
Automatic Transformation for Overlapping
Communication and Computation

Changjun Hu, Yewei Shao, Jue Wang, Jianjiang Li

School of Information Engineering, University of Science and Technology Bejing
NO.30 Xueyuan Road, Haidian District, Beijing, P.R.China

huchangjun@ies.ustb.edu.cn, yeweishao@gmail.com, ncepu5@gmail.com,
jianjiangli@gmail.com

Abstract. Message-passing is a predominant programming paradigm for
distributed memory systems. RDMA networks like infiniBand and Myrinet
reduce communication overhead by overlapping communication with
computation. For the overlap to be more effective, we propose a source-to-
source transformation scheme by automatically restructuring message-passing
codes. The extensions to control-flow graph can accurately analyze the
message-passing program and help perform data-flow analysis effectively. This
analysis identifies the minimal region between producer and consumer, which
contains message-passing functional calls. Using inter-procedural data-flow
analysis, the transformation scheme enables the overlap of communication with
computation. Experiments on the well-known NAS Parallel Benchmarks show
that for distributed memory systems, versions employing communication-
computation overlap are faster than original programs.

Keywords: Parallel compiling; Communication optimization; Control-flow
analysis; Source-to-source transformation.

1 Introduction

Message-passing is widely used in parallel programs and is a standard interface for
message-passing parallel programs written in C, C++, or Fortran that supports point-
to-point communications (send, receive, isend, ireceive) and collective operations
(broadcast, gather, scatter, alltoall, alltoallv). The algorithm presented in this paper is
applicable to message-passing codes. Our platform is a set of sixteen processor nodes,
connected with an infiniBand switch. Current infiniBand switches have Remote
Direct Memory Access (RDMA) capability and support that non-blocking
communication can progress concurrently with computation.

The benefit of overlapping communication and computation in parallel computing
has been extensively studied in the past decade. We can classify previous works into
three kinds. Some of researches are achieved by compiled methods [1, 2, 3, 4, 5];
some of them have been performed in the field of Global Address Space languages [6,
7, 8] or achieved by particular hardware [9, 10, 11]. However, these techniques may
be effective for overlapping communication and computation only in a single loop. In

this paper, we present a transformation scheme to overlap communication with
computation using inter-procedural data-flow analysis.

Compared with previous researches, our main contributions are as follows:
 Using inter-procedural data-flow analysis to find the minimal region from

producer to consumer in context of message-passing programs.
 We propose a transformation scheme to overlap communication with

computation.
 We evaluate some NAS benchmarks to validate our transformation.

The rest of this paper is organized as follows. Section 2 gives the algorithm to
create the control-flow graph for message-passing programs. Section 3 describes a
source-to-source transformation scheme to optimize the parallel programs. Section 4
evaluates the performance of NAS benchmarks using our transformation algorithm.
Section 5 places this paper in the context of related work. Section 6 presents
conclusions.

2 Control-Flow Graph for Message-passing Program

The compiler must characterize the control-flow and the data-flow of programs, so
that the programs can be optimized in next step. It is regrettable that the previous
control-flow graph does not consider the message-passing call, which can result in
less precise and even incorrect analysis results. To resolve these problems, Shires et al.
[12] give an extension to the control-flow graph called the MPI-CFG. A motivation
example will be given in figure1, which is a generic code segment in SPMD (Single
Process, Multiple Data) parallel program. The array dum is communicated between
statement S1 and S2. In figure 2 MPI-CFG contains control-flow edges represented
with solid lines and a communication edges represented with dash lines. This is the
start point of our work.

3 The Overlap of Communication and Computation

There are two challenges involved in data-flow analysis. The first challenge is to
identify message-passing variables and characterize corresponding data accesses. The
second challenge is that producer-consumer data-flow analysis need to be performed
to ensure communication-computation overlap.

Figure1. A code segment of SPMD program

Figure2.The MPI-CFG of the code segment presented in Figure1

3.1 Inter-procedural Data-flow Analysis for Message-passing Programs

To characterize and analyze data accesses in message-passing program, we perform
the inter-procedural dataflow analysis for message-passing variables. Message-
passing variable is defined as data that may be communicated or related to
communication data, such as the parameters in message-passing call and the compiler
identifies these message-passing variables using the algorithm described in Figure 3.
In Figure 3, we first locate communication statements, and then obtain their
parameters and functional calls. If the parameters are communicated through

communication statement, we add these parameters into our Message-passing
Variables list. If the communication statement has function calls, we should go into
these functions and get parameters from these calls, and then add these parameters
into our list. Finally, our list is a set of variables that may be communicated or related
to communication data.

Figure3.Algorithm to create list of message-passing variables

3.2 Constructing the Minimal Region from the Producer to Consumer

In this section we give producer-consumer relationship analysis which can be
applied at any level. If the statement S1 precedes S2 in execution order, then S1 < S2.
Dependence between two statements in program is relation that constrains their
execution order and control dependence constrain that arises from control-flow graph.
Data dependence arises from flow of data. Therefore, we will give the types of
producer-consumer dependencies. If S1 < S2, and S1 sets value and later S2 uses it,
then call it producer-consumer. If S1 < S2, and S1 uses some variable value and S2
sets it, then call it anti producer-consumer. We treat producer-consumer and anti
producer-consumer differently.

To expose the maximum available opportunity for communication with
computation, the algorithm shown in Figure 4 resolves the minimal region from
producer to consumer, which contains the communication function calls. Each
variable could be produced and be consumed in multi places in the program, and we
only pay attention to the minimal region from the producer to the consumer. Getting
variable from the Message-passing Variables list which is described in Figure 3, we
locate the places that produce this variable and then we select the place called
minPlace_P that is the minimal place from the producer to the communication
statement which contains variable. Then we choose the place called minPlace_Q that
is the nearest place consuming the variable after communication statement. Finally,
our minimal region is from minPlace_P to minPlace_Q.

Figure4. Algorithm to construct the minimal region from producer to consumer

3.3 Transformation Algorithm

We classify the communication patterns into two cases, blocking communication
and non-blocking communication. To overlap communication and computation,
messages are initiated early using non-blocking sends/receives and completed just
before the consumption point at the receiver with a wait.

MPI provides a direct interface to non-blocking point-to-point operations, while
non-blocking collective operations to overlap communication and computation are not
directly supported by the MPI standard. For blocking communication, we change it
into non-blocking communication using the techniques of Hoefler et al [13, 14]. In
other words, we change MPI_Send into MPI_Isend, MPI_Receive into MPI_Ireceive,
and get the non-blocking communications including MPI_Ibcast, MPI_Igather,
MPI_Iscatter, MPI_Ialltoall and MPI_Ialltoallv. Since collective communication and
point-to-point communication are used in a different way, they should be considered
separately.

We give the transformation algorithm presented in Figure5. The algorithm based on
the minimal region from producer to consumer described in Figure5 and guarantee the
maximization of overlapping communication and computation.

Figure5. Transformation algorithm for overlapping communication and computation

4 Experimental Results

To evaluate the effect of our strategy, the performance comparisons between the
original program and our optimized program using our transformation algorithm. The
experimental environment is a set of sixteen processor nodes, connected with a high-
performance infiniBand switch. Each node has an Intel Xeon 3.0G processor with
1024KB L2 Cache, and the switch has a Remote Direct Memory Access (RDMA)
capability, whereby non-blocking message-passing communication can progress
concurrently with computation. The Operating System is RedHat Linux version FC3,
with Kernel 2.6.9 and we use MVAPICH2 1.0[15] for communication over
InfiniBand. Time is measured by inserting MPI_Wtime() calls before and after the
region we want to execute.

To validate the transformation scheme, we design several experiments
implementing the algorithm of overlapping communication and computation using
data-flow analysis to apply to NAS benchmarks. The NAS parallel benchmarks [16]
are a set of programs designed originally to evaluate supercomputers. We use NPB
2.4 [17] implementation written in MPI and give some experiments based on the NAS
parallel programs which confirm to our algorithm, such as LU, IS, BT, MG.

Figure6 shows the performance of LU benchmark before and after optimized
program. The transformed program succeeds in tolerating the communication latency
and reducing the execution time by almost from 10% to 17% going from two to
sixteen nodes both in class A problem size, while reducing time from 5% to 17% in
class B problem size.

Figure7 shows the time taken in communication and computation available for
overlap both in class A problem size and class B problem size in LU benchmark. The
time taken in communication available for overlap is close to the time taken in
computation and it occupies a large proportion in the parallel program. Therefore,
optimized program of LU benchmark succeeds in reducing the execution time taken
in parallel program.

0

50

100

150

200

250

300

350

400

450

500

2 4 8 16
Number of processors

T
i
m
e
(
i
n

s
e
c
o
n
d
s
)

original program in CLASS=A optimized program in CLASS=A

original program in CLASS=B optimized program in CLASS=B

Figure6. Performance in LU benchmark

0

5

10

15

20

25

30

35

40

45

50

2 4 8 16
Number of processors

T
i
m
e
(
i
n

s
e
c
o
n
d
s
)

Communication available for Overlap in CLASS=A

Computation available for Overlap in CLASS=A

Communication available for Overlap in CLASS=B

Computation available for Overlap in CLASS=B
Figure7. Communication and computation available for overlapping in class A and class B
problem size (LU benchmark)

Figure8 shows the performance of MG benchmark while Figure9 shows the
communication and computation available for our algorithm. The time taken in
communication available for overlap is much larger than the time taken in
computation. Although the time spent in communication occupies a large proportion
in the parallel program, the actual time spent in overlapping is relatively low. In
Figure 8 the transformation algorithm reduces the execution time only from 5% to 8%.
Therefore, transformation algorithm achieves good performance only if the time taken
in communication available for overlap is close to the time taken in computation. The
time taken in available to overlap occupies relatively low in the whole parallel
program execution in BT benchmark, so it does not show an obvious result in this
benchmark.

0

10

20

30

40

50

60

70

2 4 8 16

Number of processors

T
i
m
e
(
i
n

s
e
c
o
n
d
s
)

original program in CLASS=A optimized program in CLASS=A

original program in CLASS=B optimized program in CLASS=B

Figure8. Performance in MG benchmark

0

2

4

6

8

10

12

14

2 4 8 16

Number of processors

T
i
m
e
(
i
n

s
e
c
o
n
d
s
)

Communication available for Overlap in CLASS=A

Computation available for Overlap in CLASS=A

Communication avalable for overlap in CLASS=B

Computation availabler Overlap in CLASS=B
Figure9. Communication and computation available for overlapping in class A and class B
problem size (MG benchmark)

Figure10 shows the performance of IS benchmark while Figure11 shows the
communication and computation available for our algorithm. It is obviously seen
from Figure 11 that the descent speed of computation is faster than the descent speed
of communication in going from two to sixteen nodes. On two to four nodes, the
time taken in communication available for overlap is lower than the time taken in
computation, while on eight to sixteen nodes the time taken in communication
available for overlap is larger than the computation. Since the time taken in
communication available for overlap is close to the time taken in computation and the
time occupies a large proportion in the parallel program execution, Figure 10 shows
that the optimized program can reduce the time from 11% to 39% in class A
problem size and from 17% to 22% in class B problem size.

From the above observations, the improvement of performance depends on the
following aspects. The first aspect is the proportion of actual time for overlapping
occupied in parallel programs. The second one is the time taken in communication
should be close to the time taken in computation available for overlap.

Even after our overlap communication and computation, the communication
volume is still very high. However, overlap allows us to tolerate the communication
latency considerably.

0

5

10

15

20

25

30

2 4 8 16
Number of processors

T
i
m
e
(
i
n

s
e
c
o
n
d
s
)

original program in CLASS=A optimized program in CLASS=A

original program in CLASS=B optimized program in CLASS=B

Figure10. Performance in IS benchmark

0

1

2

3

4

5

6

7

8

2 4 8 16
Number of processors

T
i
m
e
(
i
n

s
e
c
o
n
d
s
)

communication avaiable for overlap in CLASS=A

Computation available for overlap in CLASS=A

Communication available for overlap in CLASS=B

Computation available for overlap in CLASS=B
Figure11. Communication and computation available for overlapping in class A and class B
problem size (IS benchmark)

5 Related Work

Control-flow frameworks have been extended by Shires et al. [12], which
represents the semantics of message-passing by including communication edges
between message-passing procedure calls. This control-flow graph can not describe
non-blocking communication accurately. To resolve this problem, our analysis
contains inter-procedural in the control-flow graph and inter-procedural in the data-
flow graph.

Reducing communication latency using overlap communication and computation
has been used in the past decade. HPF compilers [18] proposed a notion of posting of
sends as early as possible and receiving as late as possible in order to overlap
communication with computation. Some later approaches have suggested the

overlapping of communication and computation [2, 19, 20, 21, 22], but they are
limited to overlap them in a single loop.

Hoefler et al. [13, 14] gives non-blocking collective operations which are obvious
extensions to message-passing. Kennedy et al. [23] presents a communication
placement framework that reduces communication latency. The difference between us
is that the communication placement can be determined by a sequence of simple
unidirectional analyses while we add communication edges and use inter-procedural
analysis in control-flow graph. This is the important starting points for our work. In
our previous work [24], we pipelined an irregular loop by splitting inspector phase
and using corresponding dependence analysis.

To the best of our knowledge, this paper presents the first approach to overlap
communication and computation by the inter-procedural analysis of message-passing
programs. Algorithm could be used in both point-to-point communications and
collective operations.

6 Conclusions

In this paper, we present a transformation scheme to achieve overlapping
communication and computation based on inter-procedural data-flow analysis. The
data-flow analysis gives the RSD of each variable in message-passing calls and the
minimal region from producer to consumer. Finally, we give transformation scheme
to accomplish our optimization. To study the impact of our optimization, we give
some experiment results to illustrate that our strategy is useful for improving the
performance of the message-passing programs.

Acknowledgments

The research is partially supported by the Key Technologies Research and
Development Program of China under Grant No.2006038027015, the Hi-Tech
Research and Development Program (863) of China under Grant No. 2006AA01Z105
and No. 2008AA01Z109 Natural Science Foundation of China under Grant
No.60373008, and by the Key Project of Chinese Ministry of Education under Grant
No. 106019 and No.108008.

References

1. Ayon Basumallik, Rudolf Eigenmann, Optimizing Irregular Shared-Memory Applications
for Distributed-Memory Systems, PPOPP, New York, USA, March 29-31, 2006

2. L.Fishgold, A.Danalis, L.Pollock, M.Swany. An automated approach to improve
communication-computation overlap in cluster. John von Neumann Institute for computing,
Julich, NIC Series, Vol.33, ISBN 3-00-017352-8, pp.481-488, 2006

3. Anthony Danalis, Lori Pollock, Martin Swany, Automatic MPI application transformation
with ASPhALT, IEEE, 2007

4. Anthony Danalis, Ki-Yong Kim, Lori Pollock, Matin Swany, Transformations to Parallel
Codes for Communication-computation Overlap, ACM, 2005

5. Barbara Kreaseck, Larry Carter, Henri Casanova, Jeanne Ferrante, On the Interference of
Communication on Computation in Java, IEEE, 2004

6. T. A. El-Ghazawi, W. W. Carlson, and J. M. Draper, UPC specification
v. 1.1, http://upc.gwu.edu/ documentation, 2003

7. P. Hilfinger, D. Bonachea, D. Gay, S. Graham, B. Liblit, G. Pike, and K. Yelick. Titanium
language reference manual. tech report ucb/csd-01-1163, u.c. berkeley, November 2001

8. R.W.Numrich and J.K.Reid, Co-Array Fortran for parallel programming, ACM
FortranForum17, 2,1-31,1998

9. G. Goumas, A.Sotiropoulos, and N. Koziris. Minimizing completion time for loop tiling
with computation and communication overlapping, In Proceedings of the 15th International
Parallel and Distributed Processing Symposium(IPDPS-01), page39, Los Alamitos, CA,
Apr.23–27 2001,IEEE Computer Society

10. S.K.S.Gupta, C.-H.Huang, P.Sadayappan, and R.W.Johnson. Atechnique for overlapping
computation and communication for block recursive algorithms. Concurrency: Practiceand
Experience, 10(2):73–90, Feb. 1998

11. A.Sohn and R.Biswas, Communication studies of dmp and smp machines. Technical Report
NAS-97-005,NASA Ames ResearchCenter, March1997

12. Dale Shires, Lori Pollock, Sara Sprenkle, Program Flow Graph Construction for Static
Analysis of MPI programs, In International Conference on Parallel and Distributed
Processing Techniques and Applications,(PDPTA 99), June 1999

13. Torsten Hoefler, Andrew Lumsdaine, Wolfgang Rehm. Implementation and Performance
Analysis of Non-Blocking Collective operations for MPI. SC07 November 10-16, 2007,
Reno, Nevada, USA

14. T.Hoefler, A.Lumsdaine. Optimizing non-blocking collective operations for infiband. Apr.
2008, Accepted for publication at the CAC 2008 in conjunction with the IDPDS’08

15. http://mvapich.cse.ohio-state.edu
16. http://www.nas.nasa.gov/software/NPB
17. D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter, L. Dagum, R. Fatoohi, S.

Fineberg, P. Frederickson, T. Lasinski, R. Schreiber, H. Simon, V. Venkatakrishnan, and S.
Weeratunga, The NAS parallel benchmarks, Tech. Rep. RNR-94-007, NASA Ames

18. M.Gupta, S.Miskiff, E.Schonberg, V.Seshadri, D.Shields, K.Wang, W.Ching, and T.Ngo.
An HPF compiler for the IBM SP2. In Proceedings of Supercomputing ’95, San Diego, CA,
1995

19. K.Ishizaki, H.Komatsu, and T.Nakatani. A loop transformation algorithm for
communication overlapping International Journal of Parallel Programming, 28(2), pages
135-154, 2000

20. E.H.Y.Tseng and J.L.Gaudiot, Communication generation for aligned and Cyclic(k)
distributions using integer lattice, IEEE Transactions on Parallel Distributed Systems 10(2),
pages 136-146, 1999

21. C.lancu, P. Husbands, and W.Chen. Message Strip Mining Heuristics for High Speed
Networks. In VECPAR, 2004

22. C.Bell, D.Bonachea, R.Nishtala, and K.Yelich. Optimizing Bandwidth Limited Problems
Using One-Side communication and overlap. In 20th International parallel &Distributed
Processing Symposium (IPDPS), 2006

23. Ken Kennedy, Ajay Sethi. A Communication Placement Framework with Unified
Dependence and Data-flow Analysis. High Performance Computing, Proceeding 3rd
International Conference on 19-22 Dec.1996 Page(s):201-208, 1996

24.Changjun Hu, Guangli Yao, Jue Wang, and Jianjiang Li. OpenMP Extensions for Irregular
Parallel Applications on Cluster, International Workshop on OpenMP, 2007, Lecture Notes
in Computer Science，vol. 4935.

