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Abstract. As various applications of wireless ad hoc network have been
proposed, security has become one of the big research challenges and is
receiving increasing attention. In this paper, we propose a distributed key
management approach by using the recently developed concepts of certifi-
cateless public key cryptography and threshold secret sharing schemes.
Without any assumption of prefixed trust relationship between nodes,
the ad hoc network works in a self-organizing way to provide the key
generation and key management services using threshold secret sharing
schemes, which effectively solves the problem of single point of failure.
Certificateless public key cryptography is applied here not only to elim-
inate the need for certificates, but also to retain the desirable properties
of identity-based key management approaches without the inherent key
escrow problem.

Keywords: Ad hoc network, network security, key management, certifi-
cateless public key cryptography.

1 Introduction

An ad hoc network is a collection of autonomous nodes that communicate with
each other by forming a multi-hop wireless network. The property of not re-
lying on the support from any fixed infrastructure makes it useful for a wide
range of applications, such as instant consultation between mobile users in the
battlefields, emergency, and disaster situations, where geographical or terrestrial
constraints demand totally distributed networks. While ad hoc network provides
a great flexibility for establishing communications, it also brings a lot of research
challenges. One of the important issues is the security due to all the characteris-
tics of these networks, such as the vulnerability of the wireless links, the limited
physical protection of each node and the dynamically changing topology. Key
management service is a crucial security issue because it is the essential assump-
tion of many other security services. For instance, many secure routing protocols,



such as ARAN [1] and SRP [2], assume that a pair of private and public keys
and a certificate signed by a trusted third party have been assigned to nodes.

Because ad hoc networks are highly vulnerable to various security threats
due to its inherent characteristics, such as open medium, absence of fixed central
structure, dynamically changing topology and constrained resource, traditional
key management approaches based on public key infrastructure (PKI) is not
directly applicable to ad hoc networks. Designing an efficient key management
solution should satisfy following characteristics:

Lightweight: Solutions must minimize the amount of computation and commu-
nication required to ensure the security services to accommodate the limited
energy and computational resources of nodes.

Decentralized: Like ad hoc networks themselves, attempts to secure them
must be ad hoc way: they must establish security without a priori knowledge
to centralized or persistent entities. Instead, security solutions must utilize
the cooperation of all trustworthy nodes in the network.

Reactive: Ad hoc networks are dynamic: nodes may enter and leave the net-
work spontaneously and unannounced. Security solutions must react to changes
in network state; they must seek to detect compromises and vulnerabilities.

Fault-Tolerant: Wireless transfer mediums are known to be unreliable; nodes
are likely to leave or be compromised without warning. The security solutions
should be designed with such faults in mind; they must not rely on message
delivery or ordering.

Current research works in key management are mainly based on traditional
PKI [3–6] and identity-based public key cryptography (ID-PKC) [7–9]. These
approaches based on traditional PKI use a partially distributed or a fully dis-
tributed certificate authority (CA) to issue and manage public key certificates.
However, the resource-constrained ad hoc networks might be unable to afford
the rather complicated certificate management, including revocation, storage and
distribution, and the computational costs of certificate verification. ID-PKC get
rid of the public key certificates by allowing allowing the user’s public key to
be any binary string, such as an email address, IP address that can identify the
user. ID-PKC have an advantage in the aspect of the key management compared
with the traditional PKI. However, ID-PKC needs a trusted private key gener-
ator (PKG) which generates the private keys of the entities using their public
keys and a master secret key. Therefore, the dependence on the PKG who know
all user’s private keys inevitably causes the key escrow problem to the ID-PKC
systems. For example, the PKG can decrypt any ciphertext in an identity-based
public key encryption scheme. Equally problematical, the PKG could forge any
entity’s signatures in an identity-based signature scheme.

In this paper, we propose a novel key management approach using certifi-
cateless public key cryptography (CL-PKC) [10]. The CL-PKC does not require
the use of certificates and yet does not have the built-in key escrow feature of
ID-PKC. It is a model for the use of public key cryptography that is intermediate
between traditional PKI and ID-PKC. A CL-PKC system still makes use of a
trusted third party which is called the key generating center (KGC). By way of



contrast to the PKG in ID-PKC, the KGC does not have access to the user’s
private key. Instead, the KGC supplies a user with a partial private key that
the KGC computes from the user’s identity and a master key. The user then
combines the partial private key with some secret information to generate the
actual private key. The system is not identity-based, because the public key is
no longer computable from a user identity. When Alice wants to send a message
to Bob in a CL-PKC system, she must obtain Bob’s public key. However, no
authentication of Bob’s public key is necessary and no certificate is required.

The rest of this paper is organized as follows. In Section 2, we study the
related work in the literature. Some preliminary works are given in Section 3. Our
proposed key management approach is detailed described in Section 4. Finally,
the conclusions are given in Section 5.

2 Related Work

In [3], Zhou and Haas focused on how to establish a secure key management
service in an ad hoc networking environment. They proposed to apply the secret
sharing technique [11] to distribute the CA’s private key among a pre-selected
subset of nodes, called servers. Then any combination of t servers can jointly
issue public key certificates to mobile nodes. The focus of their work is to max-
imize the security of the shared secret in the presence of possible compromises
of the secret share holders. It assumes a small group of servers with rich connec-
tivity. Therefore, it is not suitable for purely ad hoc environments. [4] and [5]
make an extension of [3] and provide a fully distributed CA scheme. In other
words, each node holds a secret share, and k or more nodes in a local neigh-
borhood jointly provide complete services. This solution has a good availability
since all nodes are part of the CA service, it is easier for a node to locate k
neighbor nodes and request the CA service. In [6], Hubaux et al. proposed a
self-organized certificate chaining key management approach, which has similar-
ity with PGP “web of trust” concept. Unlike the above publications, it does not
require a trusted authority or any special nodes; instead, each node issues its
own certificates to other nodes. Key authentication is performed via chains of
certificates. Certificate chaining fits naturally with ad hoc networks where there
is no physical infrastructure, relying on each mobile node to issue certificates
to other nodes at their own discretion. However, certificate chaining requires a
warm-up period to populate the certification graph, which completely depends
on the individual node’s behavior and mobility. Additionally, the validity of a
certificate chain depends on the trustworthiness of all the mobile nodes in the
chain, which may not be easy to ensure in open networks.

In [7], Khalili et al. provide a key distribution mechanism combining the
use of ID-PKC and threshold cryptography. Their scheme avoids the need for
users to generate their own public keys and distribute these keys throughout
the network, since the user’s identity acts as her public key. Besides that, users
only need to propagate their identities instead of the certificates. This can lead
to huge savings in bandwidth. However, the usage of ID-PKC instead of cer-



tificates also results in a few weaknesses. One major weakness is that the key
escrow problem since distributed PKG know all user’s private keys. The com-
promise of the PKG’s master key could be disastrous in an ID-PKC system, and
usually more severe than the compromise of a CA’s signing key in a traditional
public key cryptography. For these reasons, it seems that the use of ID-PKC
may be restricted to small, closed groups or to applications with limited security
requirements.

3 Preliminaries

3.1 Certificateless Public Key Cryptography

The idea of CL-PKC is proposed by Al-Riyami and Peterson [10] with the origi-
nal motivation of eliminating the inherent key escrow problem of ID-PKC. Since
then, different encryption and signature schemes were suggested [12–14]. In CL-
PKC, the KGC supplies an user with a partial secret key which the KGC com-
putes from the user’s identity and a master key, and then the user combines its
partial secret key and the KGC’s public parameters with some secret informa-
tion to generate its actual secret key and public key respectively. In this way, an
user’s secret key is not available to the KGC.

In more detail, an certificateless public key encryption scheme consists of the
following algorithms:

– Setup: This algorithm takes security parameter k and returns the system
parameters params and master-key. The system parameters includes a de-
scription of the message space M and ciphertext space C. Usually, this al-
gorithm is run by the KGC. The KGC publishes system parameters params
and keeps the master-key secret.

– Partial-Private-Key-Extract: This algorithm takes params, master-key
and an identity for entity A, IDA ∈ {0, 1}∗, as input. It returns a partial
private key DA. Usually this algorithm is run by the KGC and its output is
transported to entity A over a confidential and authentic channel.

– Set-Secret-Value: This algorithm takes as inputs params and an entity
A’s identity IDA as inputs and outputs A’s secret value xA.

– Set-Private-Key: This algorithm takes params, an entity A’s partial pri-
vate key DA and A’s secret value xA as input. The value xA is used to
transform DA into the (full) private key SA. The algorithm returns SA.

– Set-Public-Key: This algorithm takes params and entity A’s secret value
xA as input and from these constructs the public key PA for entity A.

– Encrypt: This algorithm takes as inputs params, a message m ∈M, and the
public key PA and identity IDA of an entity A. It returns either a ciphertext
c ∈ C or the null symbol ⊥ indicating an encryption failure.

– Decrypt: This algorithm takes as inputs params, c ∈ C, and a private key
SA. It returns a message m ∈ M or a message ⊥ indicating a decryption
failure.



3.2 Threshold Secret Sharing

Secret sharing allows a secret to be shared among a group of users (also called
shareholders) in such a way that no single user can deduce the secret from his
share alone. To construct the secret, one needs to combine a sufficient number
of shares. (k, n) threshold secret sharing represents that the secret is distributed
to n shareholders, and any k or more users can reconstruct the secret from their
shares, but k − 1 or fewer users cannot get any information about the secret.
Here, k is the threshold parameter such that 1 ≤ k ≤ n. The first threshold
secret sharing scheme was proposed by Shamir [11] in 1979, which is based on
polynomial interpolation. To distribute a secret S among n users, a trusted
authority chooses a large prime q, and randomly selects a polynomial

f(x) = S + a1x + · · ·+ ak−1x
k−1(mod q),

where a1, . . . ak−1 ∈ Zq. The trusted authority computes each user’s share by
Si = f(i) and securely sends the share Si to user i. Then any k users can
reconstruct the secret by computing

S =
k∑

i=1

SiLi(mod q),

where

Li =
k∏

j=1,j 6=i

−j/(i− j)(mod q).

There are two weaknesses in the Shamir secret sharing scheme. On the one hand,
his scheme does not detect the trusted authority distributes erroneous shares to
some users and does not detect some compromised users provide false shares; on
the other hand, his scheme needs a trusted authority to distribute a secret to
users. To detect incorrect shares, a few verifiable secret sharing (VSS) schemes
was proposed in [15–17]. A VSS scheme generates extra public information for
each share using a one-way function. The public information can testify the
correctness of the corresponding shares without disclosing them. To solve the
second weakness of the Shamir secret sharing scheme, Pedersen [19] proposed
a secret sharing scheme without having a trusted authority, which selects the
secret and distributes it to users. In stead, these users choose the secret and
distribute it among themselves.

In the secret sharing schemes described above, the secret is protected by
distributing it among several users. However, given sufficiently long time an
attacker could compromise k users and obtain their shares, thereby allowing
him to reconstruct the secret. To defend against such attackers, proactive secret
sharing schemes [18] use share refreshing, which enables users to compute new
shares from old ones in collaboration without disclosing the shared secret to
any user. The new shares constitute a new (k, n) sharing of the secret. After
refreshing, users remove the old shares and only keep the new ones. Because the
new shares are independent of the old ones, the adversary cannot combine old



shares with new shares to recover the secret. Thus, the attacker is challenged to
compromise k users between periodic refreshing.

4 Proposed Security Solution

In this section, we first describe our assumptions about the network, and then
give an overview of our key management approach using the threshold secret
sharing schemes and certificateless public key cryptography. Finally, we describe
our approach in detail.

4.1 Assumptions

Our key management approach does not rely on any assumption of underlying
key management subsystem. That is, there is no trusted authority to generate
and distribute the public/private keys and there is no pre-built trust association
between nodes in the network. All the keys used are generated and maintained
in a self-organizing way within the network.

We assume that each mobile node carries an IP address or an identity, which
is unique and unchanged during its lifetime in the ad hoc network. The IP address
or identity can be obtained through some dynamic address allocation and auto-
configuration, only if the address is selected without any conflict with other
nodes in the network. We also assume that each mobile node has a mechanism
to discover its one-hop neighborhood and to get the identities of other nodes in
the network.

4.2 Proposed Security Scheme

4.2.1 Overview

Consider that an ad hoc network has n nodes in the initial phase. The network
has a public/private key pair, called master key 〈PK, SK〉, which is used to
provide key generation service to all the nodes in the network. The master key
pair is generated in such a manner that the master public key PK is well known
to all the nodes in the network, and the master private key SK is shared by all
the nodes in a (k, n) threshold fashion. Any k or more nodes can reconstruct
the master private key SK from their shares, but k − 1 or fewer nodes cannot
get any information about the SK. Before utilizing any network service, each
node will have to obtain its partial private key corresponding to its identity and
distribute its public key throughout the network. This partial private key can
be computed by obtaining k shares of its key from the original nodes in the
network. Note that the distributed key generation service in a (k, n) threshold
fashion requires an adversary to corrupt at least k nodes in order to obtain a
user’s partial private key. Furthermore, honest nodes need only contact any k
nodes in order to obtain their own partial private keys, thus making the protocol
resilient to temporary loss of connectivity with other nodes in the network.



Our solution has the following good characteristics: (i) It does not need a
trusted authority to select and to distribute the master private key to nodes.
Nodes choose the secret and distributes it among themselves. (ii) It does not need
public key certificates, saving network bandwidth and computational power of
nodes. (iii) The using of the CL-PKC make our solution eliminate the key escrow
problem of the ID-PKC key management approaches [7–9].

In the following, we describe the basic operations of our key management
approach: master public/private key generation, partial private key generation
service, key agreement, new master private key share creation, and master private
key share refreshing of nodes.

4.2.2 Master Key Generation

Our master key generation mechanism uses the Pedersen’s threshold secret shar-
ing scheme without a trusted authority [19]. Therefore, our approach does not
need the support of the trusted authority to compute a master private key,
separate it into multiple shares and then distribute the shares to shareholders.
Instead, the master key pair is computed collaboratively by the initial network
nodes. The detailed scheme is as follows.

1. Each node Ci randomly chooses a secret xi and a polynomial fi(x) over Zq

of degree k − 1 such that fi(0) = xi. Let

fi(x) = ai0 + ai1x + · · ·+ ai,k−1x
k−1,

where ai0 = xi.
2. Each node Ci computes wij = gaij for j = 0, . . . , k − 1 and broadcasts
{wij}j=0,...,k−1.

3. When everybody has sent these k − 1 values, Ci sends sij = fi(j) securely
to Cj for j = 1, . . . , n (in particular Ci keeps sii).

4. Ci verifies the correctness of sji from Cj by checking

gsji =
k−1∏

l=0

wil

jl.

If this fails, Ci broadcasts that an error has been found, publishes sji and
then stops.

5. Ci can compute its share of master private key as Si =
∑n

j=1 sji. That is,
the master private key share of node Ci is combined by the subshares from
all the nodes, and each of them contributes one piece of that information.

6. Any coalition of k shareholders can jointly recover the secret as in basic
secret sharing by computing

∑k
i=1 SiLi(mod q), where

Li =
k∏

l=1,l 6=i

−l/(i− l)(mod q).



It is easy to see that the jointly generated master private key

SK =
n∑

i=1

xi =
n∑

i=1

fi(0).

Then, the master public key can be computed as

PK = SKP =
k∑

i=1

SiLiP,

where P is a common parameter used by the certificateless encryption scheme [10].

4.2.3 Distributed Partial Private Key Generation Service

Suppose that an entity A with identity IDA needs to obtain its public key and
corresponding private key. A choose a secret value xA and set its public key as
PA = 〈XA, YA〉, where XA = xAP and YA = xAPK. Then, A make its public
key PA is well known to all the nodes in the network. To obtain the private key,
A contacts at least k neighbor nodes, present the identity and request partial
private key generation service. These nodes that hold the master private key
share can be the KGC service nodes. In our scheme, all the network nodes share
the master private key, thus each of them can be the KGC service node. Each
of the k KGC service nodes generates a secret share of the partial private key
DA and sends to A. To make sure the generated shares are securely transmitted,
each of the KGC service nodes sends encrypted share to the node A using A’s
public key PA. The process of generation of a share of the partial private key DA

can be represented by DAi = SiH1(IDA), where Si(i = 1, . . . , k) is the share
of the master private key of the KGC node, H1 is a hash function used by the
certificateless encryption scheme [10], and DAi

is the generated partial private
key share for the node A. A can verify the correctness of DAi

by checking

ê(DAi
, P ) = ê(H1(IDA),Wi),

where ê is a bilinear map defined in [10] and Wi = SiP is the i-th KGC’s share
commitments. If this fails, A broadcasts that an error has been found, publishes
DAi

and then stops. After obtaining k valid partial private key share, A calculate
the complete partial private key as DA = DAi

Li, where

Li =
k∏

l=1,l 6=i

−l/(i− l)(mod q).

Then, A can sets its (full) private key SA = xADA.

4.2.4 Key Agreement

Suppose that entity A has its (full) private key SA and corresponding public key
PA = 〈XA, YA〉. Entity B has its (full) private key SB and corresponding public



key PB = 〈XB , YB〉. If they want to set up a session key, A chooses a random
values a ∈ Z∗q and sends TA = aP to B. B chooses a random values b ∈ Z∗q
and sends TB = bP to A. After the above messages are exchanged, both entities
check the validity of each other’s public keys (A checks ê(XB , PK) = ê(YB , P )
and B checks ê(XA, PK) = ê(YA, P )). Then A computes

KA = ê(H1(IDB), YB)aê(SA, TB)

and B computes
KB = ê(H1(IDA), YA)bê(SB , TA).

It is easy to see that K = KA = KB is a shared session key between A and B.

4.2.5 New Master Private Key Share Creation

When a new node Cp joins a network, it presents its identity, public key, and some
other required physical proof to k neighbor nodes and requests the master public
key and his share of the master private key. Each node in the coalition verifies the
validity of the identity of the new node Cp. If the verification succeeds, the Cp’s
private key can be generated using the above method. To initialize the share of
master private key for the requesting node, each coalition node Ci generates the
partial share sip = SiLi(p) for node Cp. Here, Li(p) is the Lagrange coefficient.
It encrypts the partial share using Cp’s public key and sends it to Cp. Node Cp

obtains its new share by adding the partial shares as

Sp =
k∑

j=1

sp,j .

Note that the partial shares may be shuffled before being sent to the joining node
to protect the secrecy of the coalition nodes’ secret shares [4]. After obtaining
the share of the master private key, the new joining node is available to provide
KGC service to other joining nodes.

4.2.6 Master Private Key Share Refreshing of Nodes

To protect against attackers that might compromise k or more nodes if there
is enough time, a proactive secret sharing scheme is used to enable nodes of a
region to compute new shares from old ones in collaboration without disclosing
the master private key of the region. It relies on the homomorphic property.
We notice that it is unnecessary to require all the nodes involved in the master
private key share refreshing process. Instead, the task can be done by only k
nodes, since we assume that, between any consecutive secret share updates, the
number of adversaries who hold secret shares originated from the same secret
key is less than k. To detect those incorrect subshares, the VSS scheme [15–17]
is employed.

Details are shown as follows. To renew the master private key shares of
all the n nodes in a region, k nodes are chosen from this region. Each node
Ci(1 ≤ i ≤ k) randomly generates (Si1, Si2, . . . , Sin), a (k, n) sharing of 0. Then,



every subshares Sij(1 ≤ j ≤ n) is distributed to node Cj . When node Cj gets the
subshares S1j , S2j , . . . , Skj , it can compute a new share from these subshares and
its old share (S′j = Sj+

∑k
i=1 Sij). The new shares constitute a new (k, n) sharing

of the master private key. After refreshing, nodes remove the old shares and use
the new ones to provide the partial private key generation service. Because the
new shares are independent of the old ones, the adversary cannot combine old
shares with new shares to recover the master private key. Thus, the adversary is
challenged to compromise k nodes in the same region between periodic refreshing.

5 Conclusions

Ad hoc networks are new paradigm in networking technologies. Key management
is one of the most crucial technologies for security of ad hoc networks. This
paper presents a new approach for key management using certificateless public
key cryptography and threshold secret sharing schemes. Certificateless public
key cryptography is applied here not only to eliminate the need for certificates,
but also to retain the desirable properties of identity-based key management
approaches without the inherent key escrow problem. In addition, we completely
avoid a centralized certification authority or trusted third party to distribute the
public keys and the certificates, thus enhance the tolerance of the network to
compromised nodes and also efficiently save network bandwidth.
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