
A Dynamic Adjustment Strategy for File
Transformation in Data Grids*

Chao-Tung Yang†, Shih-Yu Wang, and Chun-Pin Fu

High-Performance Computing Laboratory
Department of Computer Science and Information Engineering

Tunghai University, Taichung, 40704, Taiwan
email: ctyang@thu.edu.tw

Abstract. In this paper, we propose a dynamic file transfer scheme with co-
allocation architecture, called Dynamic Adjustment Strategy, a dynamic file
transfer scheme with co-allocation architecture that reduce the file transfer
times and improves the performance in Data Grid environments. Our approach
reduces the idle time faster servers spend waiting for the slowest server, and
decreases file transfer completion time. We also present a new toolkit, called
Cyber-Transformer, with a friendly graphical user interface interface running
on the client side that makes it easy for inexperienced users to manage replicas
and download the files in Data Grid environments. We also provide an effective
scheme for reducing the cost of reassembling data blocks.

1 Introduction

The term “Data Grid” traditionally represents the network of distributed storage
resources from archival systems to caches and databases, which are linked using a
logical name space to create global, persistent identifiers and provide uniform access
mechanisms [4]. Data Grids aggregate distributed resources to resolve large-size
dataset management problems [1, 2, 3, 5, 6, 7, 8, 9, 29, 30]. Increasingly, large
collections of measured and computed data are emerging as important resources in
many data-intensive applications.

Certain data-intensive scientific applications entail huge amounts of data that
require data file management systems to replicate files and manage data transfers and
distributed data access. Data grid infrastructure integrates data storage devices and
data management services in grid environments consisting of scattered computing and
storage resources, perhaps located in different countries/regions yet accessible to
users [12].

Replicating popular content in distributed servers is widely used in practice [14,
17, 21, 30]. Recently, large-scale, data-sharing scientific communities such as those
described in [1, 5] used this technology to replicate their large datasets over several

* This work is supported in part by the National Science Council, Taiwan R.O.C., under grants

no. NSC95-2221-E-029-004 and NSC95-2218-E-007-025.
† Corresponding author.

2 Chao-Tung YangTF FT, Shih-Yu Wang, and Chun-Pin Fu

sites. Downloading large datasets from several replica locations may result in varied
performance rates. Bandwidth quality is the most important factor affecting transfers
between clients and servers since download speeds are limited by the bandwidth
traffic congestion in the links connecting the servers to the clients.

One way to improve download speed is to use replica selection techniques to
determine the best replica locations [21]. This method selects the servers most likely
to provide optimum transfer rates because bandwidth quality can vary unpredictably
due to the sharing nature of the Internet. Another way is to use co-allocation
technology [17, 21, 23, 24, 25, 26, 27, 28, 30] to download data. Co-allocation of data
transfers enables the clients to download data from multiple locations by establishing
multiple connections in parallel. This can improve the performance over single-server
downloads and alleviate the Internet congestion problem [17]. Several co-allocation
strategies were presented in our work [17]. An idle-time drawback remains since
faster servers must wait for the slowest server to deliver its final block. Thus,
reducing the differences in finish times among replica servers is important.

In this paper, we propose a dynamic file-transfer scheme with co-allocation
architecture, called the Dynamic Adjustment Strategy, which reduces file-transfer
times and also improves data transfer performance in Data Grid environments. Our
approach can reduce file server idle times and decrease file-transfer completion times.
We also present a new toolkit, called Cyber-Transformer, with a friendly client-side
GUI interface integrated with the Information Service, Replica Location Service, and
Data Transfer Service [25]. And we provide an effective scheme for reducing the cost
of reassembling data blocks. Experimental results show that our approach is superior
to previous methods and achieves the best overall performance. We also discuss
combination cost and provide an effective improvement.

2 Background Review

2.1 Data Grid and Grid Middleware

In Data Grid environments, access to distributed data is typically as important as
access to distributed computational resources [1, 2, 3, 4, 5, 6, 30]. Distributed
scientific and engineering applications require transfers of large amounts of data
between storage systems, and access to large amounts of data generated by many
geographically distributed applications and users for analysis and visualization,
among others.

The Globus Project [9, 11, 16] provides software tools collectively called The
Globus Toolkit that make it easier to build computational Grids and Grid-based
applications. Many organizations use the Globus Toolkit to support their applications.
The composition of the Globus Toolkit can be pictured as three pillars: Resource
Management, Information Services, and Data Management. Each pillar represents a
primary component of the Globus Toolkit and makes use of a common foundation of
security. GRAM implements a resource management protocol, MDS implements an

A Dynamic Adjustment Strategy for File Transformation in Data GridsTF FT 3

information services protocol, and GridFTP implements a data transfer protocol. They
all use the GSI security protocol at the connection layer [10, 11, 13, 16].

2.2 Replica Management and Selection

Replica management involves creating or removing replicas in data grid sites [21]. A
replica manager typically maintains a replica catalog containing replica site addresses
and file instances. The replica management service is responsible for managing the
replication of complete and partial copies of datasets, defined as collections of files.

Data Grid may contain multiple replica catalogs. The purpose of the replica catalog
is to provide mappings between logical names for files or collections and one or more
copies of objects in physical storage systems. The catalog registers three types of
entries: logical collections, locations and logical files. Despite the benefits of
registering and manipulating collections of files using logical collection and location
objects, there may be a need for users and applications to characterize individual files.
For this purpose, the Replica Catalog includes optional entries that describe individual
logical files. Logical files are entities with globally unique names and one or more
physical instances. The Catalog may optionally contain one logical file entry in the
Replica Catalog for each logical file in a collection.

Replica selection [16] is used to select replicas from among the sites in a Data Grid
[21]. The selection criteria depend on application characteristics. This mechanism
enables users to efficiently manage replicas of data sets at their sites. The replica
selection process commonly consists of three steps: data preparation, preprocessing
and prediction. Applications then select replicas according to their specific attributes.

3 The Dynamic Adjustment Strategy

3.1 The Co-Allocation Architecture

Candidate replica locations are passed to the replica selection service [21], which was
presented in a previous work [23, 24, 25]. This replica selection service provides
estimates of candidate transfer performance based on a cost model and chooses
appropriate amounts to request from the better locations. The architecture proposed in
[17] consists of three main components: an information service, a broker/co-allocator,
and local storage systems. The co-allocation architecture [7] is shown in Figure 1,
which is an extension of the basic template for resource management. Applications
specify the characteristics of desired data and pass the attribute description to a
broker. The broker queries available resources and gets replica locations from an
information service [6] and a replica management service [21] creates a list of the
desired files physical locations. The co-allocation agent then downloads the data in
parallel from the selected servers.

4 Chao-Tung YangTF FT, Shih-Yu Wang, and Chun-Pin Fu

Fig. 1. The Co-Allocation Architecture in Data Grids

Data grids consist of scattered computing and storage resources located in different
countries/regions yet accessible to users [8]. We used the grid middleware Globus
Toolkit [16] as our data grid infrastructure. The Globus Toolkit provides solutions for
such considerations as security, resource management, data management, and
information services. One of its primary components, MDS [6, 11, 16, 26], is
designed to provide a standard mechanism for discovering and publishing resource
status and configuration information. It provides a uniform and flexible interface for
data collected by lower-level information providers in two modes: static (e.g., OS,
CPU types, and system architectures) and dynamic data (e.g., disk availability,
memory availability, and loading) [15, 22]. And it uses GridFTP [1, 11, 16] to provide
efficient management and transfer data in a wide-area, distributed-resource
environment. We use GridFTP [1, 11, 16] to enable parallel data transfers.

As datasets are replicated within Grid environments for reliability and
performance, clients require the abilities to discover existing data replicas, and create
and register new replicas. A Replica Location Service (RLS) [4] provides a
mechanism for discovering and registering existing replicas. Several prediction
metrics have been developed to help replica selection. For instance, Vazhkudai and
Schopf [18, 19, 20, 21] used past data transfer histories to estimate current data
transfer throughputs.

In our previous work [23, 24], we proposed a replica selection cost model and a
replica selection service to perform replica selection. In [17], the author proposes a
co-allocation architecture for co-allocating Grid data transfers across multiple
connections by exploiting the partial-copy feature of GridFTP. It also provides Brute-
Force, History-Based, and Dynamic Load Balancing for allocating data blocks.
• Brute-Force Co-Allocation: Brute-Force Co-Allocation works by dividing files

equally among available flows. It does not address bandwidth differences among
the various client-server links.

A Dynamic Adjustment Strategy for File Transformation in Data GridsTF FT 5

• History-based Co-Allocation: The History-based Co-Allocation scheme keeps
block sizes per flow proportional to transfer rates predicted by previous results of
file transfer results.

• Conservative Load Balancing: One of their dynamic co-allocation is Conservative
Load Balancing. The Conservative Load Balancing dynamic co-allocation strategy
divides requested datasets into “k” disjoint blocks of equal size. Available servers
are assigned single blocks to deliver in parallel. When a server finishes delivering a
block, another is requested, and so on, until the entire file is downloaded. The
loadings on the co-allocated flows are automatically adjusted because the faster
servers will deliver more quickly providing larger portions of the file.
These co-allocation strategies do not address the shortcoming of faster servers

having to wait for the slowest server to deliver its final block. In most cases, this
wastes much time and decreases overall performance. Thus, we propose an efficient
approach, called the Dynamic Adjustment Strategy, and based on the co-allocation
architecture. It improves dynamic co-allocation and reduces waiting time, thus
improving overall transfer performance.

3.2 The Dynamic Adjustment Strategy

Dynamic co-allocation is the most efficient approach to reducing the influence of
network variations between clients and servers. However, the idle time of faster
servers waiting for the slowest server to deliver its last block is still a major factor
affecting overall efficiency, which Conservative Load Balancing and Aggressive
Load Balancing [17] cannot effectively avoid. The approach proposed in the present
paper, a dynamic allocation mechanism, called Dynamic Adjustment Strategy, can
overcome this, and thus, improve data transfer performance.

Co-allocation technology [17] enables the clients to download data from multiple
locations by establishing multiple connections in parallel. In our previous work [23],
we proposed a replica selection cost model and a replica selection service to perform
replica selection. We now propose a new data transfer strategy based on this model. It
consists of three phases: initial phase, steady phase, and completion phase.
• Initial phase: We assign equal block sizes to all GridFTP servers. In this phase, our

system determines the next block size for each replica server.
• Steady phase: As job transfers are completed, servers are assigned their next jobs.

Jobs sizes are determined by multiplying the client bandwidth by the weighting.
• Completion phase: To avoid the generating excessively small job sizes, we set an

end condition such that if the remaining target file size is smaller than the initial
block size, it is transferred immediately.
To determine the initial block size, we set an upper bound that is dependent on the

relation between the client’s maximum bandwidth and the number of replica sources.
Though multiple replicas can be downloaded in parallel, the gathered portions of files
from different links must be transferred to the client in a single link. It is clear that the
client’s bandwidth could be bottleneck in co-allocation architecture. The formula for
upper bound is:
initialPT ≤ ClientMaxBandwidth /Number of Replica Source (1)

6 Chao-Tung YangTF FT, Shih-Yu Wang, and Chun-Pin Fu

In our previous work [23, 25, 26, 27, 28], we proposed a replica selection cost
model in which we defined a formula for calculating the weighting. First, we get a
score based on the states of the various server devices:
Scorei = Pi

CPU × RCPU + Pi
Mem × RMem + Pi

BW × RBW, and RCPU + RMem + RBW=1 (2)
The parameters are:

• Scorei: the score for server i such that 1≦i≦n.
• Pi

CPU: percentage of server i CPU idle states [15]
• RCPU: CPU load ratio defined by the user
• Pi

Mem: percentage of server i memory free space [15]
• RMem: memory free space ratio defined by the user
• Pi

BW: percentage of bandwidth available from server i to client (user node); current
bandwidth divided by highest theoretical bandwidth [22, 24]

• RBW: network bandwidth ratio defined by users.
After getting the scores for all server nodes, the system calculates the weightingi:

∑
=

=
n

k
kii ScoreScoreweighting

1

/ (3)

The weighting is then used to determine the size of the next job:
newPTi = ClientBandwidth × weightingi (4)
Where newPTi denotes the next job size for server i, and ClientBandwidth denotes the
current client bandwidth.

When server i finishes transferring of a block, it gets a new job whose size is
calculated according to the real-time status of server i. Each time, our strategy
dynamically adjusts a job size according to source device loading and bandwidth. The
lighter the loading a source device has, the larger job size it is assigned. We show
experimental results and analyses that confirm our strategy in the next section.

4 Experimental Results and Analysis

In this section, we discuss the performance of our Dynamic Adjustment Co-
Allocation strategy in a real data grid. We evaluate four co-allocation schemes: (1)
Brute-Force (Brute), (2) History-based (History), (3) Conservative Load Balancing
(Conservative) and (4) Dynamic Adjustment Strategy (DAS). We analyze the
performance of each scheme by comparing their transfer finish times, and the total
idle time faster servers spent waiting for the slowest servers to finish delivering the
last block. We also analyze overall performances in the various cases.

We performed wide-area data transfer experiments using our GridFTP GUI client
tool. We executed our co-allocation client tool on our testbed at Tunghai University
(THU), Taichung City, Taiwan, and fetched files from four selected replica servers:
one at Providence University (PU), one at Li-Zen High School (LZ), and the other
one at Hsiuping Institute of Technology School (HIT). All these institutions are in
Taichung, Taiwan, and each is at least 10 Km from THU. Figure 2 shows our Data
Grid testbed.

In the following experiments, we set RCPU, RMEM, and RBW in the ratio 0.1:0.1:0.8.
We experimented with file sizes of 10MB, 50MB, 100MB, 500MB, 1000MB,

A Dynamic Adjustment Strategy for File Transformation in Data GridsTF FT 7

1500MB, and 2000MB. For comparison, we measured the performance of
Conservative Load Balancing on each size using the same block numbers.

Internet

THU

Li-Zen High
School (LZ)

HITIntel Celeron 900MHz
256MB RAM 60GB HD

AMD Athlon(tm) XP 2400+
1GB RAM 120GB HD

Intel Pentium 4 2.8GHz
512MB RAM 80GB HD

PUIntel Pentium 4 3GHz
1GB RAM 60GB HD

Intel Pentium 4 2.5GHz
512MB RAM 80GB HD

Fig. 2. Our Data Grid testbed

Table 1 shows average transmission rates between THU and each replica server.
These numbers were obtained by transferring files of 100MB, 500MB, 1000MB, and
2000MB from a single replica server using our GridFTP client tool, and each number
is an average over several runs.

Table 1. GridFTP end-to-end transmission rates from THU to various servers

Replica Server Average Transmission Rate
HIT 61.5 Mbits
LZ 49.5 Mbits
PU 26.7 Mbits

We examined the effect of faster servers waiting for the slowest server to deliver

the last block for each scheme. Figure 3 shows total idle times for various file sizes.
Note that our Dynamic Adjustment Strategy performed significantly better than the
other schemes on every file size. These results demonstrate that our approach
efficiently reduces the differences in servers finish times.

Figure 4 shows total completion times in a detailed cost-structure view. Servers
were at PU, LZ, and HIT, with the client at THU. The first three bars for each file size
denote the time to download the entire file from single server, while the other bars
show co-allocated downloads using all three servers. Our co-allocation strategy
finished the jobs faster than the other strategies, and there was no combination time
cost, and faster transmission than other co-allocation strategies.

8 Chao-Tung YangTF FT, Shih-Yu Wang, and Chun-Pin Fu

0

25

50

75

100
125

150

175

200

225

100 500 1000 2000

File Size (MB)

Id
le

 T
im

e
(S

ec
.)

Brute History Conservative DAS

Fig. 3. Idle times for various methods; servers at PU, LZ, and HIT

0

100

200

300

400

500

600

700

PU LZ H
IT

BR
U

H
IS

C
O

N
D

A
S

PU LZ H
IT

BR
U

H
IS

C
O

N
D

A
S

PU LZ H
IT

BR
U

H
IS

C
O

N
D

A
S

PU LZ H
IT

BR
U

H
IS

C
O

N
D

A
S

100 500 1000 2000
Cases and File Size

C
om

pl
et

io
n

Ti
m

e
(S

ec
.)

Authentication Time Transmission Time Combination Time

Fig. 4. Completion times for various methods; servers are at PU, LZ, and HIT.

5 Conclusions and Future Work

This paper proposes the Dynamic Adjustment Strategy to improve file transfer
performances using the co-allocation architecture [17] in Data Grids. In our approach,
the workloads on selected replica servers are continuously adjusted during data
transfers, and our approach can also reduce the idle times spent waiting for the
slowest servers, and thus decrease file transfer completion times.

A Dynamic Adjustment Strategy for File Transformation in Data GridsTF FT 9

We also developed a new toolkit, called Cyber-Transformer that enables even
inexperienced users to easily monitor replica source site statuses, manage replicas,
and download files from multiple servers in parallel. Experimental results show the
effectiveness of our proposed technique in improving transfer times and reducing
overall idle time spent waiting for the slowest servers.

In future work, we will investigate providing more functions for our user-friendly
interface, for example, auto parameters input, and auto scan to find better replica
servers for downloading. We also plan to improve replica management, especially on
the problem of replica consistency.

References

1. B. Allcock, J. Bester, J. Bresnahan, A. Chervenak, I. Foster, C. Kesselman, S. Meder, V.
Nefedova, D. Quesnel, and S. Tuecke, “Data Management and Transfer in High-
Performance Computational Grid Environments,” Parallel Computing, 28(5):749-771, May
2002.

2. B. Allcock, J. Bester, J. Bresnahan, A. Chervenak, I. Foster, C. Kesselman, S. Meder, V.
Nefedova, D. Quesnel, and S. Tuecke, “Secure, efficient Data Transport and Replica
Management for High-Performance Data-Intensive Computing,” Proceedings of the
Eighteenth IEEE Symposium on Mass Storage Systems and Technologies, pp. 13-28, 2001.

3. B. Allcock, S. Tuecke, I. Foster, A. Chervenak, and C. Kesselman. “Protocols and Services
for Distributed Data-Intensive Science.” ACAT2000 Proceedings, pp. 161-163, 2000.

4. A. Chervenak, E. Deelman, I. Foster, L. Guy, W. Hoschek, A. Iamnitchi, C. Kesselman, P.
Kunszt, and M. Ripeanu, “Giggle: A Framework for Constructing Scalable Replica
Location Services,” Proceedings of Supercomputing 2002, Baltimore, MD, 2002.

5. A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, and S. Tuecke, “The Data Grid:
Towards an Architecture for the Distributed Management and Analysis of Large Scientific
Datasets,” Journal of Network and Computer Applications, 23:187-200, 2001.

6. K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman, “Grid Information Services for
Distributed Resource Sharing,” Proceedings of the Tenth IEEE International Symposium on
High-Performance Distributed Computing (HPDC-10’01), 181-194, August 2001.

7. K. Czajkowski, I. Foster, and C. Kesselman. “Resource Co-Allocation in Computational
Grids,” Proceedings of the Eighth IEEE International Symposium on High Performance
Distributed Computing (HPDC-8’99), August 1999.

8. F. Donno, L. Gaido, A. Ghiselli, F. Prelz, and M. Sgaravatto, “DataGrid Prototype 1,”
Proceedings of the TERENA Networking Conference,
http://www.terena.nl/conferences/tnc2002/Papers/p5a2-ghiselli.pdf, June 2002,

9. I. Foster, C. Kesselman, and S. Tuecke. “The Anatomy of the Grid: Enabling Scalable
Virtual Organizations.” International Journal of Supercomputer Applications and High
Performance Computing, 15(3), pp. 200-222, 2001.

10. I. Foster and C. Kesselman, “Globus: A Metacomputing Infrastructure Toolkit,”
International Journal of Supercomputer Applications and High Performance Computing,
11(2), pp. 115-128, 1997.

11. Global Grid Forum, http://www.ggf.org/
12. W. Hoschek, J. Jaen-Martinez, A. Samar, H. Stockinger, and K. Stockinger, “Data

Management in an International Data Grid Project,” First IEEE/ACM International
Workshop on Grid Computing - Grid 2000, Bangalore, India, December 2000.

13. IBM Red Books, Introduction to Grid Computing with Globus, IBM Press,
http://www.redbooks.ibm.com/redbooks/pdfs/sg246895.pdf

http://www.terena.nl/conferences/tnc2002/Papers/p5a2-ghiselli.pdf
http://www.ggf.org/
http://www.redbooks.ibm.com/redbooks/pdfs/sg246895.pdf

10 Chao-Tung YangTF FT, Shih-Yu Wang, and Chun-Pin Fu

14. H. Stockinger, A. Samar, B. Allcock, I. Foster, K. Holtman, and B. Tierney, “File and
Object Replication in Data Grids,” Journal of Cluster Computing, 5(3):305-314, 2002.

15. SYSSTAT utilities home page, http://perso.wanadoo.fr/sebastien.godard/
16. The Globus Alliance, http://www.globus.org/
17. S. Vazhkudai, “Enabling the Co-Allocation of Grid Data Transfers,” Proceedings of Fourth

International Workshop on Grid Computing, pp. 41-51, November 2003.
18. S. Vazhkudai and J. Schopf, “Using Regression Techniques to Predict Large Data

Transfers,” International Journal of High Performance Computing Applications (IJHPCA),
17:249-268, August 2003.

19. S. Vazhkudai and J. Schopf, “Predicting Sporadic Grid Data Transfers,” Proceedings of
11th IEEE International Symposium on High Performance Distributed Computing (HPDC-
11 ‘02), pp. 188-196, July 2002.

20. S. Vazhkudai, J. Schopf, and I. Foster, “Predicting the Performance of Wide Area Data
Transfers,” Proceedings of the 16th International Parallel and Distributed Processing
Symposium (IPDPS 2002), pp.34-43, April 2002.

21. S. Vazhkudai, S. Tuecke, and I. Foster, “Replica Selection in the Globus Data Grid,”
Proceedings of the 1st International Symposium on Cluster Computing and the Grid
(CCGRID 2001), pp. 106-113, May 2001.

22. R. Wolski, N. Spring, and J. Hayes, “The Network Weather Service: A Distributed
Resource Performance Forecasting Service for Metacomputing,” Future Generation
Computer Systems, 15(5-6):757-768, 1999.

23. C.T. Yang, C.H. Chen, K.C. Li, and C.H. Hsu, “Performance Analysis of Applying Replica
Selection Technology for Data Grid Environments,” PaCT 2005, Lecture Notes in
Computer Science, vol. 3603, pp. 278-287, Springer-Verlag, September 2005.

24. C.T. Yang, P.C. Shih, and S.Y. Chen, “A Domain-based Model for Efficient Network
Information on Grid Computing Environments,” accepted and to appear in IEICE Trans.
Information and Systems, Special Issue on Parallel/Distributed Computing and Networking,
vol. E89-D, no. 2, February, 2006, pp. 738-742.

25. C.T. Yang, S.Y. Wang, C.H. Lin, M.H. Lee, and T.Y. Wu, “Cyber-Transformer: A Toolkit
for Files Transfer with Replica Management in Data Grid Environments,” Proceedings of
the Second Workshop on Grid Technologies and Applications (WoGTA’05), pp. 73-80,
December 2005.

26. C.T. Yang, I.H. Yang, C.H. Chen, and S.Y. Wang, “Implementation of a Dynamic
Adjustment Mechanism with Efficient Replica Selection in Co-Allocation Data Grid
Environments,” Proceedings of the 21st Annual ACM Symposium on Applied Computing
(SAC 2006) - Distributed Systems and Grid Computing Track, pp. 797-804, April 23-27,
2006.

27. C.T. Yang, I.H. Yang, K.C. Li, and C.H. Hsu, “A Recursive-Adjustment Co-Allocation
Scheme in Data Grid Environments,” ICA3PP 2005 Algorithm and Architecture for Parallel
Processing, Lecture Notes in Computer Science, vol. 3719, pp. 40-49, Springer-Verlag,
October 2005.

28. C.T. Yang, I.H. Yang, K.C. Li, and S.Y. Wang, “Improvements on Dynamic Adjustment
Mechanism in Co-Allocation Data Grid Environments,” accepted and to appear in The
Journal of Supercomputing, December 2006.

29. X. Zhang, J. Freschl, and J. Schopf, “A Performance Study of Monitoring and Information
Services for Distributed Systems”, Proceedings of 12th IEEE International Symposium on
High Performance Distributed Computing (HPDC-12 ‘03), pp. 270-282, August 2003.

30. S. Venugopal, R.Buyya, and K. Ramamohanarao, “A Taxonomy of Data Grids for
Distributed Data Sharing, Management, and Processing”, ACM Computing Surveys,
38(1):1-53, Mar-June 2006.

http://perso.wanadoo.fr/sebastien.godard/
http://www.globus.org/

