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Abstract. In this paper, we propose a dynamic file transfer scheme with co-
allocation architecture, called Dynamic Adjustment Strategy, a dynamic file 
transfer scheme with co-allocation architecture that reduce the file transfer 
times and improves the performance in Data Grid environments. Our approach 
reduces the idle time faster servers spend waiting for the slowest server, and 
decreases file transfer completion time. We also present a new toolkit, called 
Cyber-Transformer, with a friendly graphical user interface interface running 
on the client side that makes it easy for inexperienced users to manage replicas 
and download the files in Data Grid environments. We also provide an effective 
scheme for reducing the cost of reassembling data blocks. 

1   Introduction 

The term “Data Grid” traditionally represents the network of distributed storage 
resources from archival systems to caches and databases, which are linked using a 
logical name space to create global, persistent identifiers and provide uniform access 
mechanisms [4]. Data Grids aggregate distributed resources to resolve large-size 
dataset management problems [1, 2, 3, 5, 6, 7, 8, 9, 29, 30]. Increasingly, large 
collections of measured and computed data are emerging as important resources in 
many data-intensive applications. 

Certain data-intensive scientific applications entail huge amounts of data that 
require data file management systems to replicate files and manage data transfers and 
distributed data access. Data grid infrastructure integrates data storage devices and 
data management services in grid environments consisting of scattered computing and 
storage resources, perhaps located in different countries/regions yet accessible to 
users [12]. 

Replicating popular content in distributed servers is widely used in practice [14, 
17, 21, 30]. Recently, large-scale, data-sharing scientific communities such as those 
described in [1, 5] used this technology to replicate their large datasets over several 
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sites. Downloading large datasets from several replica locations may result in varied 
performance rates. Bandwidth quality is the most important factor affecting transfers 
between clients and servers since download speeds are limited by the bandwidth 
traffic congestion in the links connecting the servers to the clients. 

One way to improve download speed is to use replica selection techniques to 
determine the best replica locations [21]. This method selects the servers most likely 
to provide optimum transfer rates because bandwidth quality can vary unpredictably 
due to the sharing nature of the Internet. Another way is to use co-allocation 
technology [17, 21, 23, 24, 25, 26, 27, 28, 30] to download data. Co-allocation of data 
transfers enables the clients to download data from multiple locations by establishing 
multiple connections in parallel. This can improve the performance over single-server 
downloads and alleviate the Internet congestion problem [17]. Several co-allocation 
strategies were presented in our work [17]. An idle-time drawback remains since 
faster servers must wait for the slowest server to deliver its final block. Thus, 
reducing the differences in finish times among replica servers is important. 

In this paper, we propose a dynamic file-transfer scheme with co-allocation 
architecture, called the Dynamic Adjustment Strategy, which reduces file-transfer 
times and also improves data transfer performance in Data Grid environments. Our 
approach can reduce file server idle times and decrease file-transfer completion times. 
We also present a new toolkit, called Cyber-Transformer, with a friendly client-side 
GUI interface integrated with the Information Service, Replica Location Service, and 
Data Transfer Service [25]. And we provide an effective scheme for reducing the cost 
of reassembling data blocks. Experimental results show that our approach is superior 
to previous methods and achieves the best overall performance. We also discuss 
combination cost and provide an effective improvement. 

2   Background Review 

2.1  Data Grid and Grid Middleware 

In Data Grid environments, access to distributed data is typically as important as 
access to distributed computational resources [1, 2, 3, 4, 5, 6, 30]. Distributed 
scientific and engineering applications require transfers of large amounts of data 
between storage systems, and access to large amounts of data generated by many 
geographically distributed applications and users for analysis and visualization, 
among others. 

The Globus Project [9, 11, 16] provides software tools collectively called The 
Globus Toolkit that make it easier to build computational Grids and Grid-based 
applications. Many organizations use the Globus Toolkit to support their applications. 
The composition of the Globus Toolkit can be pictured as three pillars: Resource 
Management, Information Services, and Data Management. Each pillar represents a 
primary component of the Globus Toolkit and makes use of a common foundation of 
security. GRAM implements a resource management protocol, MDS implements an 
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information services protocol, and GridFTP implements a data transfer protocol. They 
all use the GSI security protocol at the connection layer [10, 11, 13, 16]. 

2.2  Replica Management and Selection 

Replica management involves creating or removing replicas in data grid sites [21]. A 
replica manager typically maintains a replica catalog containing replica site addresses 
and file instances. The replica management service is responsible for managing the 
replication of complete and partial copies of datasets, defined as collections of files. 

Data Grid may contain multiple replica catalogs. The purpose of the replica catalog 
is to provide mappings between logical names for files or collections and one or more 
copies of objects in physical storage systems. The catalog registers three types of 
entries: logical collections, locations and logical files. Despite the benefits of 
registering and manipulating collections of files using logical collection and location 
objects, there may be a need for users and applications to characterize individual files. 
For this purpose, the Replica Catalog includes optional entries that describe individual 
logical files. Logical files are entities with globally unique names and one or more 
physical instances. The Catalog may optionally contain one logical file entry in the 
Replica Catalog for each logical file in a collection. 

Replica selection [16] is used to select replicas from among the sites in a Data Grid 
[21]. The selection criteria depend on application characteristics. This mechanism 
enables users to efficiently manage replicas of data sets at their sites. The replica 
selection process commonly consists of three steps: data preparation, preprocessing 
and prediction. Applications then select replicas according to their specific attributes. 

3   The Dynamic Adjustment Strategy 

3.1  The Co-Allocation Architecture 

Candidate replica locations are passed to the replica selection service [21], which was 
presented in a previous work [23, 24, 25]. This replica selection service provides 
estimates of candidate transfer performance based on a cost model and chooses 
appropriate amounts to request from the better locations. The architecture proposed in 
[17] consists of three main components: an information service, a broker/co-allocator, 
and local storage systems. The co-allocation architecture [7] is shown in Figure 1, 
which is an extension of the basic template for resource management. Applications 
specify the characteristics of desired data and pass the attribute description to a 
broker. The broker queries available resources and gets replica locations from an 
information service [6] and a replica management service [21] creates a list of the 
desired files physical locations. The co-allocation agent then downloads the data in 
parallel from the selected servers. 
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Fig. 1. The Co-Allocation Architecture in Data Grids 

Data grids consist of scattered computing and storage resources located in different 
countries/regions yet accessible to users [8]. We used the grid middleware Globus 
Toolkit [16] as our data grid infrastructure. The Globus Toolkit provides solutions for 
such considerations as security, resource management, data management, and 
information services. One of its primary components, MDS [6, 11, 16, 26], is 
designed to provide a standard mechanism for discovering and publishing resource 
status and configuration information. It provides a uniform and flexible interface for 
data collected by lower-level information providers in two modes: static (e.g., OS, 
CPU types, and system architectures) and dynamic data (e.g., disk availability, 
memory availability, and loading) [15, 22]. And it uses GridFTP [1, 11, 16] to provide 
efficient management and transfer data in a wide-area, distributed-resource 
environment. We use GridFTP [1, 11, 16] to enable parallel data transfers.  

As datasets are replicated within Grid environments for reliability and 
performance, clients require the abilities to discover existing data replicas, and create 
and register new replicas. A Replica Location Service (RLS) [4] provides a 
mechanism for discovering and registering existing replicas. Several prediction 
metrics have been developed to help replica selection. For instance, Vazhkudai and 
Schopf [18, 19, 20, 21] used past data transfer histories to estimate current data 
transfer throughputs. 

In our previous work [23, 24], we proposed a replica selection cost model and a 
replica selection service to perform replica selection. In [17], the author proposes a 
co-allocation architecture for co-allocating Grid data transfers across multiple 
connections by exploiting the partial-copy feature of GridFTP. It also provides Brute-
Force, History-Based, and Dynamic Load Balancing for allocating data blocks. 
• Brute-Force Co-Allocation: Brute-Force Co-Allocation works by dividing files 

equally among available flows. It does not address bandwidth differences among 
the various client-server links. 
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• History-based Co-Allocation: The History-based Co-Allocation scheme keeps 
block sizes per flow proportional to transfer rates predicted by previous results of 
file transfer results. 

• Conservative Load Balancing: One of their dynamic co-allocation is Conservative 
Load Balancing. The Conservative Load Balancing dynamic co-allocation strategy 
divides requested datasets into “k” disjoint blocks of equal size. Available servers 
are assigned single blocks to deliver in parallel. When a server finishes delivering a 
block, another is requested, and so on, until the entire file is downloaded. The 
loadings on the co-allocated flows are automatically adjusted because the faster 
servers will deliver more quickly providing larger portions of the file. 
These co-allocation strategies do not address the shortcoming of faster servers 

having to wait for the slowest server to deliver its final block. In most cases, this 
wastes much time and decreases overall performance. Thus, we propose an efficient 
approach, called the Dynamic Adjustment Strategy, and based on the co-allocation 
architecture. It improves dynamic co-allocation and reduces waiting time, thus 
improving overall transfer performance. 

3.2  The Dynamic Adjustment Strategy 

Dynamic co-allocation is the most efficient approach to reducing the influence of 
network variations between clients and servers. However, the idle time of faster 
servers waiting for the slowest server to deliver its last block is still a major factor 
affecting overall efficiency, which Conservative Load Balancing and Aggressive 
Load Balancing [17] cannot effectively avoid. The approach proposed in the present 
paper, a dynamic allocation mechanism, called Dynamic Adjustment Strategy, can 
overcome this, and thus, improve data transfer performance. 

Co-allocation technology [17] enables the clients to download data from multiple 
locations by establishing multiple connections in parallel. In our previous work [23], 
we proposed a replica selection cost model and a replica selection service to perform 
replica selection. We now propose a new data transfer strategy based on this model. It 
consists of three phases: initial phase, steady phase, and completion phase.  
• Initial phase: We assign equal block sizes to all GridFTP servers. In this phase, our 

system determines the next block size for each replica server. 
• Steady phase: As job transfers are completed, servers are assigned their next jobs. 

Jobs sizes are determined by multiplying the client bandwidth by the weighting.  
• Completion phase: To avoid the generating excessively small job sizes, we set an 

end condition such that if the remaining target file size is smaller than the initial 
block size, it is transferred immediately. 
To determine the initial block size, we set an upper bound that is dependent on the 

relation between the client’s maximum bandwidth and the number of replica sources. 
Though multiple replicas can be downloaded in parallel, the gathered portions of files 
from different links must be transferred to the client in a single link. It is clear that the 
client’s bandwidth could be bottleneck in co-allocation architecture. The formula for 
upper bound is: 
initialPT ≤ ClientMaxBandwidth /Number of Replica Source (1) 
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In our previous work [23, 25, 26, 27, 28], we proposed a replica selection cost 
model in which we defined a formula for calculating the weighting. First, we get a 
score based on the states of the various server devices: 
Scorei = Pi

CPU × RCPU + Pi
Mem × RMem + Pi

BW × RBW, and RCPU + RMem + RBW=1 (2) 
The parameters are: 

• Scorei: the score for server i such that 1≦i≦n. 
• Pi

CPU: percentage of server i CPU idle states [15] 
• RCPU: CPU load ratio defined by the user 
• Pi

Mem: percentage of server i memory free space [15] 
• RMem: memory free space ratio defined by the user 
• Pi

BW: percentage of bandwidth available from server i to client (user node); current 
bandwidth divided by highest theoretical bandwidth [22, 24] 

• RBW: network bandwidth ratio defined by users. 
After getting the scores for all server nodes, the system calculates the weightingi: 

∑
=

=
n

k
kii ScoreScoreweighting

1

/  (3) 

The weighting is then used to determine the size of the next job: 
newPTi = ClientBandwidth × weightingi (4) 
Where newPTi denotes the next job size for server i, and ClientBandwidth denotes the 
current client bandwidth. 

When server i finishes transferring of a block, it gets a new job whose size is 
calculated according to the real-time status of server i. Each time, our strategy 
dynamically adjusts a job size according to source device loading and bandwidth. The 
lighter the loading a source device has, the larger job size it is assigned. We show 
experimental results and analyses that confirm our strategy in the next section. 

4   Experimental Results and Analysis 

In this section, we discuss the performance of our Dynamic Adjustment Co-
Allocation strategy in a real data grid. We evaluate four co-allocation schemes: (1) 
Brute-Force (Brute), (2) History-based (History), (3) Conservative Load Balancing 
(Conservative) and (4) Dynamic Adjustment Strategy (DAS). We analyze the 
performance of each scheme by comparing their transfer finish times, and the total 
idle time faster servers spent waiting for the slowest servers to finish delivering the 
last block. We also analyze overall performances in the various cases. 

We performed wide-area data transfer experiments using our GridFTP GUI client 
tool. We executed our co-allocation client tool on our testbed at Tunghai University 
(THU), Taichung City, Taiwan, and fetched files from four selected replica servers: 
one at Providence University (PU), one at Li-Zen High School (LZ), and the other 
one at Hsiuping Institute of Technology School (HIT). All these institutions are in 
Taichung, Taiwan, and each is at least 10 Km from THU. Figure 2 shows our Data 
Grid testbed. 

In the following experiments, we set RCPU, RMEM, and RBW in the ratio 0.1:0.1:0.8. 
We experimented with file sizes of 10MB, 50MB, 100MB, 500MB, 1000MB, 
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1500MB, and 2000MB. For comparison, we measured the performance of 
Conservative Load Balancing on each size using the same block numbers. 

 

Internet

THU

Li-Zen High 
School (LZ)

HITIntel Celeron 900MHz
256MB RAM 60GB HD

AMD Athlon(tm) XP 2400+
1GB RAM 120GB HD

Intel Pentium 4 2.8GHz
512MB RAM 80GB HD

PUIntel Pentium 4 3GHz
1GB RAM 60GB HD

Intel Pentium 4 2.5GHz
512MB RAM 80GB HD

 
Fig. 2. Our Data Grid testbed 

Table 1 shows average transmission rates between THU and each replica server. 
These numbers were obtained by transferring files of 100MB, 500MB, 1000MB, and 
2000MB from a single replica server using our GridFTP client tool, and each number 
is an average over several runs. 

Table 1. GridFTP end-to-end transmission rates from THU to various servers 

Replica Server Average Transmission Rate
HIT 61.5 Mbits 
LZ 49.5 Mbits 
PU 26.7 Mbits 

 
We examined the effect of faster servers waiting for the slowest server to deliver 

the last block for each scheme. Figure 3 shows total idle times for various file sizes. 
Note that our Dynamic Adjustment Strategy performed significantly better than the 
other schemes on every file size. These results demonstrate that our approach 
efficiently reduces the differences in servers finish times. 

Figure 4 shows total completion times in a detailed cost-structure view. Servers 
were at PU, LZ, and HIT, with the client at THU. The first three bars for each file size 
denote the time to download the entire file from single server, while the other bars 
show co-allocated downloads using all three servers. Our co-allocation strategy 
finished the jobs faster than the other strategies, and there was no combination time 
cost, and faster transmission than other co-allocation strategies. 
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Fig. 3. Idle times for various methods; servers at PU, LZ, and HIT 
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Fig. 4. Completion times for various methods; servers are at PU, LZ, and HIT. 

5   Conclusions and Future Work 

This paper proposes the Dynamic Adjustment Strategy to improve file transfer 
performances using the co-allocation architecture [17] in Data Grids. In our approach, 
the workloads on selected replica servers are continuously adjusted during data 
transfers, and our approach can also reduce the idle times spent waiting for the 
slowest servers, and thus decrease file transfer completion times. 
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We also developed a new toolkit, called Cyber-Transformer that enables even 
inexperienced users to easily monitor replica source site statuses, manage replicas, 
and download files from multiple servers in parallel. Experimental results show the 
effectiveness of our proposed technique in improving transfer times and reducing 
overall idle time spent waiting for the slowest servers.  

In future work, we will investigate providing more functions for our user-friendly 
interface, for example, auto parameters input, and auto scan to find better replica 
servers for downloading. We also plan to improve replica management, especially on 
the problem of replica consistency. 
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