
Procrastination Scheduling for Fixed-Priority Tasks
with Preemption Thresholds

XiaoChuan He, Yan Jia

Institute of Network Technology and Information Security
School of Computer Science

National University of Defense Technology
Changsha, China 410073

XiaoChuanHe@gmail.com

Abstract. Dynamic Voltage Scaling (DVS), which adjusts the clock speed and
supply voltage dynamically, is an effective technique in reducing the energy con-
sumption of embedded real-time systems. However, the longer a job executes,
the more energy in the leakage current the device/processorconsumes for the job.
Procrastination scheduling, where task execution can be delayed to maximize the
duration of idle intervals by keeping the processor in a sleep/shutdown state even
if there are pending tasks within the timing constraints imposed by performance
requirements, has been proposed to minimize leakage energydrain. This paper
targets energy-efficient fixed-priority with preemption threshold scheduling for
periodic real-time tasks on a uniprocessor DVS system with non-negligible leak-
age power consumption. We propose a two-phase algorithm. Inthe first phase,
the execution speed, i.e., the supply voltage of each task are determined by ap-
plying off-line algorithms, and in the second phase, the procrastination length of
each task is derived by applying on-line simulated work-demand time analysis,
and thus the time moment to turn on/off the system is determined on the fly. A
series of simulation experiments was evaluated for the performance of our algo-
rithms. The results show that our proposed algorithms can derive energy-efficient
schedules.

1 Introduction

Low power utilization has been an important issue for hardware manufacturing for
next-generation portable, scalable, and sophisticated embedded systems. To reduce the
power consumption without the sacrifice of performance, architectural techniques have
been proposed to dynamically trade the performance and power consumption. Dynamic
Voltage Scaling (DVS), which adjusts the supply voltage andits corresponding clock
frequency dynamically, is one of the most effective low-power design technique for
embedded real-time systems. Since the energy consumption of CMOS circuits has a
quadratic dependency on the supply voltage, lowering the supply voltage is one of the
most effective ways of reducing the energy consumption.

In many real-time applications, average or worst-case taskresponse time is an im-
portant non-functional design requirement of the system. For example, to maintain the
system stability, many embedded real-time systems must complete the tasks before

their deadlines. For real-time systems targeting commercial variable voltage micro-
processors, since lowering the supply voltage also decreases the maximum achievable
clock speed [1],energy-efficienttask scheduling is to reduce supply voltage dynami-
cally to the lowest possible level while satisfying the tasks’timing constraints. In the
past decade, energy-efficient task scheduling with variousdeadline constraints received
extensive attention, especially for the minimization of the energy consumption of the
dynamic voltage scaling part in a uniprocessor environment[2].

Recently, researchers have started exploring energy-efficient scheduling with the
considerations of leakage current since the power consumption resulting from leak-
age current is comparable to the dynamic power dissipation [3]. To reduce the energy
consumption resulting from leakage current, a system mightbe turned off (to enter a
dormant mode). For periodic real-time tasks, Jejurikar et al. [4] and Leeet al. [5] pro-
posed energy-efficient scheduling on a uniprocessor by procrastination scheduling to
decide when to turn off the system. Jejurikar and Gupta [3] then further considered
real-time tasks that might complete earlier than its worst-case estimation by extending
the algorithms presented in [4].

Fixed-priority preemptive (FPP) scheduling algorithms and fixed-priority non-preemptive
(FPNP) scheduling algorithms are two important classes of real-time scheduling al-
gorithms. To obtain the benefits of both FPP and FPNP algorithms, there are several
other algorithms trying to fill the gap between them. The fixed-priority with preemption
threshold (FPPT) scheduling algorithm [6] is one of them. Under FPPT, each task has
a pair of priorities: regular priority and preemption threshold, where the preemption
threshold of a task is higher than or equal to its regular priority. The preemption thresh-
old represents the tasks running-time preemption prioritylevel. It prevents the preemp-
tion of the task from other tasks, unless the preempting tasks priority is higher than the
preemption threshold of the current running task. Saksena and Wang have shown that
task sets scheduled with FPPT can have significant schedulability improvements over
task set using fixed priorities [6].

This paper considers energy-efficient FPPT scheduling of periodic real-time tasks
on a uniprocessor whose dynamic voltage scaling portion might be turned off for further
energy saving. We further combine procrastination scheduling with dynamic voltage
scaling to minimize the total static and dynamic energy consumption of the system. An
on-line algorithm was developed to calculate the respective procrastination interval for
each task. A series of simulation experiments was also evaluated for the performance
of our algorithms. The results show that our proposed algorithms can derive energy-
efficient schedules.

The rest of this paper is organized as follows: Section 2 defines the leakage-aware
energy-efficient FPPT scheduling problem in a uniprocessorsystem. Preliminary results
are shown in Section 2. The proposed algorithms are in Section 3. Experimental results
for the performance evaluation of the proposed algorithms are presented in Section 4.
Section 5 is the conclusion.

2 System Model

2.1 Task Model

This study deals with the fixed priority preemptive
scheduling of tasks in a real-time systems with hard constraints, i.e., systems in

which the respect of time constraints is mandatory. The activities of the system are
modeled by periodic tasks.

The model of the system is defined by a task setT of cardinalityn,T = {τ1, τ2, ..., τn}.
Thejth job of taskτi is denoted asJi,j . The index, j, for jobs of a task is started from
zero. A periodic taskτi is characterized by a 3-tuple(Ci, Ti, Di) where each request of
τi, called instance, has an execution CPU cycles (denoted asCi), and a relative dead-
line (denoted asDi). Ti time units separate two consecutive instances ofτi (henceTi

is the period of the task). Given a setT of n tasks, the hyper-period ofT , denoted by
L, is defined so thatL/Ti is an integer for any taskτi in T . The number of jobs in the
hyper-period of taskτi is L/Ti. For example,L is the least common multiple (LCM)
of the periods of tasks inT when the periods of tasks are all integer numbers. We focus
on the case that all of the tasks arrive at time 0.

We also associate with each taskτi a unique priorityπi ∈ {1, 2, ..., n} such that
contention for resources is resolved in favor of the job withthe highest priority that is
ready to run.

The analysis presented in section 3 uses the concept ofbusyand idle periods[7].
These are defined as follows: Alevel-i busy periodis a continuous time interval during
which the notional run-queue contains one or more tasks of active priority levelπi or
higher. Similarly, alevel-i idle periodis a time interval during which the run-queue
is free of levelπi or higher priority tasks. We note that the run queue may become
momentarily free of level-i tasks, when one tasks completesand another is released.
This appears in our formulation as an idle period of zero length.

2.2 Power Consumption and Execution Models

We explore energy-efficient scheduling on a dynamic voltagescaling (DVS) processor.
The power consumption is contributed by the dynamic power consumption resulting
from the charging and discharging of gates on the CMOS circuits and the static power
consumption resulting from leakage current. The dynamic power consumptionPd of
the dynamic voltage scaling part of the processor is a function of the adopted processor
speedf :

Pd = CeffV 2
DDf (1)

f = αk′ (VDD − VTH)α

VDD

(2)

wherek′ is a device related parameter,VTH is the threshold voltage,Ceff is the
effective switching capacitance per cycle andα ranges from 2 to 1.2 depending on
the device technology. Since power varies linearly with theclock speed and the square

of the voltage, adjusting both can produce cubic power reductions, at least in theory.
The static power consumptionPs of the system comes from the leakage current of
the processor, system I/O devices, and RAM. It might be modeled as a nonnegative
constant, as in [8], or a linear function of the supply voltage (a sub-linear function of
the execution speed) [9], [3], [4], [10].

The power consumption of processor is denoted byP , which is the sum of the
dynamic and static power consumption. We consider systems in whichP (f) is a convex
and increasing function, andP (f)/f is a convex function, similarly to [11], [4].

Recent processors support multiple variable voltage and frequency
levels for energy efficient operation of the system. Let the available frequencies

be {FLK1, FLK2, ..., FLKs} in increasing order of frequency and the correspond-
ing voltage levels be{v1, v2, ..., vs}. We assume that the CPU speedfi of taskτi can
be changed between a minimum speedFLK1 (minimum supply voltage necessary to
keep the system functional) and a maximum speedFLKs. In our framework, the volt-
age/speed changes take place only at context switch time andwhile state saving instruc-
tions execute. If not negligible, the voltage change overhead can be incorporated into
the worst-case workload of each task.

The system could enter thedormant mode(or be turned off) whenever needed. The
power consumption of the system is treated as 0 when it is in the dormant mode[8] by
scaling the static power consumption. We consider systems that could be turned on/off
at instant. When needed, turning the system off might further reduce the energy con-
sumption. The energy consumption to turn off the system is assumed to be negligible,
but it might require additional energy to turn on the system [12]. We denoteEsw as the
energy of the switching overhead from the dormant mode to theactive mode. For the
rest of this paper, we say the system is idle at time instantt, if the processor does not
execute any task at time instantt. When the system is active and idle, the processor exe-
cutesNOP instructions and must be at processor speedFLK1 to minimize the energy
consumption. LetPI be the power consumption when the system is idle and active,
wherePI = P (FLK1).

2.3 Critical Speed

The critical speed̂f is defined as the available speed of the processor to execute acycle
with the minimum energy consumption. Because of the convexity of P (f), executing at
a common speed for a CPU cycle minimizes the energy consumption. Hence, the energy
consumption to execute a CPU cycle at speedf is P (f)/f . Since the power consump-
tion functionP (f) is a convex and increasing function, whereP (f)/f is merely a
convex function.P (f)/f is minimized whenf is equal tof∗, with d(P (f∗)/f∗)

df∗
= 0.

As a result, to minimize the execution energy consumption ofT , we do not have to con-
sider schedules that execute jobs at any lower speed thanf∗ since we could execute jobs
at speedf∗ with lower energy consumption and less execution time. Iff∗ is between
FLK1 andFLKs, we know thatf̂ is f∗. If f∗ is less thanFLK1, f̂ is set toFLK1 to
satisfy the hardware constraint. Similarly, iff∗ is greater thanFLKs, f̂ is set toFLKs,
and jobs are executed atFLKs to minimize the energy consumption. As a result,f̂ is
min{max{f∗, FLK1}, FLKs}. Executing a job of taskτi at any speed less than̂f

would either consume more energy than that atf̂ with more execution time or violate
the speed constraint. We assume thatf∗ could be obtained efficiently or pre-determined
as a specified parameter in the input.

2.4 Problem definition

The problem considered in this paper is as follows:

Definition 1. (Leakage-Aware Energy-Efficient Scheduling for FPPT, LAEES-FPPT)
Consider a setT of n independent tasks ready at time 0. Each periodic taskτi ∈ T

is associated with a computation requirement equal toCi CPU-cycles and its period
Ti, where the relative deadline ofτi is equal toDi. And each taskτi ∈ T is assigned
with a unique priorityπi ∈ {1, 2, ..., n} and a preemption thresholdγi ∈ {1, 2, ..., n}
(γi ≥ πi), whereπi is used to compete for processor andgammai is used to protect
τi from unnecessary task preemptions afterτi starts. The power consumption function
P (f) is a convex and increasing function, whileP (f)/f is merely a convex function.
The processor is with a discrete spectrum of the available speeds in[FLK1, FLKs].
The energy of the switching overhead from the dormant mode tothe active mode of a
system isEsw , and the power consumption when the system is active and idleis PI

. The problem is to minimize the energy consumption in the hyper-periodL of tasks
in T in the scheduling of fixed-priority tasks with preemption thresholds inT without
missing the timing constraints. ⊓⊔

A schedule of a task setT is an assignment of the available processor speeds for
each corresponding task execution, where the job arrivals of each taskτi ∈ T satisfy
its timing constraintDi. A schedule is feasible if no job misses its deadline. A schedule
is optimal for the LAEES-FPPT problem, if it is feasible, andits energy consumption
is the minimum among all feasible schedules. For the rest of this paper, letS∗ be an
optimal schedule forT . For a schedule, an idle interval is a maximal interval when the
system is idle, while an execution interval is a maximal interval when the processor
executes some jobs. The system might be turned off or be at theactive mode in an idle
interval, while the system is active in an execution interval. For any set X, let|X | be the
cardinality of the set. For example,|IS | is the number of idle intervals in scheduleS in
(0,L]. If the idle interval is greater thanEsw/PI , turning off the system is worthwhile.
Let tθ be thethreshold idle intervalEsw/PI . If the idle interval is greater thantθ, the
longer the idle interval is, the more the energy saved by turning off the system.

The energy consumption of a scheduleS, denoted asE(S), consists of two parts:
the execution energy consumptionφ(S) and the idle energy consumptionε(S). The
execution energy consumption is the sum of the energy consumption of the executions
of jobs in S in the time interval(0,L]. The idle energy consumption is the sum of
the energy consumption in the intervals in(0,L] in which the system does not execute
any job. Letυ(t, S) be the speed at time instantt in scheduleS. The execution energy
consumptionφ(S) in E(S) is

∫ L

0
P (υ(t, S))dt. The idle energy consumptionε(S) in

E(S) is the summation ofEsw times the number of instances that the system is turned
from the dormant mode to the active mode andPI times the total interval length that
the system is idle and active in(0,L].

3 Proposed Algorithms

This section presents a two-phase algorithm for periodic real-time tasks. The algorithms
determine, in the first phase, the execution speed, i.e., thesupply voltage, of each task,
and in the second phase the moment to turn on/off the system onthe fly.

3.1 An On-line Procrastination Algorithm to Minimize the En ergy Leakage:
LA-FPPT

Let Se be the resulting FPPT schedule by applying some off-line dvsalgorithms [13].
For brevity, letCi be the execution time of a job of taskτi in Se, Ci = Ci

/

f
opt
i . The

first phase of the proposed algorithm [13] decides the execution speed of tasks inT to
meet the timing constraints and minimize the execution energy consumption.

The second phase is to reduce the idle energy consumption by turning the system
off on the fly. The idea behind scheduling on the fly is to lengthen and aggregate the idle
intervals so that the resulting idle time is long enough to turn off the system. The de-
termination of idle intervals can be done by procrastinating the arrival time of the next
job to the system, as in [4],[14] for EDF scheduling, and in [9],[11] for fixed-priority
scheduling. In [9],[4] procrastination is done by computing the maximum procrastina-
tion intervals of all of the tasks inT based on the system utilization, while the idle
intervals in [14],[11] are determined by procrastinating the remaining jobs as late as
possible.

In this section, we proposes an on-line simulated work-demand analysis approach
to the determination of idle intervals. If a job completes attime instantt, and the ready
queue is empty, we have to decide whether the system should beturned off or idle. Let
ri(t) be the arrival time of the next job ofτi for anyτi in T arrived after time instantt,

i.e., ri(t) =
⌈

t
Ti

⌉

· Ti. Let di(t) be the next deadline on an invocation of taskτi after

time instantt, i.e.,di(t) = ri(t) + Di.
Our formulation stems from considering the schedulabilityof each fixed-priority

task with preemption thresholds at time instantt. We focus on finding the maximum
amount of idle interval,Smax

πi
(t), which may be stolen at priority levelπi, during the

interval[t, t+di(t)), whilst guaranteeing that taskτi meets its deadline. (Note,Smax
πi

(t)
may not actually be available for idle due to the constraintson hard deadline tasks with
priorities lower thanπi. We return to this point later). To guarantee that taskτi will
meet its deadline, we need to analyze the worst case scenariofrom timet onwards. We
therefore assume that all tasksτj are re-invoked at their earliest possible next release
rj(t) and subsequently with a period ofTj .

In attempting to determine the maximum guaranteed idle time, Smax
πi

(t), it is in-
structive to view the interval[t, t + di(t)) as comprising a number oflevel-i busy and
idle periods. Anylevel-i idle timebetween the completion of taskτi and its deadline
could be swapped for taskτi’s procrastination intervalZi without causing the deadline
to be missed. Hence the maximum procrastination intervalZi which may be stolen is
equal to the totallevel-i idle timein the interval. We use this result to calculateSmax

πi
(t).

We first derive equation 3 using techniques given in [15]. Although the ready queue
is empty at time instantt, two components still determine the extent of the busy period
under the influence of procrastination scheduling:

1. For the taskτk with priority πk < πi < γk, τk ’s released workload just before the
start of busy period

2. For the taskτj with priority πj > γi, τj ’s released workload during the busy period

The second component implies a recursive definition. As the processing released in-
creases monotonically with the length of the busy period, a recurrence relation can be
used to findwi(t):

wm+1
πi

(t) = Sπi
(t) + max

∀k,πk<πi<γk

Ck +
∑

∀j,πj>πi

(⌈

wm
πi

(t) − xj(t)

Tj

⌉

· Cj

)

(3)

The termSπi
(t) represents the beginning oflevel-i idle timefrom timet.

The recurrence relation begins withw0
πi

(t) = 0 and ends whenwm+1
πi

(t) = wm
πi

(t)
or wm+1

πi
(t) > di(t). Proof of convergence follows from analysis of similar recurrence

relations by Audsley et al [15]. The final value ofwπi
(t) defines the length of the busy

period. Alternatively, we may viewt+wπi
(t) as defining the start of alevel-i idle time.

Given the start of alevel-i idle time, within the interval[t, t + di(t)), the end of the
idle time, which may be converted to procrastination interval of taskτi, occurs either at
the next release of a taskτj with priority πj > πi or at the end of the interval. Equation
4 gives the length,li(t, wπi

(t)), of thelevel-i idle time.

li(t, wπi
(t)) = min

[

di(t) − wi(t),

min
∀j,πj≥γi

(⌈

wπi
(t)−rj(t)

Tj

⌉

· Tj + rj(t) − wπi
(t)

)

]

(4)

where the termdi(t) − wπi
(t) means that the end oflevel-i idle timecome about

at the end of[t, t + di(t)), the term
⌈

wπi
(t)−rj(t)

Tj

⌉

· Tj + rj(t) describe the workload

contributed by taskτj in the level-i busy period, whose length is denoted bywπi
(t).

Combining equations 3 and 4, our method for determining the maximum idle time,
Smax

πi
(t), proceeds as follows:

1. The idle time which may be derived,Sπi
(t), is initially set to zero

2. Equation 3 is used to compute the end of a busy period in the interval[t, t + di(t))
3. The end of the busy period is used as the start of an idle period by equation 4 which

returns the length of contiguous idle time.
4. The idle time,Sπi

(t) is incremented by the amount of idle time found in step 3.
5. If the deadline on taskτi has been reached, then the maximum idle time which can

be derived is given bySπi
(t). Otherwise, we repeat steps 2 to 5.

The pseudo-codes of dynamic procrastination algorithm at time instantt when the
ready queue is empty, and a job completes are shown in Algorithm 1.

4 Case Studies and Simulations

Section 3 showed that our two-phase algorithm (EE-FPPT [13]+ LA-PFFT) will always
render the controlled leakage current in CMOS circuits and reduced energy consump-
tions that will maintain the schedulability of the workload. we use randomly-generated
workloads to examine broad trends across a range of design points.

Algorithm 1 On-line Algorithm to Minimize Energy Leakage
1: procedure DYNAMIC PROCRASTINATION(t)

⊲ a job completes att and the ready queue is empty
2: sortT by ascending priority order
3: for (i = 1; i ≤ n; i 6= n) do
4: ri(t)←

⌈

t
Ti

⌉

· Ti

5: di(t)← ri(t) + Di

6: Sπi
(t)← 0

7: wm+1
πi

(t)← 0
8: while (wm+1

πi
(t) ≤ di(t)) do

9: wm
πi

(t)← wm+1
πi

(t)
10:

w
m+1
πi

(t) = Si(t) + max
∀k,πk<πi<γk

Ck +
∑

∀j,πj≥πi

(⌈

wm
πi

(t)− rj(t)

Tj

⌉

·Cj

)

11: if (wm
πi

(t) = wm+1
πi

(t)) then
Sπi

(t)← Sπi
(t) + li(t, w

m
πi

(t))
wm+1

πi
(t)← wm+1

πi
(t) + li(t,w

m
πi

(t))
12: end if
13: end while
14: Smax

πi
(t)← Si(t)

15: revise the arrival timer′i(t) of job Ji,t by settingr′i(t)← ri(t) + Smax
πi

(t)
16: end for
17: if (min

∀τi∈T
r′i(t)− t > tθ) then

18: turn the system off at timet and turn on atmin
∀τi∈T

r′i(t)

19: else
20: remain on the active mode
21: end if
22: end procedure

We investigate workload characteristics that affect the energy saving capability at-
tainable through LA-FPPT. We now simulate and analyze randomly generated systems
of tasks to better understand our approaches. The power consumption function of the
system speedf was set asP (f) = f3 + 3.

Thenormalized total energywas adopted as the performance metrics. The normal-
ized total energy of an algorithm for an input instance is theenergy consumption of the
derived solution in(0,L] divided by the energy consumption by applying the original
FPPT scheduling without processor slowdown, procrastination and by turning off the
system when the idle interval is long enough.

We tried two different experimental settings. The first experiment investigate sep-
arately the effect of the switching overheadEsw, the system utilization on the limited
energy consumption achieved by our methods. To cover a wide range of design points,
20,000 real-time task sets with 10 tasks each were randomly generated. These were
created so 1000 have a utilization of 50%, 1000 have 52% utilization, and so on up to
90%. For each group of task sets who hold the same utilization, those were created so
20 have aEsw of 0.03, 20 have 0.04, and so on up to 0.53. The second one focused on

the impact of the number of tasks andEsw (0.17), another 20,000 real-time task sets
with system utilization 67% each were randomly generated too. Those were created so
1000 include 5 independent tasks, 1000 include 6 independent tasks, and so on up to 25
tasks.

Task periods is assigned randomly in the range [1, 100] with auniform probability
distribution function. Moreover, task deadlines were set equal to their respective periods
(for simplicity, though not necessary). Tasks’ WCETs were set to incur the required
overall system utilization. All 40,000 real-time task setsgenerated were schedulable
with a fully preemptive policy.

Fig. 1.Experiment I results for power saving of our approaches

Esw

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

A
ve

ra
ge

 N
or

m
al

iz
ed

 E
ne

rg
y

0.74

0.76

0.78

0.80

0.82

0.84

0.86

0.88

EE-FPPT
EE-FPPT + LA-FPPT

(a) Energy consumption produced for LA-
FPPT rises with largeEsw, but keep al-
most constant for EE-FPPT, with system
utilization = 0.67

Utilization

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90

A
ve

ra
ge

 N
or

m
al

iz
ed

 E
ne

rg
y

0.3

0.4

0.5

0.6

0.7

0.8

0.9

01.0

01.1

01.2

EE-FPPT
EE-FPPT + LA-FPPT

(b) Energy consumption rises with system
utilization, but soars up for high-utilization
systems.

Fig. 2. Experiment II results for power saving of our approaches

Number of Tasks

6 8 10 12 14 16 18 20 22 24

A
ve

ra
ge

 N
or

m
al

iz
ed

 E
ne

rg
y

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

EE-FPPT
EE-FPPT + LA-FPPT

(a) Energy consumption declines with the
increment of the number of tasks, on the
condition that system utilization = 0.67
andEsw = 0.17

Normalized Energy Consumption

0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70

P
er

ce
nt

 o
f S

ys
te

m
s

00.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20
Utilization = 30%
Utilization = 40%
Utilization = 50%
Utilization = 60%

(b) EE-FPPT + LA-FPPT dramatically ac-
complishes the energy savings, even for
high-utilization systems.

Using the MPTA, the total energy produced by each system was computed and
normalized to the energy required by the original version ofthe system. The average
normalized energy were then plotted as a function ofEsw, the system utilization and the
number of tasks in turn. The results are shown in figures 2(a),2(b) and 3(a) respectively.

In Figure 2(a), the more the switching overheadEsw was, the more the normalized
energy consumption was for schedules derived from Algorithms LA-FPPT. WhenEsw

is relatively small (Esw ≤ 0.18), the energy consumption from leakage current in
CMOS circuits still have litter influence on the total energyconsumption, thus the more
Esw, the less normalized energy consumption.

In Figure 2(b), our algorithms (EE-FPPT + LA-FPPT) outperformed original Al-
gorithm FPPT when the system utilization was greater than 0.87. When the system
utilization was large enough, procrastination might create two (or more) idle intervals
to turn the system off, but the original FPPT schedule might make the system idle for
a short interval and turn the system off for a longer interval. As a result, the energy
consumption of procrastination schedules might consume more energy than the orig-
inal FPPT schedule when the system utilization is large enough. Moreover, when the
utilization for task execution is large, the improvement onidle energy consumption is
marginal since task execution dominates the total energy consumption.

In Figure 3(a), for all the simulated algorithms, the normalized energy consumption
decreased for small number of tasks withn ≤ 12, and was steady forn > 12. This is
because the resulting utilization of a task was large whenn was small in the experimen-
tal setup, and, hence, there was only little room for procrastination to save energy. For
task sets withn > 12, the maximum procrastination interval was dominated by tasks
with small periods, and, hence, the improvement became marginal.

Another interesting property is the distribution of the 20,000 systems of Experi-
ment I among the different normalized power consumption levels. Figure 3(b) show
this distribution for the overall system utilization levels of 30%, 40%, 50%, and 60%,
respectively. As can be seen, the workloads scheduled with the fixed-priority schemes
depend on the system utilization level to some extent.

5 Conclusions

In this paper we discuss the energy-efficient scheduling problem of periodic realtime
tasks by applying FPPT policy on a uniprocessor dynamic voltage scaling system that
can go into the dormant mode for energy efficiency. We proposea two-phase scheduling
algorithm. In the first phase, the execution speed, i.e., thesupply voltage, of each task
is determined by applying off-line algorithms. In the second phase, the time moment
to turn on/off the system is determined on the fly. Theoretical analysis shows that our
proposed algorithms could derive scheduling solutions with at mostmax{ 1

(Ubd)2
, 2}

times of the energy consumption of optimal solutions, wherethe termUbd represents
the breakdown utilization[16] of a task set. A series of simulation experiments was
evaluated to demonstrate the performance of the proposed algorithms. Our experimental
results show that our approaches can accomplish dramatic energy savings as the same
time keep the schedulability of task set.

References

1. Takayasu Sakurai, A.R.N.: Alpha-power law mosfet model and its applications to cmos
inverterdelay and other formulas. IEEE Journal of Solid-State Circuits25(2) (1990) 584–
594

2. Padmanabhan Pillai, K.G.S.: Real-time dynamic voltage scaling for low-power embedded
operating systems. In: 18th ACM Symposium on Operating System Principles. Volume 35.,
Chateau Lake Louise, Banff, Alberta, Canada, ACM (2001) 89 –102

3. Ravindra Jejurikar, R.K.G.: Dynamic slack reclamation with procrastination scheduling in
real-time embedded systems. In Kahng, W.H.J.J., Martin, G., B., A., eds.: 42nd Design
Automation Conference, San Diego, CA, USA, ACM (2005) 111–116

4. Ravindra Jejurikar, Cristiano Pereira, R.K.G.: Leakageaware dynamic voltage scaling for
real-time embedded systems. In Kahng, S.M., Fix, L., B., A.,eds.: 41th Design Automation
Conference, San Diego, CA, USA, ACM (2004) 275–280

5. Yann-Hang Lee, Krishna P. Reddy, C.M.K.: Scheduling techniques for reducing leakage
power in hard real-time systems. In: 15th Euromicro Conference on Real-Time Systems
(ECRTS 2003), Porto, Portugal, IEEE Computer Society (2003) 105–112

6. Manas Saksena, Y.W.: Scalable real-time system design using preemption thresholds. In:
21st IEEE Real-Time Systems Symposium. (2000) 25–34

7. Lehoczky, J.P.: Fixed priority scheduling of periodic task sets with arbitrary deadlines. In:
IEEE Real-Time Systems Symposium, Lake Buena Vista, Florida, USA, IEEE Computer
Society Press (1990) 201–213

8. Ruibin Xu, Dakai Zhu, C.R.R.G.M.D.M.: Energy-efficient policies for embedded clusters.
In Gupta, Y.P., Rajiv, eds.: 2005 ACM SIGPLAN/SIGBED Conference on Languages, Com-
pilers, and Tools for Embedded Systems, Chicago, Illinois,USA, ACM (2005)

9. Ravindra Jejurikar, R.K.G.: Procrastination scheduling in fixed priority real-time systems.
In: 2004 ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools for
Embedded Systems, Washington, DC, USA, ACM (2004) 57–66

10. Ravindra Jejurikar, R.K.G.: Dynamic voltage scaling for systemwide energy minimization
in real-time embedded systems. In Roy, R.V.J., Choi, K., Tiwari, V., Kaushik, eds.: 2004
International Symposium on Low Power Electronics and Design, Newport Beach, California,
USA, ACM (2004) 78–81

11. Gang Quan, Linwei Niu, X.S.H.B.M.: Fixed priority scheduling for reducing overall en-
ergy on variable voltage processors. In: 25th IEEE Real-Time Systems Symposium, Lisbon,
Portugal, IEEE Computer Society (2004) 309–318

12. Sandy Irani, Sandeep K. Shukla, R.K.G.: Algorithms for power savings. In: Fourteenth
Annual ACM-SIAM Symposium on Discrete Algorithms, ACM (2003) 37–46

13. XiaoChuan He, Y.J.: Energy-efficient scheduling fixed-priority tasks with preemption thresh-
olds on variable voltage processors. In Gaudiot, K.L., Jesshope, C.R., Jin, H., Jean-Luc, eds.:
Network and Parallel Computing, IFIP International Conference (NPC 2007). Volume Lec-
ture Notes in Computer Science., Dalian, China, Springer (2007) 133–142

14. Linwei Niu, G.Q.: Reducing both dynamic and leakage energy consumption for hard real-
time systems. In Mahlke, M.J.I., Zhao, W., Lavagno, L., A., S., eds.: 2004 International
Conference on Compilers, Architecture, and Synthesis for Embedded Systems, Washington
DC, USA, ACM (2004) 140–148

15. Neil C. Audsley, Alan Burns, M.R.A.J.W.: Applying new scheduling theory to static priority
pre-emptive scheduling. Software Engineering Journal8(5) (1993) 284–292

16. John P. Lehoczky, Lui Sha, Y.D.: The rate monotonic scheduling algorithm: Exact charac-
terization and average case behavior. In: IEEE Real-Time Systems Symposium 1989. (1989)
166–171

