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Abstract. Successful search and versatile query support are two impor-
tant requirements for peer-to-peer (P2P) search applications. Replication
strategy is an effective approach to improve the search performance of
unstructured P2P systems. However, existing replication strategies ei-
ther adapt only to popular queries or incur excessive replication cost for
unpopular queries. In this work, we propose HRS, a hybrid replication
strategy to improve the search performance of unstructured P2P net-
works. By combining a query popularity independent strategy with the
square-root strategy, HRS can effectively and efficiently handle both kind
of queries, popular or not. We evaluate this design through mathemat-
ical proof and comprehensive simulations. Results show that HRS out-
performs existing replication-based search paradigms in terms of search
performance and resource consummation.

1 Introduction

Since the emergence of peer-to-peer (P2P) [1–3] file sharing systems, such as
Napster [4] and Gnutella [5], millions of users started to harness the desired
data on the Internet with P2P tools. Recently, large scale P2P information
sharing applications such as DistriWiki [6], Decentralized Wiki engine [7], and
Peer-to-Peer Web [8, 9] have attracted much attention. For this kind of applica-
tion, both successful search and versatile query language support are important
requirements. To guarantee successful search, unstructured P2P systems need
exhaustive search techniques, where each < item, query > (In this paper, we
use “item”, “data”, “file”, and “file metadata” interchangeably) pair can be
evaluated with high probability and at low cost. Since network items can be
in a heterogeneous format, such as html, XML, and other complex web objects,
versatile query styles, such as keyword matching and XQuery [10], are preferable
for a system design.

Current P2P systems mainly use three search schemes: flooding-based search-
ing [11, 1], Distributed Hash Table (DHT) looking up [12–14], and hybrid P2P
searching [15–17]. In the first scheme, queries are flooded into an unstructured
P2P network, suffering from excessive network traffic. DHT maintains a global
index for item locating, guaranteeing a perfect successful rate while suffering
from the problem of “exact match”. Although some extensions based on DHT



are proposed to support complex queries, existing schemes incur unacceptable
communication overheads [18]. Based on the observation that flooding is efficient
for popular items while DHT is more suitable for rare items, Hybrid P2P [15–17]
search schemes are proposed. A hybrid P2P network combines the unstructured
protocol with the DHT global index, and performs a query by either flooding or
DHT looking up according to the item’s popularity.

Unstructured P2Ps are naturally the best candidate for supporting versatile
queries because the matching operations can be evaluated at the nodes that
store the relevant items. The first unstructured P2P protocol, Gnutella, is not
scalable due to the adoption of flooding query scheme. An efficient approach to
improve the search performance of unstructured P2Ps is to utilize replication
strategies. The existing replication strategies can be divided into two categories.
The first type is the query popularity aware strategies. The number of repli-
cas is determined by the query’s popularity. Existing research [11] claimed that
the square-root replication strategy has the optimal expected search size (ESS),
which is the average number of random probes required to solve a query. How-
ever, this strategy is inefficient for solving “insoluble queries”, the queries for rare
and non-existent items. For non-existent items, the query stop rule is crucial for
reducing the search cost. Obviously, it can not guarantee the query to be searched
exhaustively. The second type is independent of the popularity of a query, such
as RWPS [19], Bubblestorm [20], and RandRep [21]. This kind of strategy de-
ploys an optimal number of item replicas randomly in a P2P network to achieve
probabilistically exhaustive search, without exploiting the query’s popularity to
reduce the query overhead. For example, in Bubblestorm, each item, popular or
not, has the same number of replicas, which is determined by the network size.

The key issues for replication-based probabilistically exhaustive search in
unstructured P2P networks is how to estimate the optimal number of replicas
and disseminating the replicas optimally throughout the network. In this paper,
we propose HRS, a hybrid replication strategy to improve the search performance
of unstructured P2P networks. By combining a query popularity independent
strategy with the square-root strategy, HRS can effectively handle queries for
both popular and rare items. We conduct comprehensive simulations to evaluate
this design. Results show that HRS outperforms existing techniques in terms of
search performance and search cost.

The remainder of the paper is organized as follows. In Section 2, we review
related work. The model and the problem statement are given in Section 3.
Section 4 presents the design of HRS. We evaluate the performance of HRS in
Section 5. We conclude in Section 6.

2 Related Work

Without centralized index servers, nodes in a decentralized P2P system have
to cooperate with each other to perform a search for desired data items. Ex-
isting systems utilize replication strategies to improve the search performance.
Existing replication strategies in unstructured P2P networks can be divided into



two categories, the query popularity aware replication approach and the query
popularity independent replication strategy.

2.1 Query Popularity Aware Replication

In this kind of strategy, the number of replicas is related to the query rates. Let
ri denote the number of replicas of item i.The sum of the replica amounts is
R =

∑m
i=1 ri. Let qi denote the query rate of item i, which is the fraction of

all queries that are issued for item i. The number of replicas in this strategy
is ri = f(qi). Two natural strategies among existing schemes are uniform and
proportional strategies, while in the uniform replication strategy, all items are
equally replicated, that is ri = R/m. In the proportional replication strategy,
the number of replicas is proportional to the query rates, that is ri = R × qi.
Cohen et al. [11] have studied the two query-rate based strategies. Their analysis
results show that the above two strategies are not optimal as to the expected
number of random probes (ESS). Another result is that the above two strategies
have the same ESS and any strategies between them are better than them as
to the ESS. Cohen et al. then propose the square-root replication (SRR), where
the number of replicas is proportional to the square-root of the query rates.
In SRR, the number of replicas is ri = λ

√
qi, where λ = R/

∑m
i=1

√
qi. They

also prove that SRR is optimal as to ESS. In short, as to the expected search
size, uniform strategy is the same as proportional strategy. The square-root
replication strategy achieves optimal expected search size. The average search
size of uniform replication strategy and proportional replication strategy is given
by

E [Tuniform] = E [Tproportional] =
Nm

R
(1)

The ESS of SRR is given by

E [Toptimal] =
R

N
(

m∑
i=1

√
qi)2 (2)

Although square-root replication can achieve optimal expected search size, it
is only practical for “soluble queries”. In SRR, the “soluble queries” are queries
which can be solved within the given maximum search size. However, defining
the maximum search size is not easy. For items with a small number of replicas,
to guarantee exhaustive search, the number of random probes is very big. SRR
refers to queries for these kinds of items as “insoluble queries”, which can not be
solved efficiently by SRR. Furthermore, how to divide popular and unpopular
queries is also not clear. Thus, exhaustive search can not be guaranteed with
high probability at low cost in this scheme.

2.2 Query Popularity Independent Replication

Recently, the query popularity independent replication strategy has attracted
much attention. All items are equally replicated regardless of the popularity



of the related queries. For file search, queries are replicated to some random
nodes. The well-chosen parameters guarantee the collision of item replica and
query with high probability. This idea is inspired by the birthday paradox [22].
However, since item and query replications are two independent processes, the
birthday paradox can not be directly used to design the related parameters.

RWPS [19] firstly propose this kind of replication in a Gnutella network. To
implement the installation of replicas, RWPS employs random walk to sample
some random nodes. RWPS can guarantee exhaustive search with high prob-
ability. However, random walk is not fault-tolerant, a failed node in the path
could reduce replica amount. Thus, the search success probability can not be
guaranteed. On the other hand, random walk has long latency.

To overcome the shortcoming of RWPS, Terpstra et al. propose Bubblestorm
[20] to achieve probabilistic and exhaustive search. Bubblestorm employs ran-
dom multi-graph to connect peers. The related joining and leaving protocols are
designed to keep the attributes of random multi-graph. To improve the perfor-
mance of message propagating, they also design a new algorithm-bubblecast to
distribute replicas and queries, which is the combination of both random walk
and flooding.

RandRep [21] is another implementation of query rate independent replica-
tion. In this scheme, a lightweight DHT is employed to support network size
estimation and random node selection. All items have equal numbers of replicas.
To guarantee the search success with high probability, the number of replicas is
carefully determined. Let r and q denote the numbers of item replicas and query

replicas, respectively. If rq ≥ N

(
(1 + ε lnN) +

√
(1 + ε lnN)2 − 1

)
, the prob-

ability of two kinds of replicas encountering in at least one node is P ≥ 1−N−ε,
where ε > 0 is a constant. For current P2P network size, it is suitable that the
value of rq is N (2 + lnN). If the traffic of each query and item replica is the
same, the value of r and q is

√
N(2 + ε lnN), that is to say r = q = O(

√
N lnN).

Query popularity independent strategy can achieve exhaustive search with
high probability. Since the query popularity is not considered in this strategy, it
is not optimal for popular queries in terms of search cost. The drawback of such
strategy is very clear. Uniformly replicating all items including the infrequently
queried ones, is inefficient. On the contrary, for the popular queried items, a
small number of query replicas can efficiently reduce the overall cost of the
search system.

3 System Model and Problem Statement

The model is related to the overlay network, item replicas, and queries. The
network is composed of N nodes. Several approaches for obtaining the network
size N have been proposed, for example [23, 24]. There are m items shared in the
network. Each item, i, is replicated at ri sites. The vector of replica amounts is
(r1, r2, . . . , rm). The sum of the replica amounts is R =

∑m
i=1 ri. The query rate

vector for items is (q1, q2, . . . , qm), where qi is the query-rate for item i, which
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Fig. 1. Search size comparison for QIR and SRR

is the fraction of all queries issued for item i. The rate qi is normalized, that is∑m
i=1 qi = 1. If all items are equally replicated, the number of replicas is denoted

as r. Correspondingly the query amounts for specific items are equal, which is
denoted as q. In this kind of P2P sharing network, we consider the random search
method adopted in [11]. This random search method sends query messages to
random nodes in the network until the query is answered or the search reaches
the maximum size. There are several approaches to achieve the random nodes,
for example, the combination of random multi-graph with bubblecast in Bub-
blestorm [20] and the RandRep scheme which combines a lightweight DHT with
an unstructured P2P overlay to address random peer sampling [21].

In this paper, we propose HRS, a hybrid replication strategy to improve the
search performance of unstructured P2P networks. HRS performs an exhaustive
search, which probabilistically guarantees that the application’s query evalua-
tor runs on a peer containing a replica of the related item. By combining a
query popularity independent strategy with the square-root strategy, HRS can
effectively handle queries for items, popular or not. We address the following
problem. What is the efficient and practical replication strategy for a query
issued in unstructured P2P networks regardless of how popular it is?

4 HRS Replication

For real systems, popular queries, unpopular queries, and even queries for non
existent items should all be considered. Square-root replication strategy is just
practical for popular queries. As for unpopular queries and queries for non ex-
istent items, query rate independent replication (QIR) strategy is better than
square-root replication strategy. Figure 1 illustrates the search size comparison



of QIR and SRR in a 50,000 node network. At the query rate about 0.27, QIR
and SRR have the same search size. Prior to that, QIR has a smaller search size.
After that, SRR performs better. Therefore, it would be reasonable to combine
SRR and QIR to meet the requirements of real systems. Based on the observa-
tion, we propose HRS, which is a combination of SRR and QIR. The challenge
here is how to implement the effects of both SRR and QIR.

4.1 HRS Strategy

Replication strategy is an allocation of replicas for each item. The objective is
to improve the related performance metrics. In order to consider both query and
item popularity, the following allocation function is given.

ri = f(N, qi) (3)

For an item with very small qi, to guarantee exhaustive search, the fraction
of all nodes which have a replica of item i should be bigger than a given thresh-
old. Under this condition, this item can be searched within a given maximum
search size with high probability. If the maximum search size is reached while
the item is not found, it is the case that there are no such item in the network
with high probability. In the QIR strategies, each item has an equal number of
replicas to guarantee the exhaustive search. Thus, this value can be treated as
the minimization of the number of replicas in HRS. That is given by

rmin =
√

N (2 + lnN) (4)

On the other hand, the query rate should be considered. Obviously, we should
incorporate the square-root strategy in HRS. There is a critical point of the query
rate. At this point, we have the below equation.

√
N (2 + lnN) =

R×√
qi∑m

j=1

√
qj

(5)

Then, the critical point of the query rate is

qc =
N(2 + lnN)(

∑m
j=1

√
qj)2

R2
(6)

Therefore, for items with query rate bigger than qc, the square-root strategy is
employed. Other items should have rmin replicas.

According to above analysis, the HRS replica allocation function is given by

ri =

{√
N(2 + lnN) where qi < qc

R×√qi∑m

j=1

√
qj

where qi ≥ qc
(7)



4.2 Implementation of HRS

HRS employs reactive operations to replicate items. Two actions trigger the
replication operation. The first action is node joining. At this point, there are no
replicas of items shared by this node. The corresponding query rates are zero,
which is obviously smaller than the critical point pc. Therefore, a minimum
number of replicas should be distributed in the network. The new node replicate
their items to rmin random nodes. This operation guarantees an exhaustive
search with high probability. The second action is item querying. A query to
item F may succeed or fail. If s ≤

√
N(2 + lnN) probes are required to get

the answer, s replicas of item F are added into the network after the search.
Otherwise, the query fails, which implies that the queried item is non existent.
This operation is used to maintain the square-root replication strategy.

We adopt random walk to implement HRS. Random walk is an efficient ap-
proach to solve problems in random networks, for example, resource search [25],
overlay construction [26]. Another important functionality of random walk is
random node sampling which is the base for random replication. As to the
sampling efficiency, it is optimal for sampling r random nodes at the cost of
r messages. Unstructured P2P networks have two important attributes related
to node sampling. The first is that the topology is modeled as a random graph.
Usually, the Poisson random graph and power-law random graph [27] are used
to model unstructured P2P networks. The second attribute is that P2P systems
are dynamic system. Nodes can only maintain their neighborhood information
efficiently. Due to the two attributes, random walk is a reasonable approach for
sampling random node subset. HRS employs random walk to implement optimal
random node subset sampling.

For arbitrary node vi ∈ V , Γ (vi) is the set of nodes which connect to node vi

and di = |Γ (vi)| is the degree of node vi. Random walk on a graph is a sequence
of nodes, for example v0, v1, · · · , vi, vj , · · ·. If the position is vi at time t, the
probability of reach vertex vj at time t + 1 is:

pij =
{

1/di if i 6= j and j ∈ Γ (vi)
0 otherwise (8)

Random walk on a graph is a Markov chain. The corresponding probability
transition matrix is P = {pij}. The initial distribution is denoted as π(0). The
distribution at time t is π(t). If the Markov chain is irreducible, finite, and
aperiodic, this Markov chain has unique stationary distribution [28]. Random
walk on P2P networks is corresponding to this kind of Markov chain. If the
graph is regular, random walk reaches each node with equal probability after the
Markov chain converging. However, P2P networks are not regular graph, simple
random walk can not obtain uniform sampling. Two alternatives are proposed
to address uniform sampling in non-regular graph. The first is the Maximum
Degree random walk (MD), in which the graph is converted to regular graph
by adding self-loop to low degree nodes. The second is the Metropolis-Hasting
random walk (MH). The transition probability of MH is given by



pij =


1/ max(di, dj) if i 6= j and j ∈ Γ (i)
1−

∑
j∈Γ (i)

pij if i = j

0 otherwise

(9)

In HRS, MH is used to sample nodes.The time from the initial distribution
to the stationary distribution is called mixing time. Although MD is very sim-
ple, its mixing time is bigger than that of MH [29]. The existing random walk
based node sampling algorithms are one random node each time. For sampling a
random subset, it is straightforward to sample multiple times. Due to excessive
message overhead and big latency, however, this strategy is not practical. Accord-
ing to recently research results, we find that the efficiency of random walk-based
sampling can be improved. For MH random walk on a random graph, continuous
s steps obtain s random nodes. After random walk on a random graph converges,
the successive s steps obtain s random nodes [26]. For random walk start from
node A, it reaches node B after convergence. As to A, B is a random node.
According to the reverse random walk path principle [30], A is also a random
node for B. Since s step random walk from B is a sampling of s random nodes,
s step random walk from A is also a sampling of s random nodes. That is to say,
s step random walk from arbitrary node obtains s random nodes.

HRS can efficiently solve queries for any items. In HRS, the baseline of the
replica amount for any item is r. This setting guarantees all queries can be solved
or ended with at most

⌈√
N(2 + lnN)

⌉
probes. For popular queries, the reactive

replication operation inserts additional replicas into the network. As the replica
amount increases, the search size decreases. However, the search cost for each
query does not increase.

5 Performance Evaluation

In this section, we present the performance metrics, experimental setup, and
performance evaluation in our simulations.

5.1 Simulation Methodology

Many metrics are related to the search performance, for example, search success
probability, search size, search traffic, search cost, and query delay. In HRS,
the replica amount guarantees the search success with high probability. As for
queries for non existent items, the search stop rule is the maximum search size.
Therefore, it is not necessary to measure the search success probability. In the
design, the random probe is used to search items, which is also adopted in the
square-root replication strategy [11]. In the evaluation of HRS, we are mainly
concerned with search size and search cost. The search size is the number of
random probes until the termination of the search. The search cost is averaged.
For some item, the number of replicas is x. The number of queries for this item
is y. If the sum of probes is p, the search cost is (x + p)/y.



In the simulation, networks with 10,000, 300,000, 500,000, 700,000, 900,000,
and 110,000 nodes are constructed. Initially, each item is treated as a new item
and uniformly replicated at

⌈√
N(2 + lnN)

⌉
random nodes. Queries for these

items are put into the network to trigger the replication. The measurements of
real P2P systems show that the popularity of queries follow a Zipf-like distri-
bution [31]. For a query with popularity rank i, the number of this query is
proportional to i−α. In the simulation, the parameter α is 0.6 according to the
measurements. We generate the queries according to the Zipf distribution and
insert these queries into the networks.

5.2 Results

Firstly, we implement the QIR strategy. Each item is equally replicated, then,
different queries are issued. Each query is repeated 10,000 times and the averages
are calculated. The result is illustrated in Fig. 2. Compared with the network
size, the number of replicated items is small. The average number of probes for
search success is also very small. For a network with 110,000 nodes, this value is
about 100.

The search performance of HRS is shown in Fig. 3. The results from 50,000,
70,000, and 90,000 node networks are illustrated. In the simulation, each query
is repeated 10,000 times and the average is calculated. As the number of queries
increases, the number of probes decreases rapidly. This distribution shows that
the query popularity can be exploited to reduce the search size.

Figure 4 is the search cost comparison of HRS and QIR. The network size is
100,000. When the query is not popular, HRS and QIR have almost the same
search cost. As the query popularity increases, the search cost gap of HRS and
QIR becomes larger. Furthermore, we study the sum of search cost under Zipf
query popularity distribution. The results are illustrated in Fig. 5 in which the
parameter α is 0.6. The search cost of HRS is less than that of QIR.
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6 Conclusions

To address the issue of exhaustive search in unstructured P2P networks, we pro-
pose HRS, a hybrid replication strategy to improve the search performance of
unstructured P2P networks. By combining a query popularity independent strat-
egy with the square-root strategy, HRS can effectively handle queries, popular
or not. We evaluate this design through mathematical proof and comprehensive
simulations. Results show that HRS can achieve a small search size at a reason-
able search cost. Therefore, HRS is a practical replication strategy for real P2P
systems.
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