes joining unpopular
channels in multi-channel overlay network is larger than that of single channel
overlay. After the multi-channel overlay network is built stably, the unpopular
channels in multi-channel overlay have more nodes than that of single channel
overlay. The data storage capability is improved, and direct data source server request
is substantially reduced. From 0 minute to 50 minute, data request per minute to data
source server in single-channel P2P network is 206.5, and in multi-channel overlay
network is 212.8, request number in multi-channel overlay increases 3.1% than that in

single channel overlay. From 51 minute to 300 minute, data request per minute to data
source server in single-channel P2P network is 278.3, and in multi-channel overlay
network is 174.3, request number in multi-channel overlay decreases 37.3% than that
in single channel overlay. In the whole test period, data request per minute to data
source server in single-channel P2P network is 266.3, and in multi-channel overlay
network is 180.9, request number in multi-channel overlay decreases 32.1% than that
in single channel overlay. Although in the early stage of building a multi-channel
overlay network will increase data source server requests to a certain extent, but if the
entire system’s P2P overlay is built stably, multi-channel overlay network can
substantially reduce data request to data source server, and impressive upgrade the
entire system performance.

0 20 40 60 80 100

400

600

800

1000

1200

1400

Se
rv

er
 R

eq
ue

st

Channels

 Single Channel
 Multi-Channel

Fig.6 Server request per channel

0 50 100 150 200 250 300
50

100

150

200

250

300

350

400

Multi-Channel

Se
rv

er
 R

eq
ue

st

Time

Single Channel

Fig.7 Server request per minute

5. Related Work

In order to provide a large-scale on-demand streaming service over Internet, several
techniques have been proposed to increase the scalability of on-demand streaming by
adopting peer-to-peer methods. However, most of them try to use a tree-based overlay
to build their logical topology, such as P2Cast [1], P2VoD [2], DirectStream [3],
MetaStream [4]. Compared with the traditional methods, i.e. CDN, proxy, and
patching, they achieve better scalability. But for these systems, the greatest challenge
is to accommodate the dynamic change and to mask the impact of node joining or
leaving frequently. Their drawbacks include the following respects. On the one hand,
tree maintenance is always very complicated in order to avoid the impact because of
the silent departure of several key parent nodes. On the other hand, each peer depends
on only one data supplier. This will lead to inefficient resource utilization and
increase the load of the central source server. There are other kinds of streaming
systems based on unstructured overlay, such as SplitStream [6], CoolStreaming [7],
GNUStream [10], PROMISE [8]. However, all of them focus on the streaming
overlay constructions for single channel, not for multiple channels.

6. Conclusions

In order to solve the data storage unbalance problem among channels in P2P VoD
system, this paper presents a data storage mechanism based on multi-channel overlay.
In the proposed overlay, nodes of popular channels will join unpopular channels’ P2P
overlays to construct a multi-channel overlay, and use data storage optimization
strategy to improve node’s data store ability. This mechanism can effective balance
node distribution among different channels, and improve the storage capability of the
entire system. The experiment results prove the idea.

References

[1] Y. Guo, K. Suh, and J. Kurose, “P2Cast: Peer-to-peer Patching Scheme for VoD Service”,
Proceedings of the 12th World Wide Web Conference (WWW’03), Budapest, Hungary,
May 2003.

[2] T. Do, K. A. Hua, and M. Tantaoui, “P2VoD: providing fault tolerant video-on-demand
streaming in peer-to-peer environment”, Proceedings of IEEE ICC’04, Paris, France, Jun.
2004.

[3] Y. Guo, K. Suh, J. Kurose, and D. Towsley, “A Peer-to-Peer On-demand Streaming
Service and Its Performance Evaluation”, Proceedings of 2003 IEEE International
Conference on Multimedia & Expo (ICME’03), Baltimore, MD, Jul. 2003.

[4] R. M. Zhang, A. R. Butt, and Y. C. Hu, “Topology-Aware Peer-to-Peer On-demand
streaming”, Proceedings of 2005 IFIP Networking Conference (Networking’05),
Waterloo, Canada, May. 2005.

[5] Y.-H. Chu, S. G. Rao, and H. Zhang, “A case for end system multicast”, Proceedings of
SIGMETRICS’00, Santa Clara, CA, USA, Jun. 2000.

[6] M. Castro, P. Druschel, A. M. Kermarrec, A. Nandi, A. Rowstron, and A. Singh,
“SplitStream: High-Bandwidth Content Distribution in Cooperative Environments”,
Proceedings of ACM SOSP’03, Oct. 2003.

[7] X. Zhang, J. Liu, B. Li, and T.-S. P. Yum, “Data-Driven Overlay Streaming: Design,

Implementation, and Experience”, Proceedings of IEEE INFOCOM'05, Miami, USA,
2005.

[8] M. Heffeeda, A. Habib, B. Botev, D. Xu, and B. Bhargava, “PROMISE: peer-to-peer
media streaming using CollectCast”, Proceedings of ACM Multimedia (MM’03),
Berkeley, CA, Nov. 2003.

[9] B. Cheng, L. Stein, H. Jin, and Z. Zhang, “GridCast: Providing Peer-to-Peer On-Demand
Streaming Service Based On Unstructured Overlay”, Proceedings of Eurosys 2008.

[10] X. Jiang, Y. Dong, D. Xu, and B. Bhargava, “GnuStream: a P2P Media Streaming
System Prototype”, Proceedings of International Conferences on Multimedia & Expo.
(ICME’03), Maryland, USA, 2003.

[11] Q. Sun and D. Sturman, “A Gossip-Based Reliable Multicast for Large-Scale High-
Throughput Applications”, Proceedings of the Int'l Conf Dependable Systems and
Networks (DSN’00), 2000.

[12] M. Hou, X. Lu，X. Zhou, and C. Zhang, “Study on Replication in Unstructured P2P
System”, MINI-MICRO SYSTEMS, 2005, 26(11), pp.1903-1906.

[13] E. Zegura, K. Calvert, and S. Bhattachajee, “How to model an Internetwork”,
Proceedings of INFOCOM'96.

[14] L. Guo, S. Chen, Z. Xiao, E. Tan, X. Ding, and X. Zhang, “Measurements, Analysis, and
Modeling of BitTorrent-like Systems”, Proceedings of ACM IMC’2005, Berkeley, CA,
USA, Oct. 2005.

