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Abstract. Message-passing is a predominant programming paradigm for 
distributed memory systems. RDMA networks like infiniBand and Myrinet 
reduce communication overhead by overlapping communication with 
computation. For the overlap to be more effective, we propose a source-to-
source transformation scheme by automatically restructuring message-passing 
codes. The extensions to control-flow graph can accurately analyze the 
message-passing program and help perform data-flow analysis effectively. This 
analysis identifies the minimal region between producer and consumer, which 
contains message-passing functional calls. Using inter-procedural data-flow 
analysis, the transformation scheme enables the overlap of communication with 
computation. Experiments on the well-known NAS Parallel Benchmarks show 
that for distributed memory systems, versions employing communication-
computation overlap are faster than original programs.  

Keywords: Parallel compiling; Communication optimization; Control-flow 
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1   Introduction 

Message-passing is widely used in parallel programs and is a standard interface for 
message-passing parallel programs written in C, C++, or Fortran that supports point-
to-point communications (send, receive, isend, ireceive) and collective operations 
(broadcast, gather, scatter, alltoall, alltoallv). The algorithm presented in this paper is 
applicable to message-passing codes. Our platform is a set of sixteen processor nodes, 
connected with an infiniBand switch. Current infiniBand switches have Remote 
Direct Memory Access (RDMA) capability and support that non-blocking 
communication can progress concurrently with computation.  

The benefit of overlapping communication and computation in parallel computing 
has been extensively studied in the past decade. We can classify previous works into 
three kinds. Some of researches are achieved by compiled methods [1, 2, 3, 4, 5]; 
some of them have been performed in the field of Global Address Space languages [6, 
7, 8] or achieved by particular hardware [9, 10, 11]. However, these techniques may 
be effective for overlapping communication and computation only in a single loop. In 



this paper, we present a transformation scheme to overlap communication with 
computation using inter-procedural data-flow analysis.  

Compared with previous researches, our main contributions are as follows: 
 Using inter-procedural data-flow analysis to find the minimal region from 

producer to consumer in context of message-passing programs. 
 We propose a transformation scheme to overlap communication with 

computation. 
 We evaluate some NAS benchmarks to validate our transformation. 

The rest of this paper is organized as follows. Section 2 gives the algorithm to 
create the control-flow graph for message-passing programs. Section 3 describes a 
source-to-source transformation scheme to optimize the parallel programs. Section 4 
evaluates the performance of NAS benchmarks using our transformation algorithm. 
Section 5 places this paper in the context of related work. Section 6 presents 
conclusions. 

2   Control-Flow Graph for Message-passing Program   

The compiler must characterize the control-flow and the data-flow of programs, so 
that the programs can be optimized in next step. It is regrettable that the previous 
control-flow graph does not consider the message-passing call, which can result in 
less precise and even incorrect analysis results. To resolve these problems, Shires et al. 
[12] give an extension to the control-flow graph called the MPI-CFG. A motivation 
example will be given in figure1, which is a generic code segment in SPMD (Single 
Process, Multiple Data) parallel program.  The array dum is communicated between 
statement S1 and S2. In figure 2 MPI-CFG contains control-flow edges represented 
with solid lines and a communication edges represented with dash lines. This is the 
start point of our work.  

3   The Overlap of Communication and Computation  

There are two challenges involved in data-flow analysis. The first challenge is to 
identify message-passing variables and characterize corresponding data accesses. The 
second challenge is that producer-consumer data-flow analysis need to be performed 
to ensure communication-computation overlap.  

 



 
Figure1. A code segment of SPMD program 

 

Figure2.The MPI-CFG of the code segment presented in Figure1 

3.1   Inter-procedural Data-flow Analysis for Message-passing Programs  

To characterize and analyze data accesses in message-passing program, we perform 
the inter-procedural dataflow analysis for message-passing variables. Message-
passing variable is defined as data that may be communicated or related to 
communication data, such as the parameters in message-passing call and the compiler 
identifies these message-passing variables using the algorithm described in Figure 3. 
In Figure 3, we first locate communication statements, and then obtain their 
parameters and functional calls. If the parameters are communicated through 



communication statement, we add these parameters into our Message-passing 
Variables list. If the communication statement has function calls, we should go into 
these functions and get parameters from these calls, and then add these parameters 
into our list. Finally, our list is a set of variables that may be communicated or related 
to communication data. 

 
Figure3.Algorithm to create list of message-passing variables 

3.2   Constructing the Minimal Region from the Producer to Consumer  

In this section we give producer-consumer relationship analysis which can be 
applied at any level. If the statement S1 precedes S2 in execution order, then S1 < S2. 
Dependence between two statements in program is relation that constrains their 
execution order and control dependence constrain that arises from control-flow graph. 
Data dependence arises from flow of data. Therefore, we will give the types of 
producer-consumer dependencies. If S1 < S2, and S1 sets value and later S2 uses it, 
then call it producer-consumer. If S1 < S2, and S1 uses some variable value and S2 
sets it, then call it anti producer-consumer. We treat producer-consumer and anti 
producer-consumer differently. 

To expose the maximum available opportunity for communication with 
computation, the algorithm shown in Figure 4 resolves the minimal region from 
producer to consumer, which contains the communication function calls. Each 
variable could be produced and be consumed in multi places in the program, and we 
only pay attention to the minimal region from the producer to the consumer. Getting 
variable from the Message-passing Variables list which is described in Figure 3, we 
locate the places that produce this variable and then we select the place called 
minPlace_P that is the minimal place from the producer to the communication 
statement which contains variable. Then we choose the place called minPlace_Q that 
is the nearest place consuming the variable after communication statement. Finally, 
our minimal region is from minPlace_P to minPlace_Q.  



 
Figure4. Algorithm to construct the minimal region from producer to consumer 

3.3   Transformation Algorithm  

We classify the communication patterns into two cases, blocking communication 
and non-blocking communication. To overlap communication and computation, 
messages are initiated early using non-blocking sends/receives and completed just 
before the consumption point at the receiver with a wait. 

MPI provides a direct interface to non-blocking point-to-point operations, while 
non-blocking collective operations to overlap communication and computation are not 
directly supported by the MPI standard. For blocking communication, we change it 
into non-blocking communication using the techniques of Hoefler et al [13, 14]. In 
other words, we change MPI_Send into MPI_Isend, MPI_Receive into MPI_Ireceive, 
and get the non-blocking communications including MPI_Ibcast, MPI_Igather, 
MPI_Iscatter, MPI_Ialltoall and MPI_Ialltoallv. Since collective communication and 
point-to-point communication are used in a different way, they should be considered 
separately. 



We give the transformation algorithm presented in Figure5. The algorithm based on 
the minimal region from producer to consumer described in Figure5 and guarantee the 
maximization of overlapping communication and computation. 

 

 
Figure5. Transformation algorithm for overlapping communication and computation 

4   Experimental Results  

To evaluate the effect of our strategy, the performance comparisons between the 
original program and our optimized program using our transformation algorithm. The 
experimental environment is a set of sixteen processor nodes, connected with a high-
performance infiniBand switch. Each node has an Intel Xeon 3.0G processor with 
1024KB L2 Cache, and the switch has a Remote Direct Memory Access (RDMA) 
capability, whereby non-blocking message-passing communication can progress 
concurrently with computation. The Operating System is RedHat Linux version FC3, 
with Kernel 2.6.9 and we use MVAPICH2 1.0[15] for communication over 
InfiniBand. Time is measured by inserting MPI_Wtime() calls before and after the 
region we want to execute. 

To validate the transformation scheme, we design several experiments 
implementing the algorithm of overlapping communication and computation using 
data-flow analysis to apply to NAS benchmarks. The NAS parallel benchmarks [16] 
are a set of programs designed originally to evaluate supercomputers. We use NPB 
2.4 [17] implementation written in MPI and give some experiments based on the NAS 
parallel programs which confirm to our algorithm, such as LU, IS, BT, MG.  

Figure6 shows the performance of LU benchmark before and after optimized 
program. The transformed program succeeds in tolerating the communication latency 
and reducing the execution time by almost from 10% to 17% going from two to 
sixteen nodes both in class A problem size, while reducing time from 5% to 17% in 
class B problem size. 



Figure7 shows the time taken in communication and computation available for 
overlap both in class A problem size and class B problem size in LU benchmark. The 
time taken in communication available for overlap is close to the time taken in 
computation and it occupies a large proportion in the parallel program. Therefore, 
optimized program of LU benchmark succeeds in reducing the execution time taken 
in parallel program. 

0

50

100

150

200

250

300

350

400

450

500

2 4 8 16
Number of processors

T
i
m
e
(
i
n
 
s
e
c
o
n
d
s
)

original program in CLASS=A optimized program in CLASS=A

original program in CLASS=B optimized program in CLASS=B

 
Figure6. Performance in LU benchmark 
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Figure7. Communication and computation available for overlapping in class A and class B 
problem size (LU benchmark) 

Figure8 shows the performance of MG benchmark while Figure9 shows the 
communication and computation available for our algorithm. The time taken in 
communication available for overlap is much larger than the time taken in 
computation. Although the time spent in communication occupies a large proportion 
in the parallel program, the actual time spent in overlapping is relatively low. In 
Figure 8 the transformation algorithm reduces the execution time only from 5% to 8%. 
Therefore, transformation algorithm achieves good performance only if the time taken 
in communication available for overlap is close to the time taken in computation. The 
time taken in available to overlap occupies relatively low in the whole parallel 
program execution in BT benchmark, so it does not show an obvious result in this 
benchmark. 
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Figure8. Performance in MG benchmark 
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Figure9. Communication and computation available for overlapping in class A and class B 
problem size (MG benchmark) 

Figure10 shows the performance of IS benchmark while Figure11 shows the 
communication and computation available for our algorithm. It is obviously seen 
from Figure 11 that the descent speed of computation is faster than the descent speed 
of communication in going from two to sixteen nodes.  On two to four nodes, the 
time taken in communication available for overlap is lower than the time taken in 
computation, while on eight to sixteen nodes the time taken in communication 
available for overlap is larger than the computation. Since the time taken in 
communication available for overlap is close to the time taken in computation and the 
time occupies a large proportion in the parallel program execution, Figure 10 shows 
that the optimized program can reduce the time from 11% to 39% in class  A 
problem size and from 17% to 22% in class B problem size. 

From the above observations, the improvement of performance depends on the 
following aspects. The first aspect is the proportion of actual time for overlapping 
occupied in parallel programs. The second one is the time taken in communication 
should be close to the time taken in computation available for overlap. 



Even after our overlap communication and computation, the communication 
volume is still very high. However, overlap allows us to tolerate the communication 
latency considerably. 
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Figure10. Performance in IS benchmark 
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Figure11. Communication and computation available for overlapping in class A and class B 
problem size (IS benchmark) 

 

5   Related Work 

Control-flow frameworks have been extended by Shires et al. [12], which 
represents the semantics of message-passing by including communication edges 
between message-passing procedure calls. This control-flow graph can not describe 
non-blocking communication accurately. To resolve this problem, our analysis 
contains inter-procedural in the control-flow graph and inter-procedural in the data-
flow graph.  

Reducing communication latency using overlap communication and computation 
has been used in the past decade. HPF compilers [18] proposed a notion of posting of 
sends as early as possible and receiving as late as possible in order to overlap 
communication with computation. Some later approaches have suggested the 



overlapping of communication and computation [2, 19, 20, 21, 22], but they are 
limited to overlap them in a single loop. 

Hoefler et al. [13, 14] gives non-blocking collective operations which are obvious 
extensions to message-passing. Kennedy et al. [23] presents a communication 
placement framework that reduces communication latency. The difference between us 
is that the communication placement can be determined by a sequence of simple 
unidirectional analyses while we add communication edges and use inter-procedural 
analysis in control-flow graph. This is the important starting points for our work. In 
our previous work [24], we pipelined an irregular loop by splitting inspector phase 
and using corresponding dependence analysis. 

To the best of our knowledge, this paper presents the first approach to overlap 
communication and computation by the inter-procedural analysis of message-passing 
programs. Algorithm could be used in both point-to-point communications and 
collective operations. 

6   Conclusions  

In this paper, we present a transformation scheme to achieve overlapping 
communication and computation based on inter-procedural data-flow analysis. The 
data-flow analysis gives the RSD of each variable in message-passing calls and the 
minimal region from producer to consumer. Finally, we give transformation scheme 
to accomplish our optimization. To study the impact of our optimization, we give 
some experiment results to illustrate that our strategy is useful for improving the 
performance of the message-passing programs.  
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